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Dimensional crossover in the magnetic properties of highly anisotropic antiferromagnets.
II. Paramagnetic phase
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We calculate the magnetic properties of a spin- —antiferromagnet, described by a Heisenberg model
with anisotropic exchange coupling, for the high-temperature (paramagnetic) phase by extending our
previous calculations for the low-temperature (broken-symmetry) phase based on random-phase-
approximation (RPA) and modified RPA decouplings within the Green s-function method. We find
again that the dimensional crossover from three to two dimensions occurs at e=10,where e=J~ /J~~ is
the anisotropy ratio between the interplane and intraplane exchange couplings. We obtain the coher-
ence length for spin-deviation correlations as a function of temperature and e, and compare our results
with other theoretical treatments for the two-dimensional (@=0)limit. We find good agreement between
our calculation and neutron data on La2Cu04 ~ compounds when e-10 —10

I. INTRODUCTION

The magnetic properties of highly anisotropic magnet-
ic systems have lately become of particular interest, ow-
ing to the layered structures present in the magnetic
parent compounds of the high-temperature supercon-
ducting perovskites. In particular, La2Cu04 and
YBazCu306 have a fairly large Neel temperature (of
several hundred K) and show antiferromagnetic correla-
tions which are strongly anisotropic. ' Current estimates
of the e6'ective exchange coupling J~~ within the Cu02
planes yield an unusually large value (J~~ -0. 1 eV), while
the interplane coupling J~ is expected to be quite small.
In particular, for La2CuO4 the anisotropy ratio e= J~/J~~
is estimated to range from 10 to 10 (Ref. 1) while for
YBa2Cu306, e-10 —10 is somewhat larger (Ref. 2).
Neutron-scattering experiments' in La2Cu04 were fur-
ther interpreted in terms of an intraplane correlation
length g, that remains quite large up to temperatures of
the order 1.5 T& (with the Neel temperature Tz -200 K).

The discovery of the quasi-tuo-dimensional behavior of
these magnetic systems has prompted an extensive
theoretical work on the two-di mensional quantum
Heisenberg antiferromagnet, including renormalization-
group treatments of the nonlinear o. model, 1/N expan-
sions in the Schwinger-boson representation, modified
spin-wave treatments, ' and Green's-function random-
phase-approximation (RPA) calculations. It should be
remarked, however, that although the spin fluctuations of
the layered antiferromagnetic systems have predominant-
ly two-dimensional behavior, the interplane coupling J~,
albeit small, is responsible for driving the three-
dimensional magnetic phase transition at a large Neel
temperature.

In a previous paper (henceforth referred to as paper I)

we have discussed the properties of the antiferromagnetic
phase of these layered systems in the temperature range
0 ~ T & T& by retaining their full three-dimensional char-
acter (with J~WO and 0~ e ~ 1). To this end, we have re-
lied on free-spin-wave (FSWA), random-phase (RPA),
and modified random-phase (MRPA) treatments. We
have shown therein that estimates of the anisotropy ratio
e depend strongly on the theoretical approximation un-
derlying the interpretation of the experimental results.
We have also found that the first-nearest-neighbor instan-
taneous spin correlator increases with temperature and
reaches a finite value at T&. This correlator is to be inter-
preted as a short-range-order parameter, to be contrasted
with the sublattice magnetization that characterizes the
full long-range order. Our finding that finite-range corre-
lations are strong at high temperature ( T= Tz) is actual-
ly consistent with the experimental evidence mentioned
above. "

In this paper we extend the theoretical treatments of
paper I to the high-temperature regime (T~ Tz) while
keeping the anisotropy ratio e finite. We thus work with
the RPA and MRPA decouplings within the Green's-
function methods, thereby encompassing the approach of
Ref. 7 which was limited to the RPA with @=0.

In paper I, we have emphasized that the persistence of
intraplane spin correlations for T= T& is favored by the
quasi-two-dimensional character of the system. Similar-
ly, we shall show in the following that the values
e-10 4 —10 reported for La2Cu04 (Ref. 1) are com-
patible with a large value of the correlation length g, up
to temperatures well above T&. We shall also show that
the values of g, obtained for T) T& within the RPA and
MRPA compare extremely well with the experimental
inelastic-neutron-scattering data on La2Cu04 (Ref. 1). In
addition, our results suggest that e might vary with T by
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1 or 2 orders of magnitude (depending on the theoretical
approximation used to evaluate g, ) in the temperature
range covered by the neutron experiments. Our sugges-
tion of a softening of e with temperature is also consistent
with the reported pressure dependence of J~~ and T~, '
where e appears to vary by almost 2 orders of magnitude
from atmospheric pressure to 60 kbar.

The plan of the paper is the following. In Sec. II, we
briefly recall the RPA and MRPA decouplings within a
Green's-function treatment of the spin correlators, and
present the results of the calculation of the correlation
length g, for T) T~ and arbitrary anisotropy 0(e(1.
In Sec. III we analyze the pressure experiments, and dis-
cuss their consequences in the context of the present
work. In Sec. IV, we eventually discuss our results in
connection with other theoretical calculations and experi-
mental findings.

where coo=2(s& )J~~(z~~+ezi) and A, =h /coo. In these
expressions, z~~ is the number of first-nearest-neighbor
sites within each plane and zz the number of first-
nearest-neighbor sites on adjacent planes.

