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We use quantum Monte Carlo methods to evaluate the conductivity o of the two-dimensional disor-
dered boson Hubbard model at the superfluid—Bose-glass phase boundary. At the critical point for parti-
cle density p=0.5, we find o.=(0.45+0.07)0y, where aQ=ei /h from a finite-size scaling analysis of
the superfluid density. We obtain o, =(0.47£0.08)0, from a direct calculation of the current-current
correlation function. Simulations at the critical points for other particle densities, p=0.75 and 1.0, give
similar values for 0. We discuss possible origins of the difference in this value from that recently ob-

tained by other numerical approaches.

INTRODUCTION

The interplay between interactions and disorder has
been a compelling field of research over the last decade.
Particular interest has focused on two dimensions, both
because randomness alone marginally localizes the eigen-
states, and also because of a set of fascinating experi-
ments on the superconducting-insulator transition.!”¢
These studies focused both on the possibility of a univer-
sal resistance with a value close to 4 /4e2=6.45 kQ, and
also on the mechanism for the destruction of supercon-
ductivity.”®

While the experiments tend to describe qualitatively
similar behavior, the quantitative situation is still devel-
oping. Not only does the “universal conductance” in fact
vary, but there can be nontrivial structure in the curves
near the separatrix as the temperature is lowered. In par-
ticular, a “reentrant” phenomenon is observed in which
the resistivity dips as if the film were about to go super-
conducting, but then the transition is usurped by the for-
mation of an insulating state and the resistance rises as T’
is decreased further.! Further questions concern whether
the experiments are really in the critical regime or not.
That the experimentally accessible temperature ranges,
T = 0.5 K, may not be sufficiently low is an issue that has
been raised by, among other things, the existence of
structure in the curves as T is reduced. This is a crucial
question in determining the appropriate model for the
critical phenomena, as we shall discuss further.

There have been a number of theoretical efforts to un-
derstand these phenomena.” A particularly interesting
set of ideas has centered on the proposal that, despite the
fact that the underlying degrees of freedom are fermionic,
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the appropriate model is one of disordered, interacting
bosons,” 10

H=—1S (afa,+a]a, )+?V2 n+3Sen; . ()
(ij) i i

Here a;r is a boson creation operator at site i, n; Zafai is
the number operator, V is a soft-core on-site interaction,
and €; is a random local chemical potential, which we
chose to be uniformly distributed between —A and A.
The physical motivation for a boson model is provided by
imagining one has preformed Cooper pairs above the su-
perconducting transition temperature, i.e., the fermions
first condense into a set of interacting bosons that lack
phase coherence. At lower temperatures phase coherence
is established, and the system becomes superconducting.
Such a view is particularly natural for granular systems
where one can imagine Cooper pairs forming on individu-
al grains. Cha er al.'! have presented a more careful
characterization of this general scenario by comparing
correlation lengths for the various operator expectation
values associated with the propagation of two electrons
both together and independently. The fundamental phys-
ics is that, on the scale of the diverging pair-correlation
length, Cooper pairs appear as point bosons.

However, the justification for considering the Hamil-
tonian equation (1) is by no means completely qualitative.
The renormalization-group calculation of Giamarchi and
Shultz!? provides at least one explicit theoretical demon-
stration that the universality classes describing the super-
conducting transition of fermions with an attractive in-
teraction and the superfluid transition for disordered bo-
sons are identical. More detailed experimental
justification of a picture of preformed bosons has been
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provided by the work of Paalanen et al.,'’ which lends
rather compelling support to a picture where the ampli-
tude of the Cooper pair wave function is finite on both
sides of T, and the superconducting transition is indeed
described in terms of a loss of phase coherence between
pairs rather than the breaking of the pairs themselves.
Even so, it must be pointed out that tunneling experi-
ments®'* on homogeneously disordered Pb films have in-
dicated a vanishing of the gap at T,. It therefore may be
that granular and Josephson-junction systems are more
appropriate realizations of bosonic models.

