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Pathria's approach has been used to deal with the properties of the finite cubic system of He under
constant pressure. The analytic expressions for the total number of particles X and the total pressure p
near the critical point are obtained for mixture, antiperiodic, Neumann, and periodic boundary condi-
tions. Influences of various boundary conditions upon low-temperature and critical characters of finite

systems are discussed. For five boundary conditions, the relationship between the superfluid transition
temperature T' and the size of the finite system I.o has been obtained. The results of this paper can be
used in the case of superconductivity. Besides, from this work and others, we have obtained the formula
for the phase-transition temperature T' in a finite system, t =o.l.o, here b is described as the finiteness
constant, and cr is determined by the boundary conditions, the properties of the system, and the interac-
tion between the system and the walls of the container.

I. INTRODUCTION

gT 2aLsvs

T3 lLsI'

where lLs is the latent heat of fusion per mole, aLs is the
surface energy between the liquid and the solid, 0 is the
contact angle between the wall of the Vycor pore and the
solid, and vz is the volume per mole in the solid phase.
D. D. Awschalom et al. proved that

AT 2hcr v

T3 Ahf r

where Ahf is the heat of fusion, Ao. is the difference be-
tween the so1id-wa11 interfacial energy and the liquid-wall
interfacial energy, and v is the molar volume.

Ferdinand and Fisher advanced the following relation
for a continuous phase transition

T(L)—T, (~ ) =aL, 6=1/v, L~~,
T, (cn )

(4)

where v is the critical exponent pertaining to the correla-
tion length and a is a constant which depends on the de-

In the last 20 years, phase transitions in finite systems
have been of interest. Some experimental research has
been undertaken, and many problems were identified and
awaited solutions by theoreticians. One such problem is
how the size of finite systems affects the phase-transition
temperature. ' Fisher et al. advanced a finite-size scaling
theory for first-order phase transitions. According to
this theory, one has

AT=T, (~)—T'(L)-L ', L~oo .

Tell and Maris showed that for a liquid in a Vycor glass
tube of radius r the melting temperature is lowered from
the bulk melting temperature T3 by an amount AT given

by

tails of the model and on the nature of the boundary con-
ditions. With an exact solution method, for a d =3 Ising
lattice n

&
X n2 X n3, Fisher et al. have computed

t = —1/( n ) for free faces, t = + 1/( n ) for periodic
boundary conditions, and b&1/v.

All of the above discussion mainly relates to the
inAuence of the finiteness of the size of systems in coordi-
nate space. Gas-liquid and liquid-solid transitions all re-
late to the ordering of the molecular arrangement in
coordinate space. The transitions of the Ising model and
the transitions of ferromagnetics and antiferromagnetics
relate to the ordering of spin arrangements in real space.
For these ordering phenomena in coordinate space, the
above theories are valid. SuperAuidity and superconduc-
tivity are, however, regarded as "condensation in
momentum space, " so they are ordering phenomena in
momentum space. We think that Pathria's method is ap-
propriate for these problems.

Pathria and co-workers developed an analytical
method to discuss the infI.uences of the finiteness and
boundary conditions of systems on Bose-Einstein (BE)
condensation. They introduced thermogeometric pa-
rameters y, , and constructed an abstract thermo-
geometric space with a lattice structure whose lattice pa-
rameters are y, . They regarded BE condensation as a col-
lapse of the lattice points of the thermogeometric space
towards its origin, and y; change form positive values to
zero or imaginary values. Using a rigorous asymptotic
analysis, they have studied Bose-Einstein condensation in
a finite three-dimensional system at constant pressure,
under Dirichlet boundary conditions. They have ob-
tained the analytic expressions of the total particle num-
ber X and the total pressure p near the critical point and
discussed influences of the finiteness of Dirichlet bound-
ary conditions upon low-temperature and critical charac-
ters of the system. One of their results is that finiteness
forces the transition temperature to be higher than the
corresponding one in the bulk system. Obviously, this re-
sult contradicts the basic experimental facts of
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superAuidity in finite systems. In this paper, we sha11 ex-
plain and solve this contradiction. Using their method,
we shal1 continue to discuss BE condensation in a finite
three-dimensional system at constant pressure, under
four other boundary conditions. We shall analyze and
compare the different influences of these five boundary
conditions. This helps us to understand the influences of
finiteness on superfluidity and superconductivity. Be-
sides, we shall obtain the general formula for the phase
transition temperature T' in a finite system.

