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Transverse thermomagnetic effects (Ettingshausen, Nernst effects) are discussed for a variety of phe-
nomenological models of high-T, and other layered superconductors. The use of the temperature-
dependent vortex-line energy in determining the transport entropy is stressed, leading to predictions and
possibilities for additional experiments. The dynamics of both Abrikosov and Josephson vortices is con-

sidered.

In this paper I discuss transverse thermomagnetic
effects in a variety of both strongly and weakly supercon-
ducting systems. In the present context a weakly super-
conducting system refers to one in which Josephson tun-
neling occurs and there are two (or more) magnetic
penetration depths. Examples of such systems are pro-
vided by layered organic superconductors, the high-T,
cuprates and bismuthates, and multilayer structures,
where the penetration depth for currents along the ¢
direction (perpendicular to the layers) can be very large
compared to the in-plane penetration depth, due to weak
Josephson coupling.

In this paper I consider the dynamics of both Abriko-
sov and Josephson vortices and their associated transport
entropies. One result of this discussion is the possibility
of the observation of a Nernst voltage due to the motion
of Josephson vortices. In principle, a dimensional cross-
over in thermomagnetic measurements may also be ob-
servable. Illustrations are given on how to employ the
static vortex mobility in the description of transverse
thermomagnetic effects.

After some background on the thermomagnetic effects
to be considered, I discuss some implications for different
superconducting systems. At least one of these implica-
tions leads to a prediction for the transport entropy S, in
contrast to earlier work and invites further experiments.
Throughout I assume that S, is to be viewed as a local
difference in entropy density between the vortex structure
and the superconductor. The transport entropy is given
in terms of the first derivative of a thermodynamic poten-
tial, as is the intrinsic thermodynamic entropy.

Thermomagnetic quantities that have been measured
for the high-transition temperature superconductors in-
clude the thermopower, Nernst coefficient, and transport

line energy.'”™ The compounds studied include
YBa,Cu;0,_ 5 (Y 1:2:3),'"%°  Bi,Sr,Ca,Cu;0,0,°
Bi,Sr,CaCu,04,® T1,Sr,Ca,Cu;0,,,° and

TLSr,CaCu,04.%7 The thermopower and Nernst effect
may be thought of as thermal analogs of the (longitudi-
nal) electrical resistivity and Hall effect, the heat current
substituting for the electrical current. However, the ther-
mopower and Hall effect are the results of “particle-hole
asymmetry” whereas the Nernst effect and the resistivity
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are not. ! In this paper I concentrate on the transverse
effects, where the electric field is transverse to the tem-
perature gradient, for low and intermediate magnetic
fields. That is, I do not discuss the Hall effect in the
mixed state here. In addition to general Ref. 11, Refs. 12
and 13 describe thermomagnetic and thermoelectric
effects in terms of a proper choice of conjugate fluxes and
forces.

A simple illustration of thermomagnetic effects is pro-
vided by considering a geometry with vortices along the z
direction and a temperature gradient along the x direc-
tion. The Nernst coefficient Qy is found from the rela-
tion E,=—QyBV,T, (B=B,). By making using of the
dc vortex mobility fi,(w=0), which may include weak
pinning and flux-creep effects,'*!*> we have for the (driv-
ing) thermal force f, = —S,V.T =v, /fi,, where v is the
vortex velocity. By using the Josephson relation for the
electric field we then have

Oy =H,(B,T)S,(B,T) . (1)

The isothermal Nernst coefficient is obtained subject to
the boundary conditions J, =J, =V, T =0, where J is the
electrical current density.'® A’small correction to Eq. (1)
proportional to the Hall angle is neglected here.

A convenient expression for the (real) dc mobility is
that of Ambegaokar and Halperin, '#

1 1
fi, (B, T)=—
H n 12(v)

, v=U(B,T)/2ksT , 2)

where 7) is the viscous drag coefficient, U (B, T) is the bar-
rier height of the periodic pinning potential, and I is the
zero-order modified Bessel function of the first kind. Re-
call that U(B,T) vanishes at T,,, the field-dependent
transition temperature; in the high-temperature and/or
field limit, i, —1/7. At intermediate temperatures and
fields where v~ 1, Eq. (2) models the effect of flux creep;
1/I3(v) is the flux-creep factor.!® Due to the relatively
low activation energies in the high-T, superconductors,
thermally assisted flux motion can be important.? A
model for the barrier height is!” U(B,T)
=U,(1—T/T,,)*’?/B, where U, is a constant, on the or-
der of 0.01-0.1 eVT for Bi or Tl compounds.” The
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model given by Egs. (1) and (2) extends that of other
treatments, e.g., Ref. 7. As usual U should be thought of
as an average or effective barrier height as several types
of analyses suggest a distribution of heights.