Here we will describe the results of quantum simula-
tions combined with a finite-size scaling analysis to deter-
mine the conductivity at the superfluid-insulator transi-
tion in the boson-Hubbard model. The organization of
this paper is as follows: We will first review briefly some
of the analytic and numerical work to put our calculation
in context. Next we describe our Monte Carlo method
and discuss how the conductivity can be obtained either
from a Kubo formula for the current-current correlation
function, or, alternately, from the rigidity of the system
to phase changes. We then detail our numerical results,
beginning with the determination of the critical point for
the Bose-glass—superfluid transition, and continuing with
the analysis yielding the conductivity. The two tech-
niques yield values which are the same to within our es-
timated error bars. However, this number differs sub-
stantially from that obtained previously.'>!'® We conclude
with a discussion of some possible sources of this
discrepancy.

Fisher et al.'® have qualitatively mapped out the
ground-state phase diagram of the boson-Hubbard mod-
el. In the clean limit, a gapless superfluid phase exists for
all noninteger fillings. At commensurate densities, how-
ever, the interactions freeze the bosons into a gapped
Mott insulating (MI) phase for sufficiently strong cou-
pling. Increasing hybridization ¢ will eventually wash out
the gap and drive the system from insulator to superfluid.
It was argued that this “coupling-driven” transition is in
the universality class of the classical (d + 1)-dimensional
XY model. By contrast, changing the density away from
an integer number of bosons per site can also induce
superfluidity, but here the transition is mean field in char-
acter. When disorder is added, it was suggested'® that a
third, ‘“Bose-glass,” phase appears. This phase is charac-
terized by the absence of a gap, but also by a vanishing
superfluid density. While all noninteger boson densities
were superfluid prior to the introduction of randomness,
an incommensurate insulating phase is now possible as
the disorder increases. This work!®!” also predicted
values or bounds for the critical exponents, some of
which have been verified experimentally.'®

The ground-state phase diagram was subsequently
mapped out numerically!® ™2 in one and two dimensions
and also studied by the Bethe ansatz.?* Quantitative
values for the coupling required to localize the bosons
into the MI phase were determined,'®?>2 and the predic-
tion of mean-field exponents for the density controlled
transition was verified.!® In the presence of disorder, the
basic picture of the formation of a Bose-glass phase was
substantiated, although a variety of unexpected reentrant
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phenomena were also observed.?*22

Numerical and analytic efforts have more recently
turned to the transport properties for two-dimensional
lattices, and, in particular, the evaluation of the conduc-
tivity. Runge used exact diagonalization techniques,
combined with finite-size scaling, to extract the conduc-
tivity of the disordered, hard-core (U= ) model. He
found o, =(0.15+0.01)0,. In a set of papers,'"125 the
three-dimensional (3D) XY model and its Villain variant
were studied with and without disorder and with short-
and long-range potentials. It was argued that this model
is in the same universality class as the disordered boson-
Hubbard Hamiltonian. Cha et al.!! obtained the conduc-
tivity first in the clean system with short-range interac-
tions. The value o.=(0.2910.02)0, found by Monte
Carlo compared favorably with an analysis based on a
1/N expansion which gave o.=0.2510,. Sorensen
et al.'® then showed that the addition of randomness re-
sults in a smaller value o,=(0.14%0.01)0 y, that is, far-
ther from the experimentally realized numbers. Finally,!®
the disordered model with a long-range Coulomb poten-
tial was studied. Including these interactions was found
to push the conductivity back up to o, =(0.55£0.01)0 .
This final value is certainly within a factor of 2 or so of
the experiments, and possibly substantially closer espe-
cially considering uncertainties associated with the pre-
cise low-temperature experimental values.

None of these studies were of the Hamiltonian equa-
tion (1). It is of interest to compute the properties of the
boson-Hubbard model directly, including the effect of the
number fluctuations ignored in the mapping of the XY
model and also in the hard-core diagonalization methods.
One motivation is to test the arguments suggesting the
universality classes are identical. In addition, if the ex-
periments are not in the critical regime, then nonuniver-
sal quantities become of interest, and the predictions of
the original model are essential.

