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Thermally activated depinning of flux lines from columnar defects

A. Kramer
Fachbereich Physik, Freie Universitat Berlin, Arnimallee 1g, 1)195Berlin, Germany

M. L. Kulic*
Max-Planck Inst-itut fur Festkorperforschung, Heisenbergstrasse 1, 7056g Stuttgart, Germany

(Received 15 March 1993)

The dynamics of a Huctuating vortex in the presence of a columnar defect is described with
a functional Fokker-Planck equation. Within this picture thermally activated depinning due to
an external electric current perpendicular to the defect axis corresponds to a nonzero probability
current over a saddle point ui of the energy in configuration space. If the energy barrier is large
enough this probability current may be calculated summing over all Quctuations orthogonal to the
direction of steepest descent at ui. This gives the prefactor in the Arrhenius law to be proportional
to j T for the escape rate of a pinned vortex, and to j T for the resistivity p.

Pinning of vortices by long columnar defects as pro-
duced by the irradiation of heavy ions is regarded as
an e8ective mechanism to achieve maximum loss-free
currents in high-T superconductors. Such channels are
able to generate large pinning forces and therefore large
critical currents due to the electromagnetic and core
interaction. As pointed out by Brandt in this situation
not only the pinning force but also the pinning energy per
unit length Vz plays an important role, since the latter
enters into the activation energy U for thermal activated
depinning of the flux lines (FL s). This leads to a finite
resistivity p exp( —PU) where P = 1/k~T is the inverse
temperature.

The activation energy U in the presence of an exter-
nal current J perpendicular to the vortices has been cal-
culated within the frame of anisotropic London theory
in the case of a uniaxial superconductor when colum-
nar defects and vortices are aligned to the c axis.
U = (2/3)AV„ is the energy of a critical FL configura-
tion (Fig. 1) with a depinned parabolic section of width

1/J and height h 1/1 provided that the dis-
tance to the neighboring pinning channels a is sufEcient
large, a ) k. In the present paper this situation shall
be analyzed in more detail including also vortex Buctua-
tions to calculate the prefactor w in the Arrhenius law
B = u exp( —PU) for the escape rate R of a pinned vor-
tex. u is the attempt frequency of the formation of the
critical "bubble" as shown in Fig. 1.

The method used here has some analogies to the
treatment of quantum tunneling problems with path
integrals.

In what follows we consider a single FL pinned by a
single columnar defect directed along the c axis which
shall be represented by a two-dimensional (2D) pinning
potential V(u), u = ~u~, u = (x, y). Vortex-vortex in-
teractions shall be neglected, and other pinning chan-
nels are assumed to be far away (h ( a). Then, within
the linear elasticity approximation the energy E of a FL
with distortion u(z) in the presence of an external cur-

rent J = (c/4o) j, and pinning potential V(u) may be
written

F[u(z)] =
L/2

—L/2

m /du)'
I

+ V(-) - j * d'

C 0 is the Aux quantum, c the velocity of light, I the sam-

ih X

FIG. 1. Flux line u(z), u = (z, y) pinned by a columnar
defect which inHates into a critical parabolic configuration
of width A and height 6 under the influence of an external
current in y direction. Once formed the bubble will grow and
the vortex depins.
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pie thickness, and m = 'is», ' where v = A (,/( (, =4 (lnm+0. 5)

A, /( . A b( ) is the London penetration depth, and ( s( )
the coherence length in the direction of the ab(c) axis.

The pinning potential V(u) shall not be specified in
detail except of the following properties: V(u) has its

+2
minimum at u = 0 with V(0) = —V„=—is,'&, , e & 1,
and curvature d2V(0)/du = 2V„/(r where o ) ( s is
approximately the radius of the pinning channel. V(u)
decays rapidly to zero for u & o..

At first we will study the structure of the energy func-
tional E[u(z)] from (1) in FL configuration space. E may
formally be regarded as the Euclidian action of a parti-
cle of mass m in the potential V(u) —j x with imagi-
nary time z. ' The boundary conditions can be taken as
u(+ 2 ) = 0 if the vortex is assumed to be pinned at its
ends. The entirely pinned vortex uo ——0 and the critical
configuration ui ——(xi, 0) froin Fig. 1 extremize the en-
ergy functional E[u], and therefore are solutions of the
Euclidian equation of motion

bE d2u= —m +V'V —j e =0. (2)

1
E[u + bu] = E[u ) + —(buiO ]bu) +

2

Actually there are also other FL configurations which
extremize E (e.g. , two or more bubble configurations) but
these have much larger activation energies, and therefore
may be disregarded. For j « j p = 2V&/a with A

2+ m2V/j we have

V„jzi(z) = —." — z for ~z] & —,j 2m 2'

and exponential behavior zi(z) exp( —&p]z~) for ~z] )
Q/2 where m())p2 = d V(0)/du . For L ~ oo this asymp-
totically fulfills the boundary conditions.

