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A discussion is given of the amount of information present in x-ray-absorption fine-structure spectra.
It is shown that the usual formulations underestimate the degrees of freedom by at least one.

I. INTRODUCTION

N =1(25k5R /m )+ I . (2)

What we show here is that the correct expression is nei-
ther of the above but is

Nl=(25k5R /vr)+2 . (3)

Though, in many cases NI is large compared to one,
and the differences among Eqs. (1)—(3) are not important,
there are other cases where increasing NI by one or two
may make a significant difference, and, thus, there is a
practical reason, in addition to the aesthetic one, to
determine the correct expression for NI. For example,
the usable XAFS range for Pb metal near its melting
point is quite limited because of the large amplitude of vi-
brations. In that case 5k =2 A and 5R =1.5 A giving

The purpose of this paper is to determine the number
of relevant independent points, N &, that are present in an
x-ray-absorption fine-structure (XAFS) spectrum and can
be used to define parameters needed to fit the spectrum.
In general, the number of parameters that can be deter-
mined from the XAFS is less than NI, and, thus, Nl is a
fundamental limitation to the amount of information that
can be determined by XAFS.

There is some uncertainty in the literature on how to
calculate NI. The formula is usually given by'

Nt =25k5R /vr

where 5k is the k region of the XAFS spectrum analyzed
and 5R is the region in R phase over which the fit is
made. As an example, the 5k range is usually determined
on its low-value end by where the background can reli-
ably be separated from the total absorption and on the
high-value end by where the noise becomes too large
corn. pared to the signal to tolerate. The 5R range is the
region to be fitted, which, when Fourier filtering is used,
is the width of the window in r space. However, NI has
also been given by

II. DERIVATION

Consider the analysis of an XAFS spectrum y(k),
which is idealized to a situation where y(k; ) is measured
at discreet values of k; with a random root-mean-square
(rms) uncertainty cr ( k, ). For simplicity, o (k; ) =o.

k is as-
sumed independent of k;. It is assumed that the measure-
ment and the background subtraction to isolate g(k) in-
troduce no systematic errors. The values of k; are as-
sumed to be on a uniform grid with a constant spacing
Ako so that

k, =k, +n, hko, (4)

where n; is an integer between zero and Nk. Thus the
maximum value of k is

k2 =k)+N~hko .

In practice, the spectrum y(k) is analyzed only over a

25k5R/~=2. Thus, adding 2 to this value doubles the
estimate of information content of the data. This dou-
bling was essential to obtain useful information.

We give a straightforward derivation for NI, which
shows that Eq. (3) is the correct one. Although the
derivation discusses the case of XAFS, the results are
general and are applicable to any general function, such
as the determination of correlation functions from
diffused scattering measurements using x rays or neu-
trons. The concept of NI is very closely related to ideas
of information theory and how many parameters (or de-
grees of freedom) are required to define a given function
measured over a time interval (corresponding to the k in-
terval in XAFS). The usual formulation of this problem
assumes that all frequencies (corresponding to 2r, twice
the radial distance, in XAFS) up to a maximum are
present in the function and give Eq. (2) for the number of
parameters. In the case of XAFS, the r range starts at a
finite value, r &, and this has to be accounted for in the
derivation. As is shown below, it is because r, &0 that a
one has to be added to Eq. (2) to obtain Eq. (3).
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finite interval of the conjugate variable, i.e., r, —r2. The
lower limit r& is determined by where the structural in-
formation differs significantly from any residual back-
ground signal not correctly subtracted from the total ab-
sorption, while the upper limit rz is set by either the
strength of the signal or in the case considered here, the
fitting will be done explicitly in r space to clearly define
the region over which the spectrum is being analyzed.
The function to be fit in r space is the Fourier transform
of y(k), namely,

f(r )=gy(k, )e (6)

where n~ are integers.
Because of the random noise in g(k; ), a corresponding

mean-squared fluctuation in f(r ) occurs, which can be
calculated from Eq. (6) to be

=(%k+ 1)o k,

where the relation ( b,y(k, )b,y(kt ) ) =o k 5,&
has been

used, since the measurement points are independent and
(y( k; ) ) =0. However, there is generally a correlation
between the points r~ and r&

= rj +hr, which can be calcu-
lated to be

Another way to define the region of the fit is to filter
f(r ) with a window of r& ~r2 and back transform to k
space and then fit the filtered g(k) in k space. This is
equivalent to the direct fitting in r space, but fitting
directly in r-space saves one transformation on the data
and any attendant distortion introduced by the filtering,
so it is a more direct way to define the fitting procedure.

Although the y(k, ) is known only over the range
6k =k2 —k&, ii is common practice to extend the trans-
form and make it periodic over a longer range K &6k.
The function y(k; ) is then defined to be zero in the range
outside 6k. This is done so that the points r can be more
closely spaced, since they are given by

r =un /E,

product of the average of each term. The average of each
term is zero, and thus a necessary condition for the points
to be independent is for the average in Eq. (10) to be zero.
This occurs for

where m is an integer. Thus, the independent points in r
space are spaced a distance apart by the amount

b, ro =sr/5k . (12)

These points are sufficient to completely define the
function y(k;) in the range k, ~k, +5k by the Fourier
series

hr/ArO

y(k, )= g f(r, +n;pro)e
i =0

(13)

As proven by the Fourier theorem, this function is
periodic with a periodicity 6k, but it fully reproduces the
data in the required range.