MONTE CARLO
AND FINITE-SIZE SCALING METHODS

Here we present a brief discussion of our numerical ap-
proach. More detailed descriptions have recently ap-
peared.?"?® We begin by expressing the partition func-
tion as a path integral. In order to do this, we discretize
the imaginary time B=L At and use the Trotter approxi-
mation?’ to decompose the imaginary-time evolution
operator.

Z=Tre PH=Tr[e _ATH]L’

He

—ATH; Lr

~Tr (2)

This is a well-controlled procedure since one can explicit-
ly calculate at different A7 and use well-understood tech-
niques?® to extrapolate to A7=0. We now insert com-
plete sets of states to express Z as a sum over a classical
occupation number field n(1,7):
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z=3 (n(l,lleiTHl|n(l,2)(n(l,2|eiTH2|n(I,3) cee,
{n(l,7)}

(3)

We have thus written our d-dimensional quantum-
mechanical trace as a classical statistical mechanics prob-
lem in d +1 dimensions. The classical degrees of free-
dom to be sampled are the space imaginary-time-
dependent boson occupation number field. Due to parti-
cle number conservation in H, the allowed configurations
of this field trace out world lines as the particles propa-
gate in 7. The “Boltzmann weight” of a particular
configuration is the product of matrix elements, and can
be sampled with standard stochastic techniques. Various
choices are possible for the decomposition of H into H;.
We chose the “checkerboard” breakup in these studies.?’

Expectation values are constructed in a similar way.
Of particular interest to us will be the true (paramagnet-
ic) current-current correlation function &, (7):

o (1)=(jE(1)jE(0))
jR(r)=eH"7jP(0)e "HT | (4)
2,

JE0)=it 3, (a:+§ai—a;7ai+x
i

and its Fourier transform

P iw,)= foﬁdr(jf(‘r)j,f(o))e

o, 7

(5)

If we were able to evaluate these quantities at real fre-
quencies, ®, we could then compute the frequency-

dependent conductivity from the Kubo formula30~3?
0(0) =002 [~ ()= (k)] - (6)

Here k, is the kinetic energy in one of the two equivalent
lattice directions. The dc conductivity is then obtained
from o4 =0(w—0). However, it is well known that the
analytic continuation of quantities like the conductivity
to real frequencies is a subtle problem.>* Following
Sorensen et al.,'® our approach will be to exhibit that, for
small Matsubara frequencies (w,, =2m/pB), the conduc-
tivity obeys o(iw,,)=0,/(1+|w,,|7.). With the empiri-
cal observation that our data fit this analytic form, the
continuation to o(w+id)=0c,/(1—iwt,) is then possi-
ble. A direct calculation of o, avoiding the assumption
of the Drude form, similar to the computation of real fre-
quency quantities in fermion simulations,** would be use-
ful.

There is an alternate approach to obtaining the con-
ductivity based, instead, on the response of the system to
a phase twist. We define a “pseudocurrent” operator and
its correlation function by

Hr == G+ (), (107, (7))
BL""7

@)
Nb
=3 [x(i,7+1)—=x(i,7)] .

i=1

BATROUNI, LARSON, SCALETTAR, TOBOCHNIK, AND WANG 48

Here x(i,7) is the x component of the position of boson i
at time slice 7, N, is the total number of bosons, and L
the extent of the lattice in each spatial direction. There-
fore, j,(7) measures the number of bosons moving in the
positive x direction minus those moving the negative
direction at time slice 7, i.e., the net boson flux per time
step at time slice 7 in the x direction. Similar definitions
apply for the pseudocurrent in the y direction. This pseu-
docurrent operator was originally introduced! to mea-
sure the mean-square winding number and from that the
superfluid density:®

Ho)=T3 e 1),
3(@—»0)2%( w2y, ()

1 ~

ps= E—J(w—»O) .
Defining p,(0)=dH(w)/2t, we can show that the
frequency-dependent conductivity can be written as

olw) PS(CO)
Tt .

