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The stability of the Abrikosov Hux-line lattice for uniaxially anisotropic superconductors has been
studied in the London approximation as a function of the anisotropic mass ratio and the angle 0
between the B field and crystal c axis. For anisotropic mass ratio M, /M b larger than (3 + ~8)
and for a range of angles o, i & 0 & 0,2, the straight Hux lines become unstable and a tilt-wave
instability occurs, irrespective of the magnitude of the B Held. We show that this instability occurs
for a variety of cutoff' schemes (which are needed to make London theory finite). The instability
is probably related to the formation of a "combined" lattice of Hux lines in which two species of
vortices coexist simultaneously but run in diferent directions.

I. INTR.ODUCTION

The discovery of high-temperature superconductivity
has recreated interest in type-II superconductors. High-
T superconductors are strongly anisotropic materials. In
the presence of a suKciently strong magnetic Beld type-
II materials change from the Meissner superconducting
state, in which all magnetic flux is expelled, to a mixed
state with a Aux-line lattice. For uniaxially anisotropic
superconductors, Campbell, Doria, and Kogan and Pet-
zinger and Warren have predicted that this lattice, at
large B field, is a deformed triangular lattice and the
spacings between the Aux lines vary in a simple way with
the anisotropic mass ratio Mz/M and the B field orien-
tation with respect to the crystal c axis. Here, M~ = M
and M = M p are the Inasses along the crystal c axis
and the ab plane respectively. The stability of this lat-
tice against elastic deformations has been a subject of
intensive investigation. The further study of this ques-
tion is the main aim of this paper.

Recently Sudb@ and Brandt have reported that for
the lattice configuration mentioned above, ' the energy
associated with the transverse mode corresponding to
a pure shearing deformation of the Aux lattice can be-
come negative for extremely anisotropic superconductors
(Mz/M )) 1) in the very low induction regime when
6 = R/B~2 && 1, where R,2 is the upper critical field.
This signals a structural instability of the Aux lattice.
Daemen, Campbell, and Kogan have proposed an or-
dered state in which at low induction the IIIux lattice is
still a deformed triangular lattice, but where the spacings
between the Aux lines do not scale uniformly in all direc-
tions as B / . In addition, these spacings are diBerent
functions of Mz/M and 0 (the angle between the B field
and the c axis) than in the state of Refs. 1 and 2.

In this paper we investigate a quite diferent type of
instability of the Aux lattice. We show that an instabil-
ity at finite values of k (a tilt-wave instability) develops,
regardless of the values of the induction 6, in an angular
range 0 ~ & 0 & 0 2 where both critical oblique angles
depend on Mz/M. (Here k is the z component of the
w'ave vector along the B field). This suggests that the

ordered state for 0 j & 0 & 0 2 may not belong to a
configuration of straight fiux lines. However, the experi-
mental results of Ref. 5 suggest that it is more likely that
the ordered state of the Aux lattice will be a "combined"
lattice of Aux lines running parallel and perpendicular to
the c axis or alternatively a "combined" lattice in which
some Aux lines lie parallel to the |" axis while others lie
at an angle 0 with respect to the c axis. We shall be
discussing these possibilities later in more detail.

We shall use throughout anisotropic London theory.
This theory suffers a serious inability to account for vari-
ations of the order parameter near the core region as
it assumes that the order parameter is a constant ev-
erywhere. Unfortunately, this gives rise to an unphysi-
cal divergence in the calculations of the free energy and
sums over the wave vectors have to be cut oA to make
the free energy finite. Several cutofF schemes have been
proposed. We show that the occurrence of a tilt-wave
instability is independent of the cutoÃ scheme used. For
illustrative purposes, we shall produce numerical results
using a Gaussian cutoK

The possibility of a tilt-wave instability was first in-
vestigated by Koyama and Tachiki. Their analysis was
restricted to the case of the B field along the crystal c
axis. They found that a single vortex line developed a
spiral vortex instability. They later discovered that their
work was in error and that a straight vortex line had a
lower free energy than a spiral vortex line. A more sys-
tematic study of this problem has been recently carried
out by Carneiro, Doria, and de Andrade. Their proce-
dure was again to use anisotropic London theory accom-
panied by some regularization method. They concluded
that with the B field along the crystal c axis an instabil-
ity could. develop at Bnite values of k, depending on the
cutofF procedure and the value of A b (( b) and A ((,),
the penetration depths (coherence lengths) along the ab
plane and the crystal c axis respectively. We find that
there is no tilt-wave instability when the vortex lines are
parallel to the c axis and we believe that only unphysical
cutofF procedures can produce instability. We argue for
the validity of our cutoK technique in Sec. II.