The Ettingshausen coefficient Cp is found from the
thermal and electrical current densities U, and J, from
the relation Cp = U, /BKJ,, where K is the thermal con-
ductivity. The boundary conditions are U,=J,=V,T
=0. The Ettingshausen effect is inverse to the Nernst
effect: Flux motion produces a temperature difference in
the superconductor. The thermal current density is given
by U=nTS_v, where the vortex areal density is
n =B /¢, Assuming that the Lorentz force is the sole
driving force and that the same dc mobility as above may
be employed, we have

CE=%T/1U(B, T)S,(B,T) . 3)
The product TS in Eq. (3) is the transport energy per
unit length of vortex. It is seen that Egs. (1) and (3) satis-
fy the Bridgman relation TQ, =KCp, of irreversible ther-
modynamics. '3

The qualitative temperature dependence of the trans-
port entropy is that it vanishes at absolute zero and the
transition temperature and has a maximum in between. !°
While S vanishes at T, in the absence of fluctuation
effects, these can be pronounced in high-T, materials.
That S, vanishes at 7' =0 is due to the third law of ther-
modynamics. In the very low-field limit, where the in-
teraction between vortices can be ignored, one has for the
transport entropy per unit length from considering the
free energy

S =__¢laHCI
4 47 3T °

Additional previous calculations of the low-field trans-
port entropy subject to various approximations include
Refs. 21-23. For intermediate fields intervortex interac-
tions need to be taken into account and this leads to an
additional factor in Eq. (4):2°

¢o 0H,, In(H,/B)

~——

*7  4q 3T Ink

H, <HS2H,, . 4)

, 2H.,SH<<H,, (5

where H_, is the upper critical field and « is the
Ginzburg-Landau (GL) parameter. In writing Eq. (5)
temperature dependence in these quantities has been ig-
nored.

Equations (4) and (5) are derived from an equilibrium
free energy which is not rigorously justified.?> Generally
one needs to adopt a dynamical description which in-
cludes the thermal current in the energy flow. Recently it
was shown by Troy and Dorsey that throughout the
mixed state the transport entropy is proportional to the
equilibrium magnetization. !° This result was obtained on
the basis of time dependent Ginzburg-Landau (TDGL)
theory and my approach may be complementary. This
recent theory extends the Maki high-temperature re-
sult.?* Near H, the TDGL theory?"!® gives
S, —¢oH, /4w T, which does not vanish at T=0. This
defect is probably an artifact of the TDGL approach and
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Eq. (4) may provide a suitable substitute.

The transport entropy is largest in the low-field re-
gion.!' As a function of temperature S, reaches a max-
imum at roughly T, /2. The theory presented here is val-
id for such intermediate and lower temperatures. At
higher temperatures (T < T,,) Egs. (4) and (5) need to be
modified so that S, decreases to zero at T,,.'° The tem-
perature behavior of the lower critical field H,, seems to
be consistent with that of .S ® when it “levels off” at very
low temperature, becoming independent of T there. This
is a point to which I return later.

I consider various consequences of Egs. (4) and (5),
which relate a static property, the vortex-line energy, to a
dynamic one, the transport entropy per unit length. In
my view, the temperature dependence of the lower criti-
cal field, which mainly occurs through that of the super-
conductor penetration depths, leads to thermal diffusion
of vortices and entropy flow. Let us apply Eq. (4) [or Eq.
(5) for higher fields] to a layered high-T, superconductor,
with external magnetic field parallel to the layers.

We can model a high-T, superconductor as an aniso-
tropic, continuous superconductor using Ginzburg-
Landau (GL) theory with an effective-mass tensor, 2 at
temperatures above a crossover temperature 7*.26728
Below T* the superconductor discreteness becomes man-
ifest for the vortex orientation we are considering and a
Lawrence-Doniach or similar model?>?”2%3° is appropri-
ate. This leads to a crossover in the temperature
behavior of the lower critical field:2%3!

