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Triplet superconductive pairing in the lowest Landau level:
Comparison of superconductive and charge-density-wave critical temperatures
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An analog of triplet superconducting pairing in the lowest Landau level is proposed. The pairing
occurs between electrons with the same spin projection along the axis of the magnetic field. The
self-consistency equation for a three-dimensional system is written in a closed form. The mean-field
solution forms the Abrikosov lattice. We obtain T, for a general nonretarded interaction and compare
it with the critical temperature for a charge-density-wave transition. For certain interactions we show
that the superconductive transition has a higher mean field T, than the charge-density-wave one.

Recently, Tesanovic and co-workers have shown that
the reentrance of superconductivity takes place at high
magnetic fields. Within the mean-field theory, the critical
temperature T, (H) of a superconductor in the quantum
limit (QL), where all electrons are in the lowest Landau
level (LLL), can be as high as T,o. The self-consistent so-
lution for T & T,(H) was found in Refs. 2 and 3, where it
was shown that the order parameter forms the Abrikosov
lattice.

Previously the case of singlet pairing has been treated.
Dukan, Andreev, and Tesanovic and Akera et al. con-
sidered the case when the effective g factor, the ratio of
the electron's magnetic moment to eh/m*c (m* being
the efFective of electron) is small. This is a good approx-
imation in many low carrier density systems. Norman,
Akera, and MacDonald also considered the case where
the effective g factor is close to 2. In such systems elec-
trons in the Nth spin-up Landau level pair with electrons
in the N + 1 spin-down Landau level. In this paper we
show that in the QL pairing into a triplet state should
occur. It should be noted that such pairing does not ne-
cessitate any restrictions on the effective g factor. We
also compare the critical temperatures for the supercon-

ductive and the charge-density-wave (CDW) transition.
We consider a three-dimensional system of interacting

electrons in a magnetic field strong enough that only the
lowest Landau level states need be considered. The Zee-
man splitting is assumed to be of the same order as the
separation between Landau levels, so only the states with
one spin polarization are occupied. We further assume
that the Fermi momentum of this band is small compared
to the inverse magnetic length, pp « l = ( h, ) ~,
and that the interaction is weak compared to the Fermi
energy and the cyclotron frequency. Below we put mag-
netic length and Planck's constant equal to unity. We
will work in the Landau gauge A& ——Hx, A~ = Aq ——O.

The annihilation operator can be written as @((,z)

j—"P& exp(ip() Py (z) ap y, where z = x —i y is the com-
plex coordinate perpendicular to the field, ( is the coor-
dinate along the field, Pk(z) = L ~~2 exp[iky —(x+k)2/2]
and a„k is the operator annihilating a particle in a state
with quantum numbers k and p.

An important aspect of the system can be seen if
we rewrite the interaction Hamiltonian in terms of
V(ps, q) = exp( —q /2) jexp( —ips( —iq x —iq„y) V(r) dr
(Ref. 6)

H=-)
kz, k2

dpldp2dp3
(2~)' )2V(ps, q) exp[iq~(kz —k2 —qz)]a k a k ap p Q ap +p

where kl ——A:l —
q& and k2 ——k2 + q„. We assume that the interaction is short ranged with the range shorter or

equal to l. Because k~ && l for momentum transfers of order 2k' we can take V(ps, q) to be independent of ps and
equal to its value V(q) = V(0, q) at ps ——0. If we rewrite our interaction potential as V(q) = —jexp( —iql) V'(l)dl
where V'(q) =

2 jV(p) exp(ipq)dp then after very simple transformations and changes in notation the interaction
Hamiltonian can be rewritten in terms of V'(q) as '

kg, k2

dPldP2dP3

(2~)s V'(q) exp[iq~ (k~ —k2 —q„)]a „a „a»»,I.,a»+», I, (2)

Taking half the sum of Eqs. (1) and (2) and
noting that both V(q) and V'(q) are independent
of p3 we obtain that the effective interaction poten-
tial is of the following form U(q) = 1/2[V(q)

V'(q)]. If we expand V(q) in terms of Haldane
pseudopotentialss V(q) = 4vr P V L (q2) exp( —q2/2)
then we can write the efFective potential as U(q)
4n P V2m+qL2m+q(q ) exp( —q /2). Thus we see that
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in the limit of small k~ only odd Haldane pseudopoten-
tials matter. ' We will show that if at least one of the
Haldane pseudopotentials in this expansion is negative
the system is unstable with respect to formation of a su-
perconducting state.

