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We show how the apparent power-law scaling of classical two-dimensional structure factors in
bounded domains at criticality is related to fixed and free boundary conditions on the order pa-
rameter. This enables us to predict the behavior of the corresponding apparent scaling dimensions
based on a simple symmetry analysis. With the use of correlation functions from conformal field

theory, our predictions are confirmed with exact calculations for multicritical Ising models. E8'ects
of random boundary fields are also discussed.

INTRODUCTION

STRUCTURE FACTORS

The static structure factor S(k) in a two-dimensional
domain A is given by the Fourier transform of a correla-
tion function G(rq, r2):

S(k) =— d2r& d2r2 G(r& r2) elk (rq —rq)

It is proportional to the scattering intensity in a diffrac-
tion experiment with momentum transfer k (h = 1).

Finite size and boundary conditions of a system under-
going a second-order phase transition have a strong im-
pact on the critical behavior. ' In particular, structure
factors for two-dimensional restricted domains exhibit so-
called apparent scaling strongly dependent on boundary
conditions. The convergence toward bulk scaling has
been shown to be very slow, so that critical exponents
which can be deduced from diffraction experiments or nu-
merical calculations on lattice models will either under-
or overestimate the true bulk exponents. Still, the im-
portant question of how different boundaries exert an in-
Huence on structure factors has not been raised. Clearly,
a systematic analysis of this issue is much wanted.

In this paper we explicitly show how structure factors
are related to boundary conditions of a finite domain. On
the one hand, the apparent dimensions will overestimate
the true bulk dimensions of operators that have nonvan-
ishing expectation values near the boundary. If, on the
other hand, the expectation values are zero, the converse
will be true in general. We analyze uniform boundary
conditions on the order parameter. In addition, we con-
sider effects of a random boundary field, which may play
a role in some experimental systems.

Our predictions are confirmed by numerical calcula-
tions using exact correlation functions derived by confor-
mal field theory methods for multicritical Ising models.
For definiteness we have carried out the analysis for sys-
tems defined in a disk, but the predictions should also be
applicable to other finite domains.

For a translational invariant system in an infinite plane
(A = R2), one has the standard expression

S (k) = d r G(r) e' '.
At the critical point, G(r) = (P(r)g(0)) = ~r~, leading
to a power-law scaling

with x the scaling dimension of the scalar field P.
In a bounded domain, the correlation function in (1) is

not a power law, but depends on size, shape, and bound-
aries of the system. Nonetheless S(k) has often proved
almost to scale with momentum at criticality:

1
S(k) - „, (4)

where the apparent scaling dimension x ~p depends
weakly on k (or k for nonisotropic domains) and con-
verges slowly for increasing k toward the bulk dimension
x. In order to see when such scaling is possible, we

must investigate how Bnite size and boundaries inHuence
bulk scaling.

BOUNDARY CONDITIONS

Consider a two-dimensional ferromagnetic spin system
with a boundary. At the bulk-critical point there are
two possible surface transitions corresponding to free and
fixed boundary conditions on the order parameter. With-
out an ambient field coupling to the (one-dimensional)
surface of the system, the boundary is said to be free,
whereas it is fixed in an infinite, uniform boundary Beld.
Although the boundaries are noncritical in general, the
boundary conditions are homogeneous in the continuum
limit and thus preserved under conformal transforma-
tions.