II. THE ANALYTIC EXPRESSIONS
OF THE TOTAL PARTICLE NUMBER N

AND THE TOTAI. PRESSURE p

We calculate and derive the results in the case of mixed
boundary conditions. For the case of other boundary
conditions, we give only the results of calculation and
derivation.

The mixed boundary conditions are

where l& z 3=0, 1, 2, . . . .
In the system of noninteracting bosons, &n; & is the

mean occupation number on the single-particle state i,-,
so the total particle number X and the total pressure p
are, respectively,

K= g (n, ) = g (e ' —1)

B6;p= —y(n, )
' = y(n, &e, ,

I l

where ca= —p/kT and p is the chemical potential of the
particle. A, =(h /2vrmkT)' is the mean thermal wave-
length of the particles, and we assume k )&L, so we have

X= g(e ' —1)

2

0.=o=4, =o=4.=o=o

(5b)

g exp —j
k=i t =o 4L

k

l +—1
k (8)

The energy spectrum of the system is

h
ei i i

= [(l, + —,') +(l2+ —,') +(l3+ —,') ],

According to Possion's summation formula

F(l) = g F(q),
j = —oo q = —oo

(5c)
where F(q) is the Fourier transform of F(l). We have

1
exp —j lk +-

) —o 4L

2

=exp —J 16I
A'

2 . ~A, 2

exp —j 1 cosh j cos(2vrql )dl
4L 4L

L oo

1+2 g (
—1)qexp

XJ q =1

4mL q

JA,
(10)

Setting y =2~'~ a' L/k, and substituting Eq. (10) in Eq. (8), we obtain

L3 oo J oo oo —ja
+6 g ( —I)'g

3 exp
J

2 2 oo + oo —jo.
+12 g ( —1) ' 'g

3 exp
J CX

q1, 2 J

2

( 2+ z)
JO!

oo J CX

+8 g (
—1) ' ' ' g exp —. (q)+q2+q3)

J JA

oo J~ 2

3&&
exp — (q, +q2+q3)

J

2y{q2+q2+q2)1/2
e

( q
2 +q

2 +q
2

)
1 /2

For the case of the other two summations, substituting q, +q 2+ q 3 by q, and q &
+q 2, respectively, we obtain the re-

sults. From these results, we have

X=x 63q2(a)+ g ( —1) '3X q1 e

q1 =1

2yq 1

q&

2y ( q
2 +q

2
)

1 /2 2y(q2+q2+q2)1/2

L ( 2+q2)1~2 L — (q +q +q )

where x =L /A, is a quantity measuring the volume of the system.
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Notice
23'q )g( —1)'

q) =1 q1
=y —1n(2 coshy), (13)

—2y(q +q )

( 1)1
q& &=1 ( 2+ 2 )1/2

=1n(2coshy) ——y — qr—U') '(y ), (14)

U()2)(y ) = g [Qqr'[(q)+ —,
' )'+(q, + ,' ) ] —Qy—'+qr'[(q, + —,')'+(q2+ —,

' )']],
q) ~=1

c1 =1.61S S34
—2y(q

&
+q +q3 )

q) +q&+q& c

( 2+q2+ 2 )1/2
1=4y

3c1+
8

2——1n(2coshy) — V',"(y )+3—U() )(y ),
4 2

(ls)

2

V',3'(y 2) = g q, +— + q2+ — + q3+—
2 ' 2

q& 23 —0

2 —1

'2 2

X y +~ q1+ — + q2+ — + q3+—2 2 1 1 1
2

e2 =S.49 0136 .