Throughout this paper it shall be assumed L )& 4 so
that one can deal with the limit L ~ oo. For finite L
that means j /j p )) (Lwp) which requires L )) wp

A functional expansion of E at uo, and u~ up to second
order gives

L ~ oo. The existence of the zero eigenvalue is easily
shown by differentiation of the equation of motion (2).
Since the corresponding eigenvector ui (= o)ui/(9z) has
one node at z = 0 there is one lower eigenvalue A q ( 0.

This shows that uq corresponds to a saddle point of
E in the space 'R of all FL configurations u(z) whereby
uo corresponds to an absolute minimum. This structure
is schematically shown in Fig. 2. The existence of the
zero eigenvalue reHects translational invariance; i.e., the
critical bubble uz may be shifted up and down without
changing the energy.

To introduce thermal Huctuations we now consider the
FL being under the inHuence of stochastic forces due to a
heat bath with inverse teinperature P. Thus, our starting
point is the Langevin equation

I"—' = — + f(z, t),~ Bu bE
Bt bu z

with viscosity I and Gaussian stochastic forces f which
obey (f) = 0 and (f, (z, t) f~(z, t)) = 2P I' b,1h(z-
z')b(t —t'). Note that I' i can be related to the ideal How
resistivity po, r =, ' . The corresponding functional
Fokker-Planck equation for the probability W[u(z)] can
be written

—W[u] =-
Bt

dz' dzb (z —z'), S (z]u),

with the probability current

))(zlu(z)) = ——e e ) ) (e) )"l~fu]) .
r
P bu(z)

If the energy at the saddle point is sufFicient large, i.e. ,

PE[ui] )) 1, two assumptions can be made: (1) OW/Bt is
small so that an entirely pinned vortex is almost in ther-
mal equilibrium, i.e. , W[u] = exp( —PE[u])W[up] near
up, and (2) the total probability current 8 out of the
pinned state is essentially nonzero only near the saddle
point of E at ui which suggests using the expansion (4).
Then we can proceed in analogy to Kramers' calcula-

with n C (0, lf, and

,

(o.* o i
0 n&~

(-m„",+ V"(*.)
0 d2, V(x ) )d- +

where the scalar product is defined by (v]w') = j & 2 vL/2

wdz. E[up] shall be set equal to zero from now on (which
only means the addition of an irrelevant constant to E).

The vanishing of the nondiagonal elements of O is due
to the fact that the pinning potential has rotational sym-
metry and that y = 0. Under consideration of the above
boundary conditions the eigenvalues of the Schrodinger
operators Oo, Oo, and Oz are all positive but O~ pos-
sesses one negative and one zero eigenvalue in the limit

FIG. 2. Structure of the energy functional E[u(z)]
(schematic). At ui there is a saddle point with maximum
negative curvature ~A i ~. The direction with zero curvature
has not been included in the 6gure.
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tion of the escape rate over a potential barrier in one
dimension. The total probability current 8 is found in-
tegrating (7) within a saddle-point approximation to be

~-(.) -"~-~~[-.],
P 2'

where $&17u(z) means a functional integration over a
hypersurface A C 'R which contains all bounce solutions
ui (z+p), ~

p,
~

( I /2, and is perpendicular to the direction
of the steepest descent, i.e. , maximum negative curvature
of E.

The total probability of the pinned state ~ can be
written

W = W[uo] 17u(z)e
V

.In f ~" (.) p(-'-, ( IO.
I )j u,

13 2& f Vu(z) exp( —
~z (u~Op~u) j

(9)

where the double dash means the exclusion of the direc-
tions with negative and zero eigenvalues of O~ .

The Gaussian path integrals from (9) may now be ex-
pressed in terms of determinants of the operators 0

f 'D"u(z) exp( —~ (uiOiiu) j
f 17u(z) exp( —~ (u

~
Op

~
u) j

1 1

( detOp ) ( Op") ~~~ ~

P
g ~

det Oi
~ ) (det Oi ) 2a

Ap is the zero eigenvalue in the limit L ~ oo. For finite
L, but L )) 4, it has an exponential small value which

4 3 2

is obtained perturbatively A = . ' e ' ( ) . The
I 1~1 I

I'
quotients of the fluctuation determinants can be calcu-
lated using the Gelfand- Yaglom formula that gives the
renormalized determinant D(L/2) det O as the solu-
tion of the homogenous differential equation OD(z) = 0
with initial conditions D( L/2) = 0, and D—(—I/2) =
1. This yields for I )) A )) wp, i.e. , for small

det Op/~ det Oi
~

= —e ', and det Oo/ det Oi
& e ' . The negative eigenvalue A ~ of C7& can be

calculated in the limit of small currents j considering the
behavior of the corresponding symmetric eigenfunction

i(z) for z & 0. For j ~ 0 we must have @ i(z) -+xi,
thus A i ~ 0. Since then V"(z) mwp )) A i for z

where f& 17u(z) stands for a functional integration over
all pinned FL configurations.