The self-consistency condition for (S„) is now given
by

(2.5)

with

1, ~0

n(q)
coth —Q(q) —1

2
(2.6)

N being the number of atomic unit cells, P=(k&T)
and with the understanding that the primed sum extends
over the antiferromagnetic Brillouin zone. In Eq. (2.6)

II. MODEL HAMILTONIAN AND METHOD
OF CALCULATION

A. RPA solution

0 (q) =coo—co,(q)

where co, (q) is given by

(2.7)

The spin Hamiltonian we consider is the same as in pa-
per I, namely, the anisotropic nearest-neighbor Heisen-
berg model for spin- —,

' operators S; at site i:

H Jll + S; S;+~ +Ji + S; s+
]

(2.1)

where A~~ and b, ~ are the lattice constants in the basal
plane and along the tetragonal symmetry axis, respective-
ly.

Since we want to describe spin correlations above Tz
where there is no long-range order, we follow Ref. 7 and
add to H the interaction of the spin system with a ficti-
tious external staggered magnetic field:

~i(q) =2(s~ )J„[z„yi(q)+ eziyi(q) ] (2.8)

with y (q) and yi(q) defined below. Notice that, for
finite h, Q(q) has a finite limit as q~O.

We now consider the limit h —+0. In the ordered anti-
ferromagnetic phase ( T (T~), (S~ )WO and A, =O when
h" 0. In the paramagnetic phase (T) Tz), on the oth-
er hand, A, tends to a finite limit as h —+0, since
(Sz ) —+0 correspondingly. In this limit, we can approxi-
mate cothx —1/x in Eq. (2.6). The self-consistency con-
dition (2.5) then becomes an equation for the parameter A,

for given e and T:

oH= —g h;ts (2.2) 2, 1+k
(1+X)'—y,(q)'

T(MF)
N

T
(2.9)

with h,. =h exp[ —iQ R;]. The wave vector Q has the
property

1 if R; is in the up ( 2) sublattice,

exp[ —iQ R, ]= —1 if R, is in the

down (B) sublattice.

The field h; then produces an antiferroma~netic ordering
above Tz, which disappears as soon as h ~0, and with
the average z component of spins (S ) pointing in the
direction of h; at each site i.

As in paper I, we consider the dynamic transverse
spin-correlation function

with the notation

z(~~y(((q)+ eziyi(q)

zii +uzi

zj

(2.10)

( 7 ) = ( T.[s,'( r )s,
-

( 0 ) ] ) (2.3)

where ~ is the Matsubara imaginary time, T denotes the
time-ordering operator, and ( . ) stands for thermal
average. Within the RPA, the equation of motion for the
Fourier transform of y+ [cf. Eq. (2.6) of paper I] is sim-
ply obtained from Eq. (2.9) of paper I by replacing

(2.4)

and where kiiTP" =J~~(z~~+ezi)/2 is the critical tem-
perature at the mean-field level. The above equations ex-
tend those obtained in Ref. 7 for the isotropic two-
dimensional antiferromagnet. Notice that for A, ~O, Eq.
(2.9) determines the critical temperature T& ' within
the RPA. Notice also that, for a given e, A. grows mono-
tonically with T for T T&, and is asymptotically linear
ln Tas T~~.
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B. Calculation of g, ( e, T ) in RPA

We consider now the asymptotic form of the instan-
taneous spin correlator, which can be obtained from the
correlation function g+ . In the paramagnetic phase,
one obtains, in the limit h ~0,

iq. (R,. —R. )

(S+S )= ~QR, T I+A, +, e
T' "' N (1+A, ) —y,(q)

(2.11)
The dominant contribution to Eq. (2.11) for
IR; —RJ I

—+ ~ comes from the neighborhood of q=0, so
we can write

/Q. R T1V k~~ ki( 1 + A, )
2 ~ 2 2 2 2

7T'
(2.12)

where Jo(z) is the Bessel function of zero order, A~~ and Ai are cutoff parameters, R
l
= IR, —RJ I

for i and j belonging to
the same basal plane, and where we have set 2 =zl /(zl+ ezra ) and B =ezi/(zl+ ezra ). Introducing at this point new in-
tegration variables /=& A /2q~~ A~~ and g=&8 qihi, Eq. (2.12) becomes

T(MF)
(s+s-)e'

1 J T
&a S,A,

2
d+( I+A, )

—I+/
2(1+X) 1 ii Vo(

tan '
V'(1+X)' —1+g'

In the two extreme cases where the argument of tan ' is either (a) very large or (b) very small, one gets
' 1/2

+ )
'Q R TP 2(1+~)

T gi/g &8 b, A E (R~~/g, ) (b),

(2.13)

(2.14)

where in both cases

1

+(I+A, )
—1

(2.15)