63/2 ( a ) =« —', ) —2'' a' =« —,
'

) —y /x '

Substituting Eqs. (13)—(16) in Eq. (12), we have

X=x tg( —', ) —x ' [D'+(4y /qr)V()" (y )]],

(16)

In the phase transition region discussed by us, o. &(1, BP

ae,
2~ + 6qr eothy

x 2 y

12 4 2
y ~(2)(y2) — y Q(,3)(y2)

(21)

2&tPl
3//2

(kT)'" g-
12mx'"

y 2+

where D' =c2/2qr.
Using an analogous method, we have calculated the ex-

pression for the total pressure
(2qrm/h ) (kT)'

S ~2 «2) y'&+ + (3'—y')—
2/3 12 2/3

(22)

The calculated results for the other four boundary condi-
tions are given in the following equations. For Dirichlet
boundary conditions (data from Ref. 1),

For periodic boundary conditions,

4+L,y, z 4x,y+L, z 4,y, z+L Px, y, z

X/x =g( —', )—x '/ [1nx+D+(4y /qr)SI '(y )],

S

(2~m /a 2)'/2(kT)'/2 2 6x '"

(19)

1V 3

x 2
2a 3~ cothy

y y

12 2 812y g(2) ( 2) Sy g(3) ( 2)

+ (3qr —y )—12'2" 6~x '"
(20)

s y'«-'» 2y'X
(2qrm /Q2)3/2(kT)~/2 2 3rrx / 3qrx

(24)

For Neumann boundary conditions, For antiperiodic boundary conditions,
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Px+L,y, z Px,y+L, z Px,y, z+L Px, y, z

4 2—2x ' D'+ V', '(y )x 2 'iT

(25)

p S y'«l) 2y'N
(2vrm jh ) (kT) 2 3~x 3vrx

g(2)(y2) — y (q2+q2)
—1[y2+ 2(q2+q2)]

—1

&1 z='

g(3)( 2) y ( 2+ 2+ 2)—1

In the above expressions, D =1.444437, ' D'=0. 873 782,
D"= —5.978 893, D"' = —4.534453,

2

(kT) 5/3
2 1= —Ne —. (27)
3 V

pa=

values are both different from those of the Dirichlet case.
This shows that the influences of boundary conditions on
the terms are notable. Under the three other boundary
conditions, no similar terms arise. This shows that the
influences of the finite size of the system on the density of
states of the system are not important in these cases.

Due to the finiteness of the system, the energy spectra
change from continuous distributions to discrete distribu-
tions. In the region of low momentum, the effect of the
change is more marked. The pressure po contributed by
condensed particles is not always zero. Substituting the
limit value yo of y in the last term in the expression for p,
we can obtain po. For example, Under mixed boundary
conditions, yo = —377 /4y

3/2

X [y + vr (q, +q2+q3 ) ]

III. LOW TEMPERATURE
AND CRITICAL CHARACTERS

From the calculated results, we discuss the influences
of finiteness on low-temperature and critical characters of
systems.

For the bulk system, the chemical potential p ~ 0. For
Neumann and periodic boundary conditions, the finite
system still keeps the character p=0 at low temperature.
For the other boundary conditions, y is an imaginary
number and the chemical potential p )0 is at low temper-
ature.

In these expressions for p, the first term represents the
bulk behavior of the system. Under Dirichlet boundary
conditions, the second term —~ /6x' arises explicitly
from the modification of the density of states of the sys-
tem owing to its finite size. Under Neumann
boundary conditions, the corresponding terms are
+~ /6m /6x' +1/12x, and the algebraic symbols and

The rightmost equation is suitable for every boundary
condition. Under Neumann and periodic boundary con-
ditions co=0 and, therefore, po =0.

Analyzing the expressions for Neumann and periodic
boundary conditions, especially noticing that po=0, we
discover that the systems are dificult to keep at constant
pressure below the critical temperature T, under these
two boundary conditions. Therefore, we will not discuss
the low-temperature behaviors at constant pressure under
these two boundary conditions.

The low-temperature characters under mixed and an-
tiperiodic boundary conditions are analogous to the ones
under Dirichlet boundary conditions.