Now all functional integrations can again be calculated
within a saddle-point approximation whereby the mode
belonging to the zero eigenvalue of D& has to be treated
separately. The latter gives simply a factor

~~
ui

which is the curve length of the line (ui(z + p), ~p,
~

I,/2j C. Q. Hence, the vortex escape rate is R = 8/W =
exp( —PU) with the activation energy U = E[ui]

34Vz and attempt frequency

one may write g i(z &
2 ) =xi +O(j), and on the

otherhandQ r(z& s) cosh(g —h rimz). Match-

ing both together gives A i ———m( (2/A) + O(j )
where g = 1.1997 is the root of (tanh( —1.

Finally gathering all terms we obtain

cu = "
QPwpV~

/

—
/

exp/ 2 —. /L,
rV„4( ( j)' ( j())

4jp)

j (( jo)r (10)

It shall be mentioned that the arguments of all exponen-
tials have only been calculated up to order 1/j. There are
also corrections of order unity depending on the detailed
shape of the pinning potential which have to be consid-
ered in order to determine the exact numerical prefactor
in Eq. (10).

The escape rate R may be written R = Op x
exp( —PU, ir) with

rV„~S(' ( & l ~ ( T $

E~.)
and an effective activation energy

( T st ( j I
U.a = 2kaTo

I To) 0 jp) (12)

1 3a* (T t ' (jl'
V - po —L~o

/

p) k~p)

whereby v (( vp requires p/pp (( 1.

where k~Tp ——(2/3)V„/wp. U,s' can be regarded as the
difference of the free energies Eq, Ep of a pinned vortex
segment of length 4, Ep ——k~ T~p 4, and an unpinned
one with Ei ——(2/3)V&A. The present theory is valid
only if (Ei —Ep)/k~T )) 1. Since A j this requires
T & Tp. For T & Tp there exists no pinned state of the FL
anymore. Such a renormalization of the pinning energy
of a columnar defect due to thermal fluctuations has also
been calculated by Nelson who considers a square well
pinning potential in contrast to the harmonic oscillator
approximation used here.

Having calculated the escape rate of a vortex. pinned
by a columnar defect we look now how this is connected
to the resistivity p. If the vortices are not pinned they
will move transverse to the applied current with velocity
vo ——I'j which gives rise to a finite resistivity pp vp/j.
Consider random distributed columnar defects of density
n„and density of vortex lines n„=B/@p where B is
the magnetic field. We will assume that n & n„and
that each vortex spends most of its time in the pinned
state so that vortex-vortex interactions may be neglected.
Then the FL's move with average velocity v = Ra* (& vp
where a' [guessed to be (n, —n„) ~ ] is the mean free
path along which a depinned vortex or vortex segment
moves before it is pinned again. Thus, from Eq. (10) the
resistivity reads



9676 A. KRAMER AND M. L. KULIC

Let us now apply the preceding
results to YBa2Cus07 s (YBCO) (taking ( g = 20 A,
p = A /A b = 5, K = 50) and Bi-Sr-Ca-Cu-0 (BSCCO)
(( s = 20 A. , p = 60, K = 95). For BSSCO a FL con-
sists of a stack of 2D point vortices (pancakes) since (,
is much smaller than the distance d of superconducting
CuO planes. This is in contrast to YBCO where (, ) d
(3D case). However, as shown by Bulaevski et al. ii also
in the 2D case anisotropic London theory is applicable as
long as the horizontal distance between the pancakes in
neighboring layers is smaller than the Josephson length
AJ = pd. Here, this means

~

u
i

& p, which also is the
condition for validity of the linear elasticity approxima-
tion entering in Eq. (1) as recently discussed by Brandt. s

The largest slope of the vortex appears at the ends of
the critical bubble (z = +b, /2). In both cases, YBCO
and BSCCO, one gets

~

u (+A/2)~ & p/4 showing that
the above condition is fulfilled. Insertion of the param-
eters with e —1, and o ( b then yields wp = 2(„

and Tp ——660 K (16 K) for YBCO (BSCCO). From this
it is seen that pinning by columnar defects is effective
for YBCO (Tp » Tc = 87.2 K) but not for BSCCO
(Tp & Tc = 87 K) at higher temperatures. At last we will
check the condition j/jp » (Liop): If a typical sample
thickness is taken to be 10 A. then j/jp » 10 (10 )
which shows the applicability down to rather small cur-
rents.

In conclusion we have calculated the escape rate of
a vorte~ pinned by a columnar defect in the presence
of a transversal current. The activation energy 1/j
is renormalized due to thermal Huctuations which lead
to an enhanced free energy in the pinned state. The
prefactor in the Arrhenius law has been calculated to
be proportional to j ~ T / for the escape rate, and to
j / T ~ for the resistivity.

We thank K. D. Schotte for helpful discussions.
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