Vim,
H, (T)= %o - In|—— |40.5]|,
47AX(T) Vm,
T>T* («/Vm,>1), (6)
V'm, MTW m,
Hcla :¢0 2 In ‘/ : +Ccore ’
47 A (T) s
T<T*. (7)

Here the vortex is taken to lie along the principal a axis.
(Vortices tilted away from a principal-axis direction will
not be considered here.) In Eqgs. (6) and (7), A is the
geometric mean penetration depth, m, and m, are m-
plane effective masses, s is the stacking periodicity, and
Ciore is a constant of order unity. This constant arises
from the contribution of the Josephson vortex core; for
details on the core structure in the infinite
superconductor-insulator-superconductor (SIS) multilay-
er model, see Refs. 27 and 30. The core boundary for a
Josephson vortex is where the tunneling current attains
its maximum. Thus the core is specified in terms of the
gauge-invariant phase difference between superconduct-
ing layers in contrast to an Abrikosov vortex, whose core
is specified in terms of the amplitude of the supercon-
ducting order parameter.

The lower-temperature expression (7) is the appropri-
ate one to use with the (unmodified) Eq. (4). Various
models of A(T) can be taken and the temperature depen-
dence of S, determined. For instance, if in the expres-
sion
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4_7T 1 chla_ _ }\.(T)’\/—’n_b
$o v/m, OT 1 s
1 0dA
+C —, T<T*
core )\3(T) aT

(8)

we use MT)=A(0)/V'1—1t% t=T/T,, (a>0), we have
for the dominant temperature dependent factor
2 QL — —a t a—1
ANT) 0T  A%0)T,

)

The value a=4 corresponds to the two-fluid model, ?°

while a=2 seems to provide a consistent fit to recent
penetration depth data for Y 1:2:3.3273% Of course the
results of BCS or other microscopic theories can also be
used in Eqgs. (4) or (5). Equations (1), (4), and (7) indicate
that Josephson vortices could significantly contribute to
the Nernst voltage and electric field. A typical value for
S, due to J osephson vortices from Egs. (4), (8), and (9) is
10712 J/K m. Although the contributions of Abrikosov
and Josephson vortices may be qualitatively similar, a
sufficiently quantitative measurement might be able to
distinguish between the two and thereby allow the obser-
vation of a dimensional crossover. Furthermore, from
Eq. (9) we see that the transport entropy can be sensitive
to the detailed temperature dependence of the penetra-
tion depth. In particular, in the two-fluid model Eq. (9)
gives a cubic temperature dependence but only a linear
dependence in the recently used a=2 model. In this
way, sufficiently detailed thermomagnetic measurements
could even give information on the nature of the super-
conducting state, for the a=2 model indicates a state
(node) in the superconducting gap and that the supercon-
ducting density of states N,(E) increases as E’ near
E=0.%

My emphasis on the possible contribution of moving
Josephson vortices to the transport entropy [through
Eqgs. (4) and (5)] is in contrast to some previous work.*®
These authors state that motion of Josephson vortices
does not lead to a Nernst voltage. It is probable that
Josephson and Abrikosov vortices experience different
thermal forces from an applied temperature gradient.
Although Josephson vortices may not experience the
same thermal force as Abrikosov vortices, due to the lack
of a normal metal-like core, this does not necessarily im-
ply that they cannot transport entropy. These positions
evidently invite further experiments, and a possible reex-
amination of earlier data where the vortices may have
been aligned parallel to the planes in high-T, materials.
A-axis aligned films of Y 1:2:3 would be a possible medi-
um for a test of the Josephson vortex contribution. The
crossover temperature, defined by the condition that the
coherence length £,.(7T) becomes comparable to V25, can
be easily estimated as?®2® T*=T,[1—£2(0)/2s%]. Even
for Y 1:2:3 the crossover temperature is quite high,
T*=0.9T,, so Eq. (8) has a wide temperature range of
validity. In applying Egs. (1), (2), and (3) for the Nernst
and Ettingshausen coefficients for Josephson vortices, an

9769

appropriate model for the viscous drag coefficient 7 is
that given by Ref. 27.

Other superconducting multilayer structures can be
considered for transverse thermomagnetic effects. Sup-
pose we consider an infinite superconductor—normal-
metal—-superconductor (SNS) system, which has also been
used to model high-7, materials.>* 3% In these systems
the proximity effect occurs, becoming pronounced at low
temperature. The result can be a drastic increase in the
lower critical field for vortices either parallel or perpen-
dicular to the layers at low temperature.3® 3 There is
some experimental evidence of this phenomenon (e.g.,
Ref. 39), but I consider it to be controversial. As men-
tioned above the third law of thermodynamics applied to
S, puts a constraint on the very low-temperature
behavior of H,,, via Eq. (4). In many numerical results
for the lower critical field*¢~ 3% the negative slope and
positive curvature of H,, versus T appears to persist to
absolute zero. This behavior appears to be unphysical;
perhaps there is a mechanism to insure that it is cut off.
Additional experiments on multilayer SNS systems to
compare Nernst effect data with Egs. (4) and (5) would be
of interest.