Now we discuss the critical characters of the system.
For example, we analyze the case of mixed boundary con-
ditions. To do this, we must first of all determine the
manner in which the parameters x and y vary as the sys-
tem is cooled at constant N and p. From (17) we obtain

dy2 xg( —', )+2N )0,
dx ~ 121' V (y )

where

V(3)( 2) [ 2V(3)(y2)]1 d

22

q+ — + q +— + q+-]. 1
2 —2

[x« —', )+2N]
(kT)7/2 8 2 10/3 V(3) ( 2)

Bx
BT N

Differentiating the expression for p with respect to T, and using (28), we obtain

h y'«-,')
=45

2~m ~x 5/2
(29)

C = (U+pV)aT
5 aV

N 2 BT

The specific heat at constant pressure is given by From (29), we know that (Bx/BT)& is non-negative, so
we have

[x« —', )+2N] «8vrx / V2' '(y )[«—', )y x+Sy N] . (31)

35
pA,

2
Qx 3 x

N 2 T
(3O)

Then the expression for C is given by
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5
C =——

A, 45/2T 2

3[xg( —', ) +2K]
[4(x,y )]16' x V' '( )2

where

4~
75« —,

'
) 15

1/4

~—1/4

For periodic boundary conditions,

8 « —')
15 g( —,')

(38)

(39)

[xg( —,
'

) +2X]
iI)(x,y )=

8 2 10/3 y(3) ( 2)
2

y'« l ) 5y'X
/

When the temperature tends to T, from T )T„we
can set x =N/g( —,

' ). Substituting this value of x into (31),
we find the gradual approximate condition

T, ( oo ) 40 g( —,')
We have

4~~2/3
Xo= a+tieo o+pp 2+ 3 ~2

1 (} y 4
'7T

When the temperature tends to T, from T & T„we have
X=TO and

= —3 2= ——m+a,
4 N

« 1 (35)

Substituting (35) into (31), we know that the right-hand
side of (31) is negative, so (31) can be satisfied at any
value of x. But from (17), x ~X/« —,'). Substituting this
and (35) into (18), we obtain t ~ ti. From this and (34),
we obtain t, = t &. Obviously, at t &, y changes into an
imaginary value, so a phase transition has already taken
place. It is easy to prove that t, =t, corresponds to the
position t that C takes its rnaximurn value. This case is
similar to the bulk case, but different from the case of the
film, in which t, ~ t . Reppy et ar. have observed that t,
corresponds to t in aerogel. '

For Neurnann boundary conditions,

[«3 ) ]1/3
7T 2 ~—] /3

« —', )

For antiperiodic boundary conditions,

~[/( 3
) ]5/3

3 2 ~—2/3
10 g( —', )

For Dirichlet boundary conditions,

(36)

3[g( 3 )]2/3~1/3
I/(3) ( 2) (

16'
In the case of equal sign, we have

2 3 2+ c ~—1/64'
where C6 =8.0865i. y should be suitable for
Re(y ) ~ Re(y, ). Substituting the values of x and y into
the expression for p, we obtain

From the results, we have come to the conclusion that
Dirichlet and periodic boundary conditions make T, in-
crease, but the other three boundary conditions all make
T, decrease.

IV. APPLICATIONS OF RESULTS

Now we apply the results to the liquid-helium system.
In the case of the bulk system, the transition temperature
T, of the noninteracting system is

"2/3
2~6 X
mk~ 2.612V

(40)

From (4()), we obtain T, =3. 1 K, which is close to 2.17
K. Considering the attractive force between the atoms,
we think that liquid-helium atoms are still regarded as
free particles but their mass is the effective mass m * in-
stead of m. If we take m*=1.43m, we obtain T, =2. 17
K. Besides, the exponents in (4) possess some universali-
ties being independent of the special properties of system.
Therefore, we can use the noninteracting system in the
discussion of the finite system, whose properties are
analogous to those of the bulk liquid.

For comparing our results with data, we consider first
of all the possibility of realizing these five boundary con-
ditions in experimental systems of liquid helium. Because
no periodic structure exists in the liquid, the periodic and
antiperiodic boundary conditions are impossible to real-
ize in liquid helium. In a general container, that fraction
of helium particles close to the wall of the container has
always been absorbed by the wall, so it is not to be re-
garded as bulklike. Our bulklike system is thus the inner
part of the liquid helium. Therefore, we have Q~, WO.
But it is possible that (Bg/Bn)~, =0. If $~,%0 and
(BQ/(3n ) ~,%0, a macroscopic current with direction per-
pendicular to the boundary may appear. But, in both the
equilibrium liquid helium in the normal state and in the
superAuid helium, no such current exists; we therefore
have (Bg/Bn ) ~, =0. This is the case of Neumann bound-
ary conditions. According to these considerations, Dir-
ichlet boundary conditions are impossible to realize in
any kind of containers. A drop of liquid helium in cos-
rnic space can be regarded as the system which satisfies
Dirichlet boundary conditions. The system comprising a
film can be regarded as the system whose x axis satisfies
the mixed boundary conditions but whose y and z axes
are close to the cases of bulk liquid.