Note that though the extension of the periodicity of
the g(k;) from the measured range 5k to E by adding
zeros increased the density of points in f(r ), this exten-
sion, not surprisingly, did not increase the information in
the data, since the spacing of independent points is given
by the measured range 5k only. The function f(rj ) of
Eq. (6) is, in general, complex and is fitted in the finite
range r

&
r r2. Such a complex function can be

defined to be a real function over the range r, ~r, ~r2
and —

r& ~r; + —r2 by the relation

In this case the number of independent points in the
range

6r =r2 —r, (16)

is

which follows from Eq. (6), since y(k; ) is real.
Assume that r, and r2 are chosen so that they each

coincide with an independent point and are given by

r, =m, pro,

r2 =M, 26ro

(bf(r )bf(r +br))=o2 ge (9)
n, =6r /Aro+ l, (17)

The sum in (9) can be well approximated by an integral,
assuming hko is small compared to the variations in
y(k,. ), as should be the case for good data collection. In
that case

(ik f(r& )/k f(ri+br)) =ok(e' " "sin5kbr/hkobr)

the one coming from the fact that there is one more point
than there are spaces. The total number of independent
points Xl is twice n; because of contribution from the
negative-r region so that

N=2n, =26r6k/~+2 .

(10) III. DISCUSSIQN

where k is the midpoint of the k range [k =(k i +kgb )/2].
Equation (10) indicates that points separated by 6r are

not independent but are correlated, since, if the points
were independent, the average in Eq. (10) would be the

Formula (18) difFers from the standard one in Eq. (2) by
an additional one, and it is important to understand this
difference. The standard formula assumes that r& =0. In
such a case the total r-space range is 26r covering the re-
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gion —r2 ~ r; ~ r2 and the number of independent points
is the number of spaces 26r /b, ro plus one or

I =26r 6k /~+ 1,
agreeing with the standard formula.

Another way to count the number of parameters need-
ed to define f(r; ) is to consider only the positive range
from r, to r2 and for each independent point, except for
r =0, two numbers are required, namely, the Re and Im
parts of f(r, ). For the point r =0, Eq. (14) shows that
f (0) is real, and only one number is required. Thus, for
the range 0 r2 —the number of points with r&0 is 6r/b, ro
and the number of parameters required to define f(r; ) is

where the 1 comes from the point r =0.
However, if ri&0, then the number of independent

points contained in the range r& —r2 is 6r/Dr+1, and
each point requires two parameters to define f(r; ), giving
the total number of parameters to define f(r, ) as

Xl = 2( 6r /b, r + 1 ),
in agreement with Eq. (18). Again, the difference be-
tween Eqs. (17) and (18) comes about because f(r, ) in the
latter does not contain the point r =0. For the XAFS
case the latter is always the case, and, thus, the number
of parameters necessary to define the function f(r;) is
given by Eq. (18).

Nl is a measure of the total amount of information
contained in an XAFS spectrum. It is the maximum
number of parameters that can be determined by a fit to
the spectrum. This occurs, in spite of the fact that the
XI, +1 points in k space are all independent measure-
ments. The derivation also points out that the number of
the parameters is uniformly spaced in r space, and the pa-
rameters that are used to fit the data must be associated
with the r range being fit and their number must be less
than or equal to the value of Xl associated with that r
range. Thus, when fitting several shells of atoms, it may
occur that the number of parameters required to fit the
outer shells is larger than the number of independent
points enclosed in the r-space range of the outer shell,

though less than the total number of points enclosed in
the r-space range, which include the first shell. This can
occur because the spacing between the first shell is larger
than the spacing between outer shells. In this case, one
cannot borrow the independent points associated with
the first shell and use them to determine the parameters
of the outer shells, since the first shell-independent points
do not contain such information.

IV. SUMMARY

It has been shown that the number of relevant indepen-
dent points, or degrees of freedom, of an XAFS spectrum
is given by Eq. (3), which is one more than the standard
formula from information theory [Eq. (2)] because XAFS
does not include the vicinity of r =0 in its analysis.

It should be noted that extending the k range of the
data over which a Fourier transform into r space is per-
formed by adding zeros makes the r space transform
more continuous, and its appearance more pleasing, but
no new information is added by this addition of more
points in r space. The limitation of the amount of infor-
mation present in the XAFS spectrum, or any related
spectrum such as the diffuse elastic scattering of x rays or
neutrons, restricts the number of structural parameters
that can be determined to be below N~.

Also, adding more points k; to the measurement of
X(k, ) by increasing their density but not increasing the
range 6k does not increase the information content, i.e.,
the degrees of freedom, of the measurement. If a.(k; ) for
each point remains the same, increasing the number of
points would reduce the random noise in the data, but
this could be done just as well by spending more time on
measuring the original points to add up to the same total
measurement time as that used with the increased num-
ber of points.

ACKNOWLEDGMENTS

Stimulating discussions with Matthew Newville, Pro-
fessor John J. Rehr, and Professor Yizhak Yacoby are
gratefully acknowledged. Research was supported by
DOE Grant No. DE-FG-06-90ER454 25.

'P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid,
Rev. Mod. Phys. 53, 769 (1981).

S.-L. Lin, E. A. Stern, A. J. Kalb (Gilboa), and Y. Zhang,
Biochem. 30, 2323 (1991); see also L. Brillouin, Science and
Information Theory (Academic, New York, 1967), p. 94.

3E. A. Stern, P. Livins, and Z. Zhang, Phys. Rev. B 43, 8850
(1991).

See, e.g. , X-Ray Absorption, Principles, Applications, Techniques

of SEXAFS, and XANES, edited by D. C. Konigsberger and

R. Prins (Wiley, New York, 1988).


