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Intergrain Aux creep in high-T, superconductors
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Equations describing the intergrain flux creep of ceramic superconductors are derived. They are
based on the behavior of small superconducting loops closed by overdamped Josephson junctions. The
elementary loops are formed around nonsuperconducting regions between the grains, the loops acting as
pinning centers. Despite different pinning mechanisms the equations for the relaxation of the intergrain
current density in a static and a slowly varying external magnetic field are formally similar to those of
the classical Aux-creep theory based on volume pinning.

Soon after the discovery of ceramic superconductors it
was proposed that a polycrystalline sample can be de-
scribed as a positionally disordered system of grains cou-
pled via Josephson weak links. ' When the sample is ex-
posed to a magnetic field, two kinds of current system
will be induced in the superconductor comprising inter-
and intragrain screening currents. While the elec-
tromagnetic behavior of the intragrain system is now
quite well modeled, the understanding of the electro-
dynamics of the intergrain system is far from complete.

Supposing that the grains are in the Meissner state the
polycrystalline sample can be modeled as a network of
Josephson junctions (JJ), where the current flows in a thin
surface layer (of thickness k) of the grains and crosses the
weak links. In the first studies of the behavior of such a
network, screening effects due to the magnetic field of the
Josephson currents were often neglected. Such a
simplification can be allowed when studying the behavior
of samples comprising a very low critical transport
current density, but not for samples with moderate J, ( in
excess of 100 A/cm ). Recently there have been pub-
lished numerical studies of the JJ network magnetization
accounting for the magnetic energy of the screening
currents. The results of these studies are in good
agreement with the experimental results of the Aux distri-
bution in polycrystalline ceramic superconductors pub-
lished by the authors. ' '"

In this paper we present a model describing the inter-
granular Aux creep of ceramic superconductors. The
model is based on the concept of a network of small su-
perconducting current loops, each containing resistively
shunted Josephson junctions and having a finite loop in-
ductance. The elementary JJ loops are formed around
nonsuperconducting regions between the grains, the
loops acting as pinning centers. Thus, screening effects
and irreversibilities play a significant role in the behavior
of the system. The relaxation of induced screening
currents in the elementary loops is considered both in a
static applied field and during the sweep of an applied
field.

Let us first consider a superconducting loop of induc-
tance I. closed by an ideal Josephson junction shunted by
a small capacitance C and a resistance R. The size of the

where i, is the maximum current of the junction and $0 is
the flux quantum. ' Equation (1) describes the flux
change of a JJ loop. Rearranging the terms and dividing
by I. results in the current equation

(P P„)/L+i—, sin(2vrg/Po) = CP P/R— , — (2)

where the left-hand side represents the induced screening
current and the tunneling current, respectively. These
currents may be considered the result of an energy poten-
tial function U(P, P„):

U(P, P ) =(P P„) /2L+—Eo[1—cos(2vrg/Po)],

where the first term on the right-hand side describes the
magnetic energy created by the loop and the second term,
with Eo =i,go/2', the Josephson energy of the junction.
In Eq. (2) the resistive current P/R has a damping effect
on the Aux dynamics, accordingly one can define a damp-
ing coefficient g=1/RC. The study is restricted to junc-
tions with large g (overdamped junctions), i.e., junctions
with almost negligible capacitance. This assumption is
reasonable for junctions with a cross-sectional area in the
pm range.

The behavior of the system can be better understood by
studying its trajectory in U(P, P ). Figure 1 shows the
potential in normalized units for the case Li, =5$&. Let
us first consider the system in a state, wherein a certain
Aux amount is trapped in the superconducting loop after
the external field has been decreased to zero. The system
is locked in the Auxoid potential well, say point 3 in Fig.
1. The state is constrained by a potential barrier
EU(tb =0)=U(P~) —U(P„). In the absence of energy
Auctuations it will stay in this state. However, when ex-
posed to thermal Auctuations of the average level k&T
(k~ T & b, U), the system will oscillate with a frequency co

around the minimum of the potential well and ultimately
turn to a lower metastable state. If the damping

junction is supposed to be so small that the effects of the
self-field on the junction current can be neglected. The
Aux P threading the ring is related to the applied Ilux P„
by