%9
Again a Drude form must be assumed here to carry out
the analytic continuation.

Clearly, these two approaches are related, since they
both yield the conductivity. Indeed, a detailed discussion
of the connections between the response of the free ener-
gy to changes in the boundary conditions and the
current-current correlation function has recently ap-
peared.’? However, despite these general relationships,
the formulations of Egs. (4)—(6) and (7)-(9) allow us to
evaluate o in two quite different ways. In particular, the
current-current correlation function is a simple operator
expectation value for the model described by the boson-
Hubbard Hamiltonian. Meanwhile, the pseudocurrent
analysis is based on topological properties of the boson
world lines in our path-integral representation of the par-
tition function. Thus, the two measurements serve as in-
dependent determinations of the conductivity and a
check for the self-consistency of our simulations. Howev-
er, we emphasize that such alternate numerical measure-
ments, while yielding the same average value for the ob-
servable, can often exhibit rather different values of the
Suctuations and even equilibration times. These possibili-
ties are equally important motivations for considering
both types of data.

It is useful to contrast our Monte Carlo approach with
the two other numerical techniques already used in
evaluating the conductivity. As discussed above, Runge!’
used an exact diagonalization method for the U= o
model. The advantage of that approach is, most impor-
tantly, that real-time correlation functions can be directly
inferred, without the need for any analytic continuation.
A second advantage is that there are no statistical errors
from Monte Carlo sampling, only fluctuations associated
with the disorder averaging. On the other hand, the
technique is limited to rather small lattices (2X2 up to
5X5) since the Hilbert space dimension grows exponen-
tially with the number of sites. Indeed, the Hilbert space

=4 9



48 UNIVERSAL CONDUCTIVITY IN THE TWO-DIMENSIONAL ...

also grows rapidly with the number of bosons allowed per
site, so that, in practice, it is necessary to consider the
hard-core case where the site occupations are limited to
0,1. While this prevents the study of the transition as a
function of interaction strength, as we will do, one is able
to evaluate the conductivity for U= oo at a critical point
accessed by changing the density.

Meanwhile, Monte Carlo simulations have also been
conducted of a spin model (the classical 3D XY model)
argued to be in the same universality class as the boson-
Hubbard Hamiltonian. These studies are very close in
spirit to the ones described here, since they are also simu-
lations of a classical model in one higher dimension than
the original quantum Hamiltonian. Unlike diagonaliza-
tion, they are subject to error bars associated with statist-
ical sampling and have to argue the analytic continua-
tion, but they are able to study lattices of order 100 sites.
There are two differences with our approach. The action
in our simulation, the product of matrix elements of Eq.
(3), is rigorously appropriate to the boson-Hubbard Ham-
iltonian. For example, the mapping to the spin- model
neglects boson number fluctuations. Presumably, the ad-
vantage of the spin model approach is that the action is
somewhat simpler than that arising from the
quantum—classical world-line description detailed
above. On the other hand, there are evidently assump-
tions associated with the universality class of the transi-
tion and the relevant degrees of freedom.

NUMERICAL RESULTS

In order to evaluate o, we must first determine the
superfluid-insulator critical point. Here we closely follow
the finite-size scaling procedure of Ref. 16. According to
two-parameter finite-size scaling, physical quantities,
such as pg, on different size lattices, of linear extent L,
satisfy3®

ps=L%(aL'¥8,BL %) . (10)