An experimentally more accessible way to test the
Josephson vortex contribution to the transport entropy
may be to study single Josephson SIS junctions. Here the
lower critical field is given by*°

(D)= —— 20 (10)
i PAAT(T)

where the  Josephson  penetration depth s

Ay=(cdy/87*dJ,)!/%, the magnetic thickness is

d(T)=A(T)+Ay)(T)+t;, and t; is the insulator thick-
ness. When the thicknesses d; and d, of the supercon-
ducting films are not large compared to the London
penetration depths A, and A, the magnetic thickness is
modified to*

d (T)=A, tanh(d, /2A,)+A, tanh(d, /2A,) + 1, .

The temperature dependence of the maximum tunneling
current density J, may be modeled in BCS theory with
the Ambegaokar and Baratoff expression®*!

_ 7A(T) A(T)
2¢R, 2y T

Jo(T) tanh , (11)

where A(T) is the superconducting energy gap and R, is
the tunneling resistance per unit area of the junction
when both metals are in the normal state. When Eqgs. (9)
and (10) are used in Egs. (4) or (5), a prediction for vortex
entropy transport in a SIS junction is obtained.

When the insulating layer is replaced with a metallic
layer, a SNS junction is obtained. As a good approxima-
tion the expression (10) can be taken for the lower critical
field of a SNS junction, but with a modified tunneling
current density,*? due to the proximity effect. Although
there is some literature on SNS junctions in a tempera-
ture gradient®> definitive experimental studies on entropy
transport do not appear to have been performed.

General scaling relations for the reversible magnetiza-
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tion and entropy change in terms of the reduced field
h=H/H_,(0,¢), H>>H, are obtained from the Gibbs
free-energy difference between the normal and supercon-
ducting states.*> These relations are of interest because
the high-temperature transport entropy follows the
behavior of the magnetization.**

In this paper I considered the transverse thermomag-
netic effects in the mixed state, mainly in the low-field re-
gime where the transport entropy is large. I discussed
the dynamics of both Abrikosov and Josephson vortices
in a number of strongly and weakly superconducting sys-
tems. The expressions (1) and (3) for the Nernst and Et-
tingshausen coefficients in terms of the static vortex mo-
bility enable a continuous description from small-signal
pinning-dominated dynamics to flux-flow-dominated dy-
namics with a large Nernst voltage or Ettingshausen tem-
perature difference. Thermomagnetic data may be able
to give not only information on superconducting parame-
ters such as the GL parameter, upper critical-field slope,
and coherence length, but on the superconducting state
itself. The results presented here may be complementary
to those found on the basis of time-dependent Ginzburg-
Landau theory, especially in the low-field regime.

By using the lower critical field in the thermodynamic
relations, Egs. (4) and (5), for a variety of layered super-
conducting systems, predictions were given for the trans-
port entropy per unit length of vortex. The layered sys-
tems include infinite SIS and SNS Josephson stacks which
have been commonly used to model high-T, supercon-
ductors. Of particular interest is the thermal diffusion of
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Josephson vortices, either in stacks or single junctions.
The Nernst voltage signal here would indicate entropy
transport by these vortices, in contrast to some earlier
treatments.

In this paper I concentrated on the low and intermedi-
ate temperature regime for low and intermediate fields,
where Egs. (4) and (5) are valid. A last topic which I
touch on is the role of fluctuations near the transition
temperature. This role can be very significant for high-
T, superconductors and its quantitative description leads
to various scaling relations.** Fluctuation effects have
been considered in two magnetic-field regimes. Fluctua-
tions of both the amplitude and phase of the supercon-
ducting order parameter were considered in Ref. 44, the
theory holding for fields near the upper critical field H,,.
This theory used time-dependent GL equations to find
both transverse and longitudinal transport properties of a
layered superconductor in a magnetic field. The results
for the transport coefficients can be written in terms of
scaling variables and scaling functions.** A theory for
phase fluctuations (vortex positions),** valid for
H << H,_,, predicts the temperature at which the magneti-
zation is independent of field and could also be used in
the analysis of thermomagnetic effect data. Both of these
theories can be used to perform data collapse of the mag-
netization or transport entropy at temperatures near the
mean-field transition temperature T,,(H).

I thank J. Rice, V. Kogan, M. Ledvij, and A. Simonov
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