Li, sin(—2m //Po) LCP L—P/R—

0163-1829/93/48(13)/9873(4)/$06. 00 48 9873 1993 The American Physical Society



9874 BRIEF REPORTS 48

@x 4I

2I
0

10-

E,

5-

0
-1

"D
0 1

@p

FIG. 1. Potential surface U(P, P„) for a superconducting
loop closed by a Josephson junction in the case Li, =5/0. For
the legend see the text.

coe%cient is large enough, the system will be retrapped in
the next lowest quantum state, point C. In other words,
this means the escape of a flux quantum from the loop
through a 2~ phase-slip process of the junction. In the
case of high damping, the lifetime ~ associated with the
flux remaining in a specific quantum state is' '

—5U/1& T
e

27Tn
(4)

In the following the amplitude factor, although the fre-
quency co is slightly different in adjacent quantum states,
will be replaced by a constant coo=co /2~i), which oc-
casionally is of the order R /I. . In this sense the situation
is analogous to the classical flux-creep theory, ' where a
constant attempt frequency is used in describing the os-
cillations of pinned vortices. Because the current and the
flux of the loop are coupled together by the inductance, it
is convenient to write the barrier height 6U between ad-
jacent states as a function of the current i flowing
through the junction

2 1/2

EU=Ep 1— l
cos

l
(5)

'c lc

l

'c

Next, let us consider the magnetization of a zero-field-
cooled system during a slow sweep of the applied field.
Assuming that P ((/oooo we start from point D, Fig. 1.
As P is increased the potential barrier decreases and
vanishes at point E causing a system transition to point
I'. Let this critical Ilux value be P„,. While increased the
external field induces a current, which perfectly shields
the interior of the loop until P =P, . Then a flux quan-
tum irreversibly penetrates the loop. However, at
nonzero temperature a thermally activated transition will
occur before P, .' ' As P is slowly increased the po-
tential energy of the system increases along the valley D-
E. A transition to I" occurs already at point E'
(p lz l

(p, ), where the barrier b, U is so small that a
thermally activated transition is likely to occur. Accord-
ing to Kurkijarvi' the probability of a jump at a lower
P„value increases as the sweep rate decreases, which is
an obvious consequence of Eq. (4).

Among the superconducting grains there exist nonsu-
perconducting regions consisting of nonstoichiometric
material and voids. During the magnetization process
the screening currents around such regions flow from one
grain to another thus forming a superconducting loop
with a few Josephson junctions. Provided that Li, )po
and that the sizes of the junctions are small enough, ' the
situation returns to the case treated above. A recent nu-
merical analysis by De Luca, Pace, and Saggese' shows
that, in particular, small elementary loops play a key role
in the magnetization process of the whole intergranular
system. Especially nonidentical parameters will promote
the formation of small loops. It has been proposed that
the intergranular nonsuperconducting regions act as pin-
ning centers for intergrain currents. ' ' Our model of the
intergrain flux creep is based on this assumption. The
model concentrates on the behavior of a single JJ loop.
In reality an intergranular loop is formed from 3—4
grains. However, for simplicity an elementary loop with
only one junction is considered. In the theoretical
analysis the error is not crucial, flux creep occurs only in
one direction, the negative flux density gradient, hence
only one JJ at a time works as a drain. Further, it is as-
sumed that the critical state concept for the intergranular
system ' ' is valid, meaning the existence of a flux densi-
ty gradient extending over several loops. According to
common practice in single-loop analysis the local field
influence on the maximum Josephson current is neglect-
ed.

Let us consider a magnetized polycrystalline sample in
a constant field. The intergrain current I in an elementa-
ry JJ loop decreases during each period of time ~ on the
average by

In overdamped junctions only one flux quantum leaves
the loop during each phase slip event, i.e., b P =go. Based
on Eqs. (4) and (6) the rate of the current density change
is obtained from

dJ %onto —&U(J)lk~ T

dt AI.
(7)

where J has been substituted from J=I /A, A is the
junction area. In order to solve Eq. (7) the shape of the
potential barrier b, U( J ) is simplified by linearizing
6 U( J ) according to

hU(J) =Eo 1—J
c

LAk~ TJ,
7 p

4'oo'oEo
(10)