Here a=2—d —z, [ is the inverse temperature, and
8=(V—V_)/V, measures the distance to the critical
point. The function f is universal but the metric factor a
is not. The dynamic critical exponent z is predicted’” to
have the value z =2, and our system is two dimensional
giving a=—2. Notice that there is no nonuniversal
metric factor for the second argument of the function f.
Therefore, by keeping the second argument, SL ~ 7, fixed
and plotting L2p, versus V for different lattice sizes, all
the curves should intersect at the critical value V,. We
chose the inverse temperature S=(1/4)L?Ar for different
lattices L, i.e., the same aspect ratio as in Ref. 16. Data
for L2p,, obtained from the pseudocurrent correlation
function via the procedure described in Egs. (7)-(9), is
shown in Fig. 1. We see that the curves from different
lattice sizes converge at a value V' /t~=7.0. In order to
resolve the critical point more accurately in Fig. 1, we
need to improve the statistics by averaging over more
realizations of disorder. To do that for many values of V'
takes a huge amount of computer time especially for the
12X 12 system, and is therefore impractical. Instead, to

9631
6 T T T T | T T T T I T T T T l T
= X A/t=12 1=0.2222 -
- 16 realizations .
4 0 8x8x16 lattice
x 10x10x25 lattice
B 4 12x12x36 lattice 7
< L E i
o}
L 3 i
® B
2 |
L ® I .
- $§£ .
0 I T R x§x $ o | @
0 5 10 15
v/t
FIG. 1. The scaling variable (L%p;) vs the interaction

strength V. The superfluid density p, is obtained from the pseu-
docurrent correlation function via the procedure described in
Egs. (7) and (8). The convergence region of the different curves
gives the approximate critical value for V.

make the simulation possible, we improved the statistics
for the 8 X8 and 10X 10 systems and determined the
crossing point of these two curves to be V/t=7. We
then did high statistics runs for the 12X 12 system at the
value of V' /t to ensure that, indeed, curves for larger sys-
tems will also intersect at the same point, thus giving
V./t="7. To demonstrate the crossing of these curves we
show p,(w) /e versus o, for values from slightly below to
slightly above the critical coupling, in Figs. 2(a)-2(c).

Figures 2(a)-2(c) show plots of p(w)/w versus w for
different values of the coupling, ¥/t =6.5,7.0,8.0. We
see that the best data collapse is at ¥/t =7.0. Further-
more, the plots show that the values 6.5 and 8.0 actually
bracket the critical region. This is because for V' /t =6.5
the data for 8X8X 16 lie slightly below those for
10X 10X 25, as one would expect if the system is in the
superconducting phase, while the pattern is reversed for
V/t =8.0, as should happen when the system goes into
the insulating phase. To obtain the conductivity, we fit
the Monte Carlo data using o(w)=a/(1+bw,,) (solid
lines in the figures). If we use the data for ¥/t =6.5 we
find o =0. 509, whereas for ¥/t =7.4 (not shown) we get
0=0.330,. The best data collapse for ¥/t =7.0 gives
0=0.40,. To check the effect of the finite time-step er-
rors, which are known to be O(A7?), we redid the simula-
tion for ¥/t =7.0, with the same B but twice as many
time slices, i.e., half the A7 as before. The results are
shown in Fig. 3 and give 0 =0.440,. Extrapolating to
A7—0 gives 0 /0 =0.4710.08.

In our simulations at half filling, p=0.5, the strength
of the disorder was kept constant at A=6, and the cou-
pling, V, varied to find the critical point. The number of
disorder realizations for most of our simulations is of the
order of 100 (see the figures for more details). For the
8 X8 and 10X 10 lattices we did about 40 000 thermaliza-
tion and 100000 measurements sweeps, for the 12X 12
lattice we did 100000 thermalization and 20000 mea-
surement sweeps. We found that the large number of
sweeps was necessary for thermalization and good statis-
tics.
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We now compute the conductivity from the true
current-current correlation function using the Kubo rela-
tion by taking the limit o (w—0) in Eq. (9). In Fig. 4, we
show the Fourier transform of the current-current corre-
lation function, #(w), as a function of w at the critical
point ¥=7.0 for A=6. For lattices sizes N=8XS3§,
10X 10, 12X 12. To obtain the conductivity, we fit the
data with the Drude form