We now turn to treating this superconductive instabil-
ity. The pairing will occur into a state which is uniform
along the field. If we introduce the Fourier transform of
the 6eld operators kIJp(z) = f exp( —ipr", )kII(g, z) the gen-
eralized Hartree Hamiltonian is as follows:

( p' l 1 dp ,
2vr " (2m ) " 2 2'd z@p(z)

I
p I @p(z) + — —d zld z2[kI p(zl)kl p(z2)i"k*(zl, z2) + H.c.]

where A(zl, z2) = PLLL f —,
""V(lz, —z2l)Ep(z„z2)

is the off-diagonal Pairing Potential [Ip(zl, z2)
(@p(zl)@ p(z2)) here is the anomalous Gor'kov average
and PLLL is the projector to LLL for both zl and z2] and
V(lzl —z2l) = f dCV(r) is the zeroth Fourier component
of the interaction between electrons along the r,

' axis.
Pairing occurs into a state which forms an Abrikosov

lattice in the plane perpendicular to the magnetic field.
For simplicity the unit cell of this lattice is taken to be a
square, its side being a = a / L. The electronic unit cell
is twice as big and is spanned by vectors el ——(a, 0) and
e2 ——(0, 2a). If we introduce the center-of-mass coordi-
nate Z = X —iY = (zl + z2)/2 and relative coordinate
z = x —iy = zq —z2 of a Cooper pair the order parameter
can be rewritten in the following form:

A(Z, z) = ) z exp (—lzl /8 —ixy/4)
2 +lgvrm!

x ) exp[ —(X + na) + i2na Y] (4)

where 4 is the amplitude of the mth partial wave and
the sum goes over odd m only. As a function of the
center-of-mass coordinate it forms a square lattice and
as a function of relative coordinate it corresponds to a
superposition of states with relative angular momenta m
gauge transformed to the Landau gauge. Note that the
partial waves here are diA'erent from those introduced
by Akera et al. where they refer to the Landau level
of relative motion rather than angular momentum. In
general (if one pairs electrons on different LLs) the cou-
pling channel is characterized by the Landau level and
the angular momentum of the relative motion. In our
model the question of Landau level never arose because
all electrons were in the LLL and, therefore, coupling was
bound to occur in the LLL for relative motion.

The electronic wave functions are characterized by a
momentum p along the ( axis and an in-plane quasi-
momentum q corresponding to the magnetic translation
group. The eigenfunctions of magnetic translations are

I

given by
1/2

'6, (z) = e p(ip~)

x ) exp[ —
2 (x + qp + na)

+iy(q„+ na) + inaq ]

4((, z) = ) 2 [&p,~cp.~@p,~(z) + v,*, c,",,&-p, -~(z)l

where the sum over q goes over the magnetic Brillouin
zone. In this representation the Bogoliubov —de Gennes
equations for diferent p and q decouple and reduce to

(~ —E„)„++( ) „=0,
&*(q)np, ~+ (—&

—Ep, ~)vp, ~ = o

2
where ( =

2
—p, Ez ——g(2 + A(q)2, and the matrix

element b, (q) is given by

A(q) = d Zd zg„* (Z+z/2)@*„(Z —z/2)A(Z, z).

The general structure of the anomalous average
+(Zlq Z2) = P f 2 +p,qlyp, ql(Cli Zl)0 —p, —ql(re2i Z2)i

where Ip, ~ = u„* vp ~[1 —2ny(p, q)] [ny(p, q)

1+exp(Z &/Tp) ] '

After a lit tie algebra one can show
that @p z((l, zl)g p z((2, z2) can be decomPosed into
a sum of two terms, such that each term factorizes into
a product of a function of Z and a function of z:

where S is the area of the system and Lq is its length
along the field.

The Bogoliubov transformation diagonalizing the
Hamiltonian (3) can be written as

( a
@p,ql(]eli Zl)0 —p, —q(re2i Z2)

) exp]qiaaY —(X+ aa) ] ) exp ip]qe + ka) + qiq ka —
(

—+ q„+ ka)
n A;

+ ) exp(2iYa(n+ 1/2) —[X+ (n+ 1/2)a]

x - 2) exp(iy[q„+ (k+ 1/2)a] — —+ q„+ (k+ 1/2)a + i2(k+ 1/2)aq )2



9904 A. V. ANDREEV AND E. S. TESSE 48

The first term of (9) is a product of a periodic function of Z with periods (a, 0) and (0, a) and a quasiperiodic
function of z with quasimomentum q for periods (2a, 0) and (0, 2a). The second term is a product of a quasiperiodic
function of Z with quasimomenturn q = (0, a) = (0, vr/a) and a quasiperiodic function of z with quasimomentum
q = (q, q„+a/2) = (q, q„+a/2a). Thus, we see that the second term changes its sign under a magnetic translation
of Z on (0, a) and, therefore, does not contribute to the matrix element (8). Performing the integration in (8) we
obtain the following expression for A(q)

) H [~2(q„+na)] exp[ —(q„+ na) —2iq na] .

Note that each partial wave with relative angular momentum m produces a contribution to A(q) which belongs to
the mth Landau level and is antisymmetric and magnetically periodic in q space. The "vector potential" in q space is
A = Hq„, A„= 0. The antisymmetry of A(q) ensures that the unitarity condition of transformation (6) is satisfied.
For the case of singlet pairing A(q) belongs to the lowest Landau level.