The outline of this paper is as follows. In Sec. II we
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present a brief review of nonlocal elasticity theory for
anisotropic superconductors within the London regime.
In Sec. III we evaluate (numerically) the normal modes
(eigenvalues) of the elastic matrix. We also find condi-
tions under which a tilt-wave instability may set in. This
condition is related exclusively to the anisotropic mass
ratio Mz/M and the oblique angle 0, and not to other
parameters like b. In Sec. IV we discuss possible impli-
cations of these results as well as the limitations on their
validity.

II. NONLOCAL ELASTICITY THEORY

Type-II superconductors are conveniently described
by the (linear) phenomenological London equation.

Anisotropy is allowed for by replacing the square pene-
tration depth A in the isotropic version of this equation
by a tensor A, . . We shall study only uniaxial compounds
where Axx = Ai-i. = A~b g Azz = A, . The coherence
length, which is present only in the full Ginzburg-Landau
theory, is also a tensor. One has A /A b = ( b/(,
QMz/M. This is the so-called effective mass modeL In
general the anisotropic superconductors are layered mate-
rials. However, at not too low temperatures the interlayer
spacing may be much smaller than ( when the layered
structure becomes irrelevant and the continuum version
of the efI'ective mass model may be applicable; otherwise
the Lawrence-Doniach type of model has to be used.
The continuum limit shall be used in the present work.
Within this context, the London free energy is given by

r'Co l++( C'odr H +i V'p —Ai P
i

V'&p —Ai
(27r ) q2~ )

where H is the magnetic field and is related to the vector
potential A by 8 = V x A, Cp is the quantum flux, y
is the phase of the order parameter, and B = (H) = Bz.
Here A is the square penetration depth tensor and is
given by Axx = Axx ——A

&
and Azz = A . The B

field lies in the AZ plane and is tilted away from the
crystal c axis by an angle 0 (see Fig. 1). It is then
convenient to rotate the crystal frame XYZ by the same
angle around the Y axis. In the new (vortex) frame xyz
the square penetration depth tensor is given by A p

——

Ai8~p + A2c cp with (n, P) = (x, y, z) where Ai —A b

and A2 ——A —A &. Here c denotes the o. component of
the unit vector c in the vortex frame.

Next we minimize (I) with respect to A to find

V' x [P V' x H] + H = Co ) 82(r —r, (z))
dr, (z)

(3)

H (r)=Co) drP(z)V p(r —r, (z)), (4)

where the Fourier transform of the London (tensor) po-
tential V p(r) is defined by

This equation can also be obtained from the second
Ginzburg-Landau equation by taking the order parame-
ter as a constant. Since it is linear in the magnetic field,
its solution is straightforward. One has

(Co
p .V' x H —

i

V'y —A
i

= 0 .
)

(2) V p(k) = 1 A2q qp

1 + Alk2 1 + Alk2 + A2q2

The phase is such that V' x V'p = 27r P, 82(r-
r;(z))dr, (z)/dz, where r;(z) = (x, (z), y, (z), z) is the po-
sition of the ith flux line at height z in an ensemble of ar-
bitrarily distorted fiux lines; the function 82(r —r, (z)) =
b(x —x, (z))8(y —y, (z)). By taking the curl of both sides
of (2) we then obtain the London equation dr, dr V p(r, —r~) . (6)

where q = k x c.i2 By inserting (2) into (I) and using

(3) and (4) we obtain for the free energy

Z, c

B,z

Y, y

FIG. 1. The axis A, Y, Z corresponds to the crystal frame
and x, y, z to to the vortex frame. The latter can be obtained
from the former by rotating the crystal frame by an angle 0
around the Y axis.