In a field-theoretic description of the system, a local
operator P(r), defined such that (P) = 0 in the bulk, may
have a nonvanishing expectation value in the presence of
a boundary. In a disk of unit radius, it is given by
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(5)
as r~ near the edge and at the center correspond to an
exponent equal to 0 and x', respectively. Hence, we have

with r measured from the center of the disk. This fol-
lows from conformally mapping the expectation value in
a half-plane9 to a disk. For a free boundary (which pre-
serves the underlying symmetry of the model), the ampli-
tude A is nonzero for energylike operators, whereas it is
forced to vanish for spinlike operators. However, a fixed
boundary explicitly breaks the symmetry, leading to a
nonzero value of A for both energy- and spinlike opera-
tors. Consequently, we must use the connected two-point
«n«ion (&(»)&(»)). = (&( i)&(»)) —(&(»))(&(»))
as G(ri, r2) in (1) in order to obtain the scaling law (4)
in a bounded domain. ((P) g 0 leads to an oscillating
structure factor for G = (PP) and suppressed scaling. )

The leading contribution to a structure factor that ex-
hibits apparent scaling is given by (3) as k —+ oo. This
corresponds to the r = ~ri —r2~ —+ 0 limit of the corre-
lation function G(ri, r2) that governs this behavior. The
disconnected part (P)(P) is exactly known from (5) and,
provided that (P) g 0, adds a negative contribution to
S(k) of the form

1 cos (k —8)
AS(k) — as k m oo,

2— —r +
'7t

(10)

as r ~ 0, with o. ) 0. The last term comes from the
remaining integral and the dots represent terms of higher
order than r or r. When now comparing (10) with the
bulk function r, we see that the correlations in the
disk are governed by an efFective scaling dimension x such
that

at small distances, with x + x as r ~ 0. For x' ) 1, we

get x & x. However, this condition is dificult to control
as our lower bound of x' is less than 1. Let us therefore
restrict ourselves to the more ubiquitous case x' & 1,
which among others applies to the order parameters of
the multicritical Ising models and the three-state Potts
model. Whether x will over- or underestimate x is then
determined by the sign of CB, which is related to the
boundary condition of P.

with 6 a parameter depending linearly on x. Hence, this
correction is one power of k less relevant than the lead-
ing order of S(k). Although important to establish scal-
ing, it does not change the asymptotics of the structure
factor. One may therefore concentrate on (PP), whose
small-distance behavior is given by the leading terms of
the operator-product expansion (OPE)

1
p(ri)p(r2) - (5 + C r* p'(ri) + . . ),

with C the coefficient (structure constant) for P' with scal-
ing dimension x'. [Notice that for a complex field P, we
can generalize (7) by replacing $(r2) with its complex
conjugate. ] Using (5) and 8 as the amplitude of P', one
obtains

(8)

as r = ~ri —r2~ -+ 0. The second term, containing the
numerical factor CB, reHects the inHuence of the bound-
ary and its sign controls the behavior of the apparent
scaling, as will be shown in the following.

To obtain the leading correction to the scaling law in
the infinite plane (3), we observe that

d rid r2 h(r —ri + r2) G(ri, r2) (9)

inserted in (2) reproduces the structure factor in (1). If
G(ri, r2) only depends on ri —r2, the integral in (9) can
be performed without further knowledge of the integrand.
The first term of (8) fulfills this condition. By averaging
the second term over small distances in the disk, we can
estimate it by an efFective term proportional to r +
The average exponent g' must be in the range (0, 2"),

APPARENT SCALING DIMENSIONS

The behavior of the apparent scaling dimension x pp
in (4) at large momenta will now be the same as the
effective scaling dimension x at small distances, as (11)
determines the Fourier transform in this region. Notice
that (11) is only valid here and does not decay to zero
at distances of the order of the domain size. However,
as we concentrate on short distances, we can avoid such
an unphysical behavior by instead extending the domain
of integration to restore the long-distance decay. [This
also makes the connection to the plane clearer, where
the decay as r -+ oo is crucial for obtaining Eq. (3).j