Using the amplitudes uz and v~ from (7) and taking into account the antisymmetry of A(q), we arrive at the
following expression for A(Z, z):

cLp
A(Z, z) = —Pz, Lr, —9

2 27'
tanh(E~~/2T)V(z)@p~ (Z+ —

) @ ~ ~ (Z ——
)P~Q

where S is again the area of the system and A(Z, z) is
given by (4) and the integration over q is performed over
the magnetic Brillouin zone. The second term in (9) does
not contribute to the integral in (ll) because A(q) and
Ez stay invariant under the shift q -+ q +7r/a, whereas
the second term in (9) changes sign. Thus, we see that
the Z dependences on the left-hand side and on the right-
hand side of (11) are the same and can be canceled.

Now we use the following property of our efFec-
tive interaction V(z) in the symmetric gauge: If we
multiply any function &om LLL by V(z) and then
project it back to LLL the amplitudes of partial waves
will be multiplied by the corresponding Haldane pseu-
dopotentials. En a mathematical form this condition

can be writ ten as Pz, i,z, V (z) g a z exp( —
~

z
~

/8)
V a z exp( —

~z~ /8). We have consequently
proved that the assumed form of A(Z, z) (4) is indeed
self-consistent. Because the wave function of a Cooper
pair is extended in space as a function of the relative
coordinate there is an interaction between the center of
mass and relative degrees of freedom, yet this does not
cause frustration of the relative angular motion due to
the existence of the lattice, which is not clear a priori.
Multiplying both sides of (11) by 2 (arm!) ~ (x +
iy) exp[ —(x + yz)/8+ ixy/4], canceling the Z depen-
dences and integrating over the relative coordinates we
reduce the self-consistency equation (11) to the following
system of equations for the amplitudes L

tanh
~

'
~
A(q) ) exp[ —(q„+ ka) + 2iq ka]H [v 2(q„+ ka)] .

2 m! '~' 2~sE„~ q 2T ) (12)

At T, only one 4 will be nonzero and small. System of equations (12) will decouple into independent equations
for each m because E„z will be replaced by ( and the critical temperature will be determined by the channel having
the most negative Haldane pseudopotential V 0. The self-consistency equation at T can be written as

V pvrv2 dpd q 1 /((p))
2~O mo! 2n p (2T, )

tanh
~ ~ ) exp[ —(q„+ ka) + 2iq ka]H o[~2(q„+ ka)] (13)

This corresponds to the formation of Cooper pairs with relative angular momentum mo.
Solving (13) for the critical temperature we obtain

( vrvp )
Ts = 1.14' exp I— (14)

where v~ is the Fermi velocity.
If the interaction contains only one odd Haldane pseudopotential in its expansion the system of equations (12)

reduces to a single nonlinear equation for the amplitude of the corresponding partial wave

V ~v2
2m —2~ f

dpdzq 1 (E„~')
tanh

~

"'
~ ) exp[ —2(q„+ ka) + 2iq na]H [~2(q„+ka)]

27l Ep ~ g 2T
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Fukuyama considered the CDW instability for an
electron system in the same limit as we are considering
now. The wave vector of the CDW has a component 2k~
along the ( axis and a component Q perpendicular to it.
The value of Q is determined by the condition that U(Q)
be a minimum. The critical temperature for the CDW
transition is given by

( 27r vFI
TcDw —1.14p exp

~ [U;.] )

where U;„ is the minimum value of U(q) and should be
negative for the transition to take place.

From Eqs. (14) and (16) we see that the superconduc-

tive instability wins if V 0 ) 2
'" . This criterion is valid

for any interaction which is nonretarded, isotropic in the
plane perpendicular to the ( axis and is not long range
along the ( axis.

As an example we now consider a system with model
interaction which is assumed to be of the form U(q) =
—4vr[V[[Lq(q ) —pLs(q )] exp( —q /2). This represents
a short-range interaction with an attractive core. The
mean-field critical temperature for the superconductive
transition is greater than that for the CDW formation
if 0.54 & p ( 0.92. The ratio of the critical tem-
peratures is the largest for p 0.7 and is given by

TcDw I
v

I

= exp( — ' "~ ). In the case of weak coupling
this ratio can be significant. This demonstrates that it
is possible for such a superconductive transition to take
place.

Another interesting feature of the system under con-
sideration is that its excitation spectrum given by E~ =
g(z + ]Az[z is gapless because the order parameter has
to turn to zero at a certain point in the magnetic Brillouin
zone. This coincides with the result for singlet pairing
and leads to powerlike temperature dependences of ther-
modynamic quantities.

To conclude: the mean-Beld analysis of the low-
temperature behavior of the system has been carried
out. We obtained the self-consistency equation for a gen-
eral nonretarded interaction and the criterion which tells
which of the instabilities will win. It has been shown
that for certain interactions the superconductive insta-
bility can win and in the weak-coupling limit it can have
a significantly higher T than the CDW instability. It is
therefore possible that when the Huctuations are taken
into account the superconductive transition will still per-
sist. It has also been shown that the existence of the
Abrikosov lattice is consistent with the extended nature
of the relative motion of Cooper pairs. A transition of
this type might be found. in low carrier density systems in
magnetic fields that are already experimentally achiev-
able. We argue that pairing in systems which have a
sizable g factor is likely to occur into a triplet state as
opposed to singlet pairing proposed earlier because it
is insensitive to the Pauli pair breaking.
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