Here we have used the convention that sums are made
over repeated indices. The minimum mean-field free en-

ergy, in the high field regime, is predicted to be a pe-
riodic arrangement of straight flux lines [dr, /dz = z in

(6)] with hexagonal symmetry. 2 The basis lattice vec-

tors are Ri ——aux, R2 ——a(px + ~3y/p)/2, where
= cos 0 + M sin 0/Mz and a = 240/~3R. The

corresponding basis vectors of the reciprocal lattice are

Qi ——2~(~3x —p y)/~Sap, Q2 ——47ry/~3ap. The ex-
cess free energy due to small displacements s(R, (z)) of
the flux lines from their equilibrium positions in the or-
dered state R,(z):—nRi + m, R2 has been derived in
Refs. 13 and 14; I, and n are integers. Here s is a two di-
mensional vector, since displacements along the flux lines
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have no physical meaning. Upon keeping only terms up
to second order in these displacements we have

LE =—1
2

d ks (
—k)4 p(k)sp(k),

where the integration over k~ = (k, k„) runs over the
first Brillouin zone and over k, on the interval (

—oo, oo).
The elasticity matrix is given by

B2 ).[f-p(k+ Q) —f-p(Q)1

f p(k) = k, V p(k) + k kpV„(k) —2k, kpV, (k) . (9)

In the derivation of (7) no specific equilibrium lattice
is required. However, in what follows we consider an
ordered state with hexagonal symmetry Q = Q
nQi + mQ2, where the basis vectors of the reciprocal
lattice are as above.

Equations (6)—(9) deserve some comments. As one

can see from (5), the function V p(k) falls off as 1/k2
as k ~ oo, which implies a singular behavior of V p(r)
at r = 0. This means that the integrals in (6) over all
vortex segments dr, , dr. need a cutoB for the self-energy
contributions i = j. Similarly the lattice sums are also
divergent in (8). As we have already emphasized before,
these divergencies stem from the fact that in London the-
ory, variations of the order parameter near the cores are
neglected; i.e. , the cores are considered as b function sin-
gularities. A convenient way to cure this deficiency of
London theory is to replace the b function b2(r —r, (z)) in
the right-hand side of the London equation (3) by a short
range function S(r —r, (z)) to account for the variation
of the order parameter perpendicular to the cores. This
modification of the London model does not change the
form of (7)—(9), except by the fact that now the Fourier
transform of the London potential of (5) is replaced by

III. TILT-WAVE INSTABILITY

Let us now move our discussion to the stability of
the lattice. Our analysis is based on the normal modes
(eigenvalues) of the elasticity matrix (8) using the above
mentioned Gaussian cutoff and the form of V p(k) given
by (10). There are two normal modes of excitation, one
transverse (0 ) and one longitudinal (0+). The longitu-
dinal mode remains always hard and we do not consider
it further.

In what follows lengths are measured in units of a
and wave vectors in units of 1/a. In Fig. 2 we show
a plot of the transverse mode as a function of k, for

= &, tc = 50, Mz/M = 3600, b = 0.001, and sev-
eral values of 0. From this figure it can be seen that
for 0 = 3vr/8 the transverse eigenvalue becomes negative,
indicating a tilt-wave instability. For 0 = 7r/4 we can
also see a tendency towards an instability. During the
numerical work we noticed that the limit k ~ oo al-

ways corresponded to the most unstable situation of all.
Hence, to investigate the instability it is convenient to
take the limit k, )) ( b in (8). Since the summand in
this equation is cut at values ( &

we obtain in this limit
e.„(0,0, ~) = C „.(0, 0, ~) = 0 and

n (0, 0, ~) =C„„(0,0, ~)

) (Q) Q2 V (Q)
Aq + A2 sin 0

where the first terms in the right-hand side of both equa-
tions come from the diagonal terms of the London po-
tential of (5).