Aw

Flo)—FHw=0)= ol

(11)

According to the Kubo formula, Eq. (6), the kinetic ener-
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FIG. 3. Plot of p,(w)/® vs o for coupling ¥/t =7.0. Here
the number of time steps has been doubled to check for Trotter
errors.

gy should be subtracted from the frequency-dependent
current-current correlation function to obtain the con-
ductivity. Scalapino, White, and Zhang3"3? demonstrat-
ed recently that whether or not the g =0 current-current
correlations extrapolate to the kinetic energy k as w—0
can be used as a signature of the superfluid-insulator
transition in the fermion Hubbard model. We have
verified that this is true for bosons too because our in-
dependent measurements of the current and the kinetic
energy do correctly signal this transition in agreement
with other order parameters such as the superfluid densi-
ty and gap. Indeed, this analysis provides a separate
check on our code. Figure 5 is the same as Fig. 4 but
with twice as many time slices.

Table I shows the values for the fitting parameters A
and 7, as well as the associated conductivity
27 A =0.38-0.46 with the range in values representing
changes due to different spatial and imaginary time lat-
tice geometries. These numbers are in agreement to
within our systematic and statistical uncertainties with
those found from the independent analysis of the pseudo-
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T T T T T T T I T T T T
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0 10 15
w=2mn/B

0.0 L N L A EL i
005 [ r GoTeI®
0.05 - w5 ]
- x i -
C =t ]
3-0.10 — —
- L < V/t= 7.0 .

F P +12x12x36 96 realiz.

=

C I =10x10x25 128 realiz. 1
—0.15 O 08x8x16 96 realiz. ]
- A/t=12 7=0.2222 i
3 ]

oo b oo Ly

[¢] 10

w=2nn/B

FIG. 4. #(w) as a function of w at the critical point ¥ =3.5

FIG. 2. Plots of p;(w)/w vs o for different values of the cou-
pling, ¥/t =6.5,7.0,8.0. The best data collapse indicates the
critical point, and that happens for V /¢t =7.0.

for A=6 and lattice sizes N =8X 8, 10X 10, 12X 12. The good
data collapse again indicates that the system is at the critical
point.
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TABLE 1. The values of the fitting parameters 4 and T used
to obtain the smooth curves in Figs. 4(a)—4(c), and the associat-
ed number for the conductivity. 4 and T were obtained by
fitting the analytic form Eq. (11) to the Monte Carlo data at
=1 and 2, a process which results in an excellent fit even out
to much higher frequencies. The imaginary-time dimension has
been chosen as L =N?/4 for Ar= 5 and chosen as L =N?2/2 for
Ar= %, so that the inverse temperature f3 is the same for the two
different discretization intervals. We have also done least-
squares fits to the entire frequency range, a process which gen-
erally gave values for the conductivity which were higher by
10% or so. However, we believe that fitting to the low-
frequency data is the more appropriate procedure, since the an-
alytic form is expected to be most valid there.

N AT A T o
8X8 0.222 0.061 0.33 0.38
10X 10 0.222 0.065 0.38 0.41
12X 12 0.222 0.068 0.40 0.43
8X8 0.111 0.067 0.36 0.42
10X10 0.111 0.072 0.42 0.45

current in the previous section.

To check universality, we did similar simulations for
p=0.75 and 1. The conductivity for p=0.75 near the
transition is shown in Fig. 6. These results were obtained
using simulations of 5000-20 000 sweeps for thermaliza-
tion and 20000-40000 for averaging. Fifty realizations
of the 8 X8 lattice and 15 realizations of the 10X 10 lat-
tice were used. In these simulations tA/¥V was held fixed
at 2 while varying A and V/t. The transition was deter-
mined by searching for where the conductivity changes
from increasing with size to decreasing with size, i.e., as
in Figs. 2(a)—2(c). In the Bose-glass phase near the tran-
sition, we find that for the small lattices we are using it is
difficult to distinguish between data which collapse on the
same curve and data where the conductivity decreases
with size. This may be one of the reasons why previous