We also need the relation between the boundary con-
ditions and the sign of CB. Consider for example P = o
(magnetization) in a domain with a fixed boundary, and
let the OPE coefficient C be positive (This is not a re-
striction as the combination CB is completely determined
by the correlation function and does not depend on the
choice of C.) The amplitude 8 will then measure the
enhancement of the (ferromagnetically negative) energy
density P' = e. In a square-lattice realization, a boundary
spin cr has two parallel neighbors and a third neighbor
of arbitrary orientation, consequently B ) 0. The same
argument holds for P = e and can be generalized to other
operators in domains with fixed boundaries. With P = cr

and a free boundary, one has B & 0, i.e. , the energy den-
sity decreases at the boundary. A generalization gives
the same result for other spinlike operators. For energy-
like operators and a free boundary, on the other hand, we
have the same result as for a fixed boundary. This follows
from that (PP) is the same for fixed and free boundary
conditions in this case. Thus, one can summarize both
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fixed and free boundary conditions in the following way:
(P) g 0 yields CB & 0, and (P) = 0 yields CB ( 0.

We can now draw the main conclusion of this analysis,
namely how the boundary conditions govern the apparent
scaling dimension x pp For large momenta we have that
x-pp ) x for an operator P in a domain with a boundary
condition such that (P) g 0. For (P) = 0, x» ( x.
Hence, from a simple symmetry analysis of the boundary
conditions we can predict whether x dr x~pp un er- or overes-
timates x at large momentum transfers k.

At the other eextreme, k = 0, we can directly see that
x-pp: 1. This follows from the Gaussian shape of S(k)
at small k, obtained from an expansion of (1). By con-
necting the two extremes with a smooth function x pp~PP &

t e generic types of apparent scaling are shown in Fig.

tor is nonsingular in the thermodynamic limit, and for
x = 1, it is expected to diverge logarithmically, as has
been observed for an infinite cylinder. ) The upper curve

ower curves ((P) = 0) there is a crossover to x» ( x.
Moreover, the explicit calculations of b 1x pp e ow suggest
that x~~ ( 1 gives an immediate transition to x ( x

hile for x~~ ) 1 the transition does not occur until k is
near the asymptotic regime. Here x~~ is the surface expo-
nent that controls the decay of the correlations along the
boundary. As the transition must occur for a finite value
of k, which sets the length scale at which correlations in
the domain are probed, correlations in a finite part of the
domain along the boundary are affected by the surface
exponent. Hence, the effective scaling dimension sensed

y x pp indeed generally depends on xI~. We therefore
conjecture that the above behaviors f f
and x~~ ) 1 hold for other models as well. It ' tere
to note that this is exactly the same criterion for P being
relevant or irrelevant at the surface, respectively. For the
case without a crossover ((P) g 0), one has in general
xi/ —2 ~

As for apphcations, another important boundary con-
dition is obtained by applying a random field coupling
to the order parameter at the boundary. ' For a two-

imensional adsorption system one can argue that irreg-
ularities of the boundary on scales of a few lattice sites
can be modeled this way. Due to an uneven edge, some
boundary sites may be more probable than others, cor-
responding to a local boundary field favoring th 'tg ose si es.

uc a random boundary field is irrelevant for x )
with x the s furface exponent of the order parameter for
a free boundar y. Thus we expect free-boundary predic-
tions to apply in this case. However f &

2 hor xI~
—one has

to carry out a more detailed analysis.

MULTICRITICAL ISING MODELS

have also been identified by Huse with certain multi-
critical transitions in the restricted solid-on-sohd (RSOS)
models solved exactly by Andrews, Baxter, and For-
rester in a two-dimensional subspace of the full parameter
space.

With a'atm viewed as a ferromagnetic model, the order

the
parameter p is the magnetization 0 and identifi d th

e most relevant primary operator. The second relevant
operator (energy density e) is given by the renormalized
composite field:p: defined as the leading operator in
the OPE-expansion of pp —(&pp). Higher operators are

odd or eve
similarly classified as spinlike or energylik h h Z1 e w ic are
o or even, respectively, under spin reversal (o ~ —o).