In Fig. 3 we plot the asymptotic limit of the soft mode,
0 (0, 0, oo) in units of B /4z'a and normalized to its
value at 0 = 0, as a function of 0 for several values of

V p(k) = S(k~) Azq qp

1+Agk 1+Ag& + A2q
(10)

where S(k~) m 1 for k~ (( 1/( b.
In this work we shall use mostly an elliptic Gaussian

cutoff S(k~) = e ( ~), where g(k~) = ( &(k~ x c) +
( (k~ c) . Notice that the cutoff function S depends
on k~ and not on k. The reason for this choice is that the
spatial variation of the order parameter is in the plane
perpendicular to the vortex direction for straight vortices
and, therefore, the cutoff (in Fourier space) should not in-
volve the z component of the wave vector. The authors of
Refs. 16 and 10 employed a cutofF procedure involving k,
rather than just k~, which always increases the tendency
towards instability, and explains why they found an in-
stability even when B

~~
c. We must emphasize that once

the two-dimensional b function in the London equation
is replaced by the short range function S, the derivation
of (10) is exact. We believe that all cutoff functions S
which depend only on k~ will give qualitatively similar
results.
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FIG. 2. Transverse mode for k~ ——0 as a function of k at
0 = 0 (short-dashed line), 7r/8 (long-dashed line), 7r/4 (dotted
line), 3vr/8 (solid line), and 7r/2 (triangle marked line), with
r = 50, Mz/M = 3600, and b = 0.001. The normal mode is
ineasured in units of H /4sa and k in units of 1/a.
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where p has been defined in the previous section and p&
——

cos 0 + Mz sin 0/M; A = C'o/B is the area of a unit
cell. In order to obtain the last equation we have made
the following change of variable Q' = (pQ, Q„/p). This
rescaling keeps the 3acobian unchanged. Furthermore, it
removes any angular dependence of the cutoff fupction.
We can see this if we rewrite g(Q) as g(Q) = ( &(p4Q +
Q„) = ( &p (Q') . This allows us to write the soft mode
as in (13).

The soft mode eigenvalue 0 then vanishes identically

- 0.7g—

1
4

=0
2

(14)

77'
8

3Tl'

8

FIG. 3. Transverse mode as a function of 0 for k~ ——0 and
k = oo with K = 50, Mz/M = 1 (constant line), 6 (dashed
line), 25 (dotted line), and 3600 (solid line), and b = 0.001.
The normal mode is measured in units of B /4vra and it is
normalized to its value at 0 = 0.

/2 ~4Q2

(1+ A' Q')I 1 + A'(p'Q' + Q')]
4

S(
&'.i, (w'Q2 + Q„')

Simple algebra yields

~-(00 )=I ——/1 pl BA
2 ) 4vrA',

(12)

I

O'S(Q')

Mz/M and for v = 50, b = 0.001. It can be seen that
for a certain value of the anisotropy larger than a certain
critical value (Mz/M = 3 + v 8 = 5.45), the transverse
mode changes its sign at 0 = 0 i and 0 = 0 q, indicat-
ing a tilt-wave instability for 0 i & 0 & 0 2. Stability is
assured for the B field along the c axis and along the ab
plane, no matter what Mz/M is. IWe also evaluated the
sum (11) by taking S(Q) = 1 and using a sharp cutoff in
which the sum is truncated at all values of Q ) 1/( i„ the
length scale which London theory starts to break down.
No significant difference is produced in the behavior of
the soft mode as a function of 0.] Another important fea-
ture of (ll) is that the asymptotic limit of the soft mode
is very insensitive to variations of 6 in our approxima-
tion scheme. (However, at extremely low induction our
results may become less accurate since the free energy
is dominated by the core energy and the cutoff scheme
might break down. ) The tilt wave instability is deter-
mined only by the anisotropy and the angle 0, which is
remarkably different from the case of the shearing insta-
bility found by Sudb@ and Brandt which only occurred
at extremely low induction.

Before we close this section let us present an analytical
derivation of the critical angles mentioned above. The
sum in (ll) can be replaced by an integral over Q as it is
dominated by the large values of Q. Similarly, for large

Q one has

A straightforward manipulation of this equation pro-
duces

sin 0, =—2 =1
2

4Mz
M

(
Mz 1)2

where i = c1 for the minus sign and i = c2 for the plus
sign.