0.0 T T T T T T T T T T T
L I ]
: o= =0 = ® .:
0.05 = = 1
—0.05 — . _
N 2 i
C ® ]
C x 4
3010 g —
- N _
r X V/t= 7.0 ]
- = 10x10xR25 96 realiz. —
—0.15 — 08x8x16 64 realiz. 7
3 A/t=12 T=0.1111 .
_020 C 1 1 1 | I 1 1 L 1 I 1 1 1 ]

0 10
w=2nn/B

FIG. 5. #(w) as a function of w at the critical point ¥=3.5
for A=6, for lattice sizes N =8 X8, 10X 10, 12X 12. Here the
number of time steps has been doubled (at fixed B) to check for
Trotter errors.
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FIG. 6. Scaling plot as in Fig. 2 but at three-quarter filling.
o/0,~0.37.

studies have found lower values for o. Fits of the data in
Fig. 6 to the form o(w)=a/(1+bw, ) show that 0 /o,
varies from 0.36 to 0.38. The range of values depends on
the number of data points used in the fit. Using all the
data gives lower values; using only the two points closest
to w,, =0 (which have larger statistical error bars) gives
the higher values. At p=1 we obtain similar results as
shown in Fig. 7. This is an important fact since it is pos-
sible that the Bose-glass phase would not completely cov-
er the Mott lobe, and thus at integer filling one might find
a phase transition from the superconductor directly into
the Mott insulator. The data were obtained with 10000
sweeps for thermalization and 40000 sweeps for averag-
ing. From 60 to 170 realizations were used for lattice
sizes of L =8 and 10 and fixed ¥/t =10. These results
show reasonable scaling. Again, estimates for o /o, are
in the range 0.3-0.4. The conductivity results for
p=0.75,1 are consistent with those for p=0.5.

Our most accurate data are for half filling, and these
were done on the Connection Machine CM5 with 32 and
64 processing nodes. The simulations for p=0.75,1 were
done on Silicon Graphics work stations using a program
written independently from the one used for half filling.
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FIG. 7. Same as Fig. 6 butat p=1. ¢ /0,~0.35.
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CONCLUSIONS

In this paper we have measured the conductivity of the
disordered boson-Hubbard model. We obtain a value
0=0.461+0.080 , which differs from those previously re-
ported for studies of a classical spin model'® and diago-
nalization of hard-core boson systems on small lattices.!?
One possible source of this discrepancy is that we noticed
in our data that the scaling curves which are extrapolated
to zero frequency to obtain the conductivity are still
curving upward toward large values for the larger lat-
tices. It is therefore possible that for larger lattices than
examined here (12X 12) the conductivity could be even
larger.

The precise source of this discrepancy is still under in-
vestigation. We believe that by evaluating the conduc-
tivity by two rather different approaches we have reduced
the possibility of trivial questions of normalization. This
still leaves the possibility of various numerical uncertain-
ties, including questions concerning whether we average
over a sufficient number of disorder realizations, the na-
ture of Trotter errors, etc. We have examined this first
point by dividing our 100+disorder realizations into
groups of various sizes and comparing the averages and
error bars from the different bins with each other. We
did not observe phenomena like the averages disagreeing
outside of error bars which would have been a signature
of insufficient disorder averaging. We have explicitly
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checked the latter point by running at two values of A7
and comparing the results. We found that this source of
systematic error is small. We also carefully checked the
equilibration of our lattice. The biggest source of uncer-
tainty in our calculation is clearly in our determination of
the critical point. From Fig. 2, it seems clear that our
value for o is rather sensitive to this choice, and a range
of values is possible. However, we do not believe that the
previously reported numbers are consistent with our
data. This would require a choice of V, clearly incon-
sistent with any sort of scaling plot. We are in the pro-
cess of carrying out some exact diagonalization studies to
pin down the source of the disagreement with QMC cal-
culations.
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