C. Calculation of g, (e, T ) in MRPA

According to paper I, the MRPA replaces the (spin- —,')
operator S by its alternative expression Icf. Eq. (2.25) of
paper I],

S'=
1 (

—
—,'+s,+s,-)+ (-,' —s,-s,+),

(2.16)

and takes for the parameter a the value a=2(S ). The
resulting approximation entails the coupling of longitudi-
nal to transverse fluctuations. MRPA further decouples
higher-order correlators which involve four spin opera-
tors and which result from the replacement (2.16). The

and Ko(z) is the modified Bessel function of order 0 that
for large z behaves as

Ko(z) —&rr/2z e

One thus obtains the same exponential decay of the spin
correlator in both limits (a) and (b), and may therefore
identify g, given by Eq. (2.15) as the correlation length for
all values of T and e. Notice that case (b) corresponds to
the two-dimensional limit since B vanishes in that limit.
The resulting correlation length then coincides with that
found in Ref. 7 for the strictly two-dimensional case."

MPRA decoupling thus has the effect of relating in a
self-consistent way the long-range-order parameter (S,')
to the short-range instantaneous correlator (S;+&S; )
(where in the anisotropic case 6 can be either b,

~~

or b,i).
As in paper I we denote

(2.17)

In the paramagnetic phase ( T) Tz ), we can follow the
same procedure used above for the RPA and introduce a
staggered external field h, In place of Eq. (2.6) we now
obtain

1 ~, ( I+A, )co(0)
h I3 ~( )

N , II(q) 2

where

Q(q) =2(S& )J(q),

(2.18)

(2.19a)

J(q) =J~~ziy~~(q)(i+2IF~~ I)+Jizi) i(q)(1+2IF, I ),

Q(q) = )/ (1+X) co(0) —co(q)~,

while the correlators FII and F~ are given by

(2.19b)

(2.19c)

Fl i —2(S~ )—+ )'ll, i q) — o" fi q
1, co(q) /3—

(2.20)

Equations (2. 18)—(2.20), which define the MRPA decou-
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pling for T ~ TN, are identical to those introduced in pa-
per I for T ~ TN but for the replacement
co(0)~(1+X)co(0), where X=ht/co(0). In the paramag-
netic phase (S'„) vanishes when h ~0 while X, remains
finite in the limit.

The parameter A, can be self-consistently determined in
the limit h ~~0 via the equation

2, (1+X)
N, (1+X)'—[J(q)/J(0)]'

J(0)
2kB T

(2.21)

for given e and T. This equation generalizes to the
MRPA Eq. (2.9) that holds for the RPA. In particular,
for the two-dimensional case (e=0) Eq. (2.21) reduces to

(2.22)
2kB T

2, ( I+X)
( I+X, ) —

y~~(q)

which coincides with Eq. (39) of Ref. 7 when one sets
F =0 (and when a different definition of

J~~~
in the Hamil-

tonian is taken into account). Accordingly, for tempera-
tures, T « TzD"' =

J~~z~~ /2k~ (that correspond to X && I)
one gets a generalization of Eq. (29) of Ref. 7, in the form

~(1+2 F~, I

)T2™D"'
A2D =—8exP '

T
(2.23)

c 1

2+Y.
(2.24)

Combining Eqs. (2.23) and (2.24) yields the analytic result

g, 1 m(1+ 2IFll I ) T2D"'
(2.25)

in the two-dimensional limit, which implies that g, gets
enhanced in the MRPA with respect to the RPA by tak-
ing explicit account of the short-range spin correlations.

Previous calculations, although based on different
methods, have all arrived at the following form for the
two-dimensional coherence length:

(2.26)
BT B

where B is a numerical coef5cient, c the spin-wave veloci-
ty, and p, the spin-stiffness constant. In particular, Eq.
(2.26) has been obtained in Ref. 3 by including one-loop
corrections within the nonlinear o. model. Inclusion of
two-loop corrections in Ref. 3, however, leads to cancel-
lation of the 1/T prefactor

T

( T~0)= C exp .(2D) 2&ps
(2.27)

By the same token, the instantaneeus spin correlator
(S;+S ) is given in the MRPA by a similar expression
to Eq. (2.11) with T~ "' replaced by J(0)/2k~ and y,(q)
replaced by J(q)/J(0). In particular, in the two-
dimensional limit (e « 1) we obtain the same relation be-
tween g, /b,

~~

and X, as that derived in the RPA from Eq.
(2.15) for small e and A, , namely,

(2.27), ' and yield typically the values C/b,
~~

=—0.27 and

p, -=0.4JI~ which provide a good fit of the experimental
data on La2CuO~ (Ref. 1) via Eq. (2.27).

The RPA counterpart of Eq. (2.25) (i.e., with F~~ =0)
yields instead the values 0.177 for the constant prefactor
C/h~~ and 0.5J~~ for the spin-stiffness constant, respective-
ly. This remarkable similarity between the RPA and
more elaborate treatments in two dimensions (e=O) was
already stressed in Ref. 7. As regards the MRPA result
(2.25), on the other hand, there are no changes from the
general form (2.27); the short-range-order correction