In order to satisfy the inequality —1 & sin 0, & 1 and
that the roots of (14) be real one has to fulfill the con-
dition Mz/M & 3+ ~8. Note that the prescription for
a tilt-wave instability, Eq. (14), does not depend on the
definition of the cutoff function S(Q). The only restric-
tion to this statement is that the cutoff function can be
brought into a form which depends on Q but not on Q,
by using the rescaling specified above, which holds within
all effective mass models.

IV. DISCUSSION

In summary we have investigated the stability of the
Aux-line lattice with respect to tilt deformation by us-
ing linear nonlocal elasticity theory. Our results indi-
cate that a tilt-wave instability may develop for suK-
cient large anisotropy and within a certain angular range.
In addition, we have determined a critical value for the
anisotropy mass ratio beyond which a tilt-wave instabil-
ity may become favorable.

Several questions arise from these results. One obvi-
ous question is to ask whether this tilt-wave instability
is a real effect. Two approximations have been used in
this work, namely, London theory and the continuum
model rather than a Lawrence-Doniach model which is
usually more appropriate for an anisotropic superconduc-
tor. Although the present results indicate that the tilt-
wave instability is insensitive to the cutoff model used
for the function S(k~), it would be desirable to check if
this effect can also be detected by giving a more rigorous
treatment to the cores with the use of Ginzburg-Landau
theory. If Ginzburg-Landau theory is not capable of re-
moving this tilt-wave instability, it is also important to
check if the Lawrence-Doniach model for the supercon-
ducting layers also reproduces it. Therefore we cannot
rule out the possibility of a tilt-wave instability being an
artifact of either London theory or the continuum model.
Notice that the instability (see Figs. 2 and 3) occurs at
such large values of k (say of order 1/( ) that such an in-
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stability might be claimed to be taking place in a regime
where the London equations could not be expected to
have any validity and so the instability discussed might
be without physical validity. However, we would point
out that the value of k at which the instability actually
occurs can often be quite small. " There is also a question
of principle. The London equation (3) is widely studied.
The correct solution in the angle range 0 ~ & 0 & 0 2

is not the straight line solution. If one dismisses the in-
stability as an artifact, then one should find a way of
changing (3), or (3) with a cutoff', to prevent such an
instability taking place. Until that is done, no reliable
conclusions can be drawn from a study of the London
equation.

If one admits the possibility of a tilt-wave instability
being a real eÃect, one would expect a new type of the
ordered state in the angle range 0 q & 0 & 0 q. One pos-
sibility is a state of the form R,;(z) + u(z) where u(z) is a
periodic function of z. As we mentioned above, the most
unstable situation corresponds to large k . We expect
then that the periodicity of u(z) is very small, perhaps
of order ( b The. determination of this function which
gives the absolute minimum of the free energy is not a
trivial task, but a start has been reported by Ivlev et
al."

If the tilt-wave instability is a real efFect, then one
would expect physical quantities such as magnetization
and resistivity to have a singularity as 0 passes through
0 ~ and 0 2. We are unaware of data showing these fea-
tures.

However, we would like to point out a possible connec-
tion between our results and what has been experimen-

tally observed by Bolle et al. as interpreted by Huse and
Daemen et al. Their experimental observations on Bi-
Sr-Ca-Cu-0 (QMz/M = 55) show the. presence of two
distinct "species" of vortices coexisting simultaneously
but running in difFerent directions. A qualitative inter-
pretation of this experiment has been given by Huse.
He proposes that the ordered state of the flux lattice is
a "combined" lattice of flux lines running parallel and
perpendicular to the c axis. An alternative interpreta-
tion of the experiment of Bolle et al. has been given by
Daemen et a/. They show that a "combined" lattice in
which some flux lines lie parallel to the c axis and others
lie at an angle 0 with respect to the c axis lowers the
free energy with respect to a simple deformed triangular
lattice tilted away from the c axis. However, it is not
clear if the formation of this "combined" lattice occurs
above a certain critical value of anisotropic mass ratio
Mz/M and in an angular range g, i & 6I & 0,2 as in the
present work. Given the observations, we consider that
some version of a "combined" lattice is more likely than a
lattice of spiraling or staircase vortices as an explanation
of the state which forms in the region where the tilt-wave
instability rules out the conventional lattice.
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