Our calculations have been performed for a disk with
fixed or free boundary conditions. The structure factor
in (1), reduced to a three-dimensional integral due to the
rotational symmetry of the disk, has been evaluated nu
merically using Gaussian quadratures and a mesh of 60
points or more. The exact spin-spin correlation func

candidates for this test. The results for the bi-, tri-, and
tetracritical Ising models with fixed and free boundary
conditions are given in Fig. 2. To provide an example
of an energylike operator, we have carried out the corre
sponding analysis for the tricritical energy density e as
well. The results for fixed and free boundary conditions
are identical and look essentially like those for the order
parameters in Fig. 2 for fixed boundary conditions. (The
exact curve is given in Fig. 7 in Ref. 3.)

These exact calculations all confirm the predictions
summarized in Fig. 1. For the spin operators, we have
for fixed boundary conditions (o) g 0 and x~~

= 2, and
for free boundary conditions (cr) = 0 and

+ —, m even,1
(12)

for m = 3, 4, ... . The condition x' & 1 follows from
x' & 1 for all models. For the tricritical energy density
(e) g 0 for both fixed and free boundary conditions and
the surface exponent x

~~

——2 in both cases. However
I 6as x = —,it is not a priori clear whether the average

exponent x' & 1. But, as we know the exact result, we
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In order to test the predictions for x pp we have
computed a number of apparent scaling relations at the

an au-GinzburgZ2-invariant ¹ ritical point of a -L d -G b
t eory. These so-called N-critical Ising models can be
mapped to the unitary series of minimal models M
m=N+1 =3 7Th $= 3, 4, ... in conformal field theory, 5 which

momentum transfer k
FIG. 1. Generic apparent scaling dimensions x pp vs mo

mentum transfer k. The solid line corresponds to (@) g 0
(x~~ = 2), while the lower curves illustrate (P) = 0. For the
short (long)-dashed curve x~~ & 1 (& 1). The dotted line
shows the bulk scaling dimension x t h hx o w ic x pp converges.
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can conclude that this must be the case, because we get
x pp ( x at large k for x' ) 1.

We conclude from (12) that the random boundary
Geld is irrelevant for all multicritical Ising models ex-
cept the bicritical one, for which it is marginal

(x~~ = z). In this case Cardy has shown that it leads
to an order-parameter profile corresponding to that of a
Gxed boundary. This suggests that the fixed-boundary
prediction applies in this case.
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We have shown how the apparent power law of a
structure factor in a bounded two-dimensional domain
at a critical point depends on the boundary conditions.
Whether the scaling dimensions are over- or underesti-
mated can be predicted from simple symmetry analyses
or the corresponding surface exponents.

To be able to compare the predictions and the calcula-
tions presented in Figs. 1 and 2 with a physical system or
a lattice model, one has to set a proper length scale. By
multiplying all lengths by B,with 2B the characteris-
tic length of a system, a comparison with the unit-radius
disk can be made, as the line shape of the structure fac-
tor is invariant under such a scale transformation if one
simultaneously rescales the momenta by B. One must
also keep in mind that the calculations have been carried
out in the continuum limit, i.e., that there is an upper
bound for the momenta of the order of an inverse lat-
tice constant a i. For a system with 2B/a = 100 sites
per length dimension, for example, this corresponds to
a normalized momentum k ( 50. Hence, the efI'ects of
apparent scaling as predicted and computed here indeed
cover the significant range of momenta. Moreover, the ef-
fects are even more pronounced at lower momenta, where
accuracy is higher for both experimental measurements
and numerical calculations.

FIG. 2. Apparent scaling dimensions x pp vs momentum
transfer k, starting at A: = 10, for the order parameters 0 of
the (a) bi-, (b) tri-, and (c) tetracritical Ising models in a disk
of unit radius. For fixed boundary conditions ((o) g 0), the
surface exponents x~~ ——2, whereas for free boundary condi-
tions ((cr) = &), x~~ = z, 2, and 3, respectively. The corre-
sponding scaling dimensions are x = —,—,and —,shown
with dotted lines.
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