An analogous situation exists in type-II superconductors,
where the current dependence of the pinning potential
often is linearized in a similar way. ' Now by combining
Eqs. (7) and (8) the current density can be solved

k~TJ(t ) =J(0) 1 — ln 1+— (9)
Eo 7 Q

where
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and J(0) is the local current density at t=0. J(0) is
equal to the J, of Eq. (8). Equation (9) expresses the re-
laxation of the local intergrain current due to Aux creep.
Formally it is similar to that of intragrain currents. Ac-
cording to an experimental study of Auxoid quantization
of a polycrystalline YBa2Cu307 loop, recently pub-
lished by Oh, Koch, and Gallagher, the relaxation of
screening currents exhibits a logarithmic time depen-
dence. Sensitive measurements showed that this was due
to a logarithmic slowing down of the rate of individual
Aux quanta hopping through the loop. This can be inter-
preted as a support for the present intergrain Aux-creep
model.

The escape of a Aux quantum from the loop increases
the phase difference of the superconducting order param-
eter cp between adjacent grain boundaries by 2~. Because
the escape occurs in periods of time ~ [Eq. (4)], we can es-
timate the average change rate of y from'

The voltage across the junction is

dy A 2~
(12)

'(('0~0 —6 U lk~ T

L (14)

However, the continuous increase of P will cause a step-
wise change of P. In the long run the average Ilux ramp

will be close to P„. As dI/dt =(P P)/I. by-
definition, it follows that dI/dt~O. We can now ap-
proximate the case by neglecting the left-hand side of Eq.
(14) and write

—5 U{J)/k~ T
otooe (15)

We simplify the potential barrier by using Eq. (8). Then
by solving Eq. (15) we get an expression for the local
current density during a slow sweep of the applied field:

The average electric field is obtained by dividing Eq. (12)
by the average grain diameter D and accounting for Eq.
(4):

400~0 —6U(J)/k~ T

D

E as a function of J is illustrated in Fig. 2. The potential
barrier b, U is of the type given by Eq. (5). The derived
expression for the E(J) relation due to intergrain current
relaxation is in a good agreement with the experimentally
observed one for polycrystalline (Bi,Pb)2SrzCa2Cu30 at
77 K. However, those measurements covered only an
electric field interval of 3 orders of magnitude.

Next we consider the applied Aux to be increased at a
constant sweep rate, p„((/oooo. During small change in-
tervals of P the loop Aux P remains, in principle, con-
stant. However, thermally activated Aux transitions have
a decreasing inAuence on the screening current in the
loop. Hereby the actual average change rate of the local
current is achieved from
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FIG. 2. E(J) characteristic for the intergrain Aux creep in

the case where Eolk&T=16, coo=10' s ', and the grain size

D =10pm.

k~TJ=J, 1+ ln
Eo 000'0

(16)
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The dependence between current density and the sweep
rate P is similar to the one derived by Schnack et al.
for the intragrain current system comprising volume pin-
ning.

It is rather surprising, that the equations for the local
intergrain current densities, Eq. (9) for constant P„and
(16) for slowly swept P„, are formally identical to those of
local intragrain current densities. This similarity is one
reason, why intergrain systems have been compared to
the old concepts of classical type-II superconductors.
However, the electrodynamic behavior of type-II super-
conductors is based on the interaction between Lorentz
forces and vortex pinning forces. In the intergrain sys-
tem of ceramic superconductors comprising small
Josephson junctions magnetic flux is present mainly in
nonsuperconducting regions inside elementary supercon-
ducting loops. The Lorentz-force interaction is highly
limited, accordingly the old concepts are not valid. The
loops act as pinning centers and the Aux creep is due to
thermal oscillations in the weak links. Although Aux-

creep equations (9) and (16) represent local current densi-
ties, they can easily be extended to the whole sample size.
Detailed studies of the Aux creep in a JJ network are in
progress.

In summary, we have presented a model describing
thermally activated intergrain Aux creep in ceramic su-
perconductors. The model is based on the behavior of su-
perconducting grain loops closed by overdamped Joseph-
son junctions. The equations for the relaxation of the in-
tergrain current density in a static and a slowly varying
external Aux have been derived. Despite a different pin-
ning mechanism the equations are formally similar to
those of the classical Aux-creep theory based on volume
pinning. This suggests a reevaluation of the current
transport concepts in polycrystalline superconductor s
like high-T, tapes.
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