From the above discussions, we know that Dirichlet
and periodic boundary conditions do not fit real experi-
mental systems of liquid helium. Therefore, Pathria's
conclusion that Dirichlet boundary conditions increase
the transition temperature does not contradict the experi-
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mental data. In fact, in liquid helium only Neumann and
mixed boundary conditions fit real experimental cases.
The transition temperature can relate to the shape of the
boundary. Our results for cubic boundaries cannot exact-
ly describe the cases of differently shaped boundaries, but
as a qualitative analysis, our results are available.

Lauter et al. pointed out that the formation of 1 or 2
solid layers next to the substrates is due to van der Waals
interaction, and a film with a thickness larger than about
four or five atomic layers would have essentially the
structure and the excitation of bulk liquid. " Therefore,
under Neumann boundary conditions, the volume of our
bulklike system is L &Lo, where Lo is the volume of
container. Setting L =L o jy i, y i ) 1, and noticing
X=L no, where no is the number density of particles,
and substituting this into (36), we find

fore, we obtain the theoretical values of y, from (42).
The values of y& in round brackets are experimental
values of y &.

The relation of t, on Lo is shown in Fig. 1. In Fig. 1,
the theoretical line is close to experimental data. y, of
some media, for example, aerogel, are greater because
there are lots of small pores in the medium.

Some experiments have proven that the films in porous
glasses possess some behaviors of three dimension. ' ' '
There are many peaks and valleys on the surfaces of the
media. We think that the films in valley will be restricted
further by the inert layers on neighboring peaks, so al-
most half of the surfaces of the film system is inert layers
and the other half is free surfaces. The system is approxi-
mately suitable to mixed boundary conditions in the 3D
case. From (43) and (42a), we obtain

[g( 3
) ]1/3

(41)
0. 112

(Lo —d, )' (44)

If the thickness of layers whose properties are different
from the bulklike system is d„we have

Brewer et al. obtained the experimental rule for Vycor
glass, '

Lo
y1 L,—2d,

1

1 —2d, /Lo

0.42 0. 111
( )

(Lo —0.32) (Lo —0.32)

For mixed boundary conditions, since half of the surfaces
are free surfaces, we have

y2
Lo 1

1 —d, /Lo
(42a)

t, = —0.242yiLo '
~

Generally, we can write t, in the following form

(41a)

From (42) and (42a), we know that yi and y2 increase as
Lo decreases. For the other three boundary conditions,
no inert layer exists at the boundaries, so L =L o.

Taking the nm as the unit of volume and noticing the
density of liquid helium 6=0.145 g/cm near T=2 K,
we find no =21.8/nm . Substituting this into (41), we ob-
tain

Here t expresses the position of specific-heat maxima.
Obviously, (45) and (44) are coincident.

In superconductors, Dirichlet and periodic boundary
conditions are easy to be satisfied. In these cases, finite-
ness increases the transition temperature T'. Although
we do not have sufficient data to prove our results, we
often encounter the case that a bulk superconductor sam-
ple can show the Meissner effect, but it is not a supercon-
ductor as a whole. This shows that many small parts of
the bulk sample have already moved into the supercon-
ductive state but the whole one will not until the temper-
ature decreases to a certain value. The fact is suitable for
our results.

About Ising 3D lattices, Fisher et al. have proved that
finiteness decreases T' for free surfaces but increases T'
for periodic boundary conditions, and b =1 for both
cases.

T' —T, ( &m ) =oL
T, (oo)

(43)

TABLE I. o. and b under five boundary conditions.

Neumann Mixture Periodic Antiperiodic Dirichlet

where Lo is in units of nm.
In Table I, b (Wllv) depends on the boundary condi-

tions, and under Neumann and mixed boundary condi-
tions, v depends on the media through y& and yz. These
points are different from (4).

Now we compare our results with experimental data,
which are shown in Table II. From Ref. 11, because the
irregularity of the surfaces of the walls can increase d„
we take d, =6 layers XO. 36 nm/layer=2. 16 nm. There-

o
4

D

12.OD-

10.po-

p. OO-

6.op-

d. op-

2.Dp-

p. pp ~ p. 00 20.00

ca1

30.00 00.00 50.QO

g —0.242y
b 1

—0. 112yq +0.048
2 3

—0.446
2

+0.123
3

pq/L, (0.01 nm )

FIG. 1. The relation between t, and y &/Lo.
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TABLE II. The temperature of superfluid transition of various media.

Medium

Bulk
Aerogel'
Xerogel'
Vyco'
Fe203'
Linde B'
Alp03
Carbolac 2'
Carbon black
Carbolac 1'
Carbon black

Lo (nm)

5-500
10
7

300
32.5

12.5

10

T' (K)

2.172
2.167
2.088
1.952
2.17
2.148

2.139

2.068

0
0.23 X10-'
3.9X 10

0.1

9.2X 10
1.1X 10

2.6X 10

4.8X10

1

1.02 (1.90 )

1.76 (1.61)
2.61 (2.89)
1.02 (1.14)
1.15 (1.47)

1.53 (1.34)

1.76 (1.98)

'Reference 12.
We take effective Lo =200 nm.

'Reference 13.

V. A COMPARISON BETWEEN RESULTS
OF THE SCALING THEORY

AND THE EXACT ANALYTICAL METHODS

Recently the finite-size scaling theory on first-order
transitions has been developed perfectly by Fisher and
Privman. ' Their results have been proven by exact
analytical and numerical results, and by other phenome-
nological theories. ' ' ' ' In 1985, the Privman-Fisher
hypothesis on the singular part of the free-energy density
of a finite system had been examined in the spherical
model of ferromagnetism by Singh and Pathria. About
the Ising model, the finite-size scaling theory was a con-
siderable success.

About the Bose condensate in finite system, the scaling
theory pointed to '

t =aLO

from the ones for the cases with constant density. From
the results of cases with constant pressure, under Dirich-
let and Neumann BC, b =

—,
' and 1, respectively, and they

are in agreement with (4c). But, under mixed antiperiod-
ic and periodic BC, b =2, 2, and 3, respectively, and they
disagree with (4c), like the results of Chen and Gaspar-
ini and Huhn and Dohm. Then, from the cases with
constant density to the ones with constant pressure,
values of b have changed obviously. From the two
points, as mentioned above, it is necessary to find a suit-
able scaling formulation of the Bose condensate which
can agree with the results of the cases with constant pres-
sure.

VI. CONCLUSION

For phase transition in a finite system, we can express
the relation between t, and Lo in the following formula:

st=a, L, ',
1 1—& —=v
b 0

1 1
or —=—=v,

b 0
(4c)

T' —T, (~)
T,(~) (46)

where 5t is the region of rounding. For helium,
v=0. 675+0.001. For samples confined to a cylindrical
geometry of up to 200 nm in diameter, Chen and Gaspar-
ini, 5 have measured 1 jb =0.583+0.046 and
1/9=0. 598+0.008; therefore 1/b & 1/9 & v, which
disagrees with (4c). For Dirichlet and periodic boundary
conditions (BC), using the finite-size scaling theory in
helium, Huhn and Dohm have obtained 1/b =0.5,
which also disagrees with (4c). Following the approach
of Barber and Fisher, Pathria et a/. have formulated a
finite-size theory for the Bose condensate. They have
proved that the predictions of the scaling formulation are
agreeable to the analytical results in finite system in three
dimensions with constant density under periodic, an-

tiperiodic, Neumann, and Dirichlet BC. Our results are
for the cases with constant pressure, so they are different

b &0 depends on the boundary conditions and these
kinds of phase transitions. b is a new constant, which can
equal 1/v or other values, so we call it the finiteness ex-
ponent. Under Neumann and mixed boundary condi-
tions o. (0, but under periodic boundary conditions
o. & 0. Under Neumann and mixed boundary conditions,
o. depends on the variety of media, but under the others,
o. does not relate to the variety of media. For the first-
order phase transition, b = 1, o. (0, and o. depends on the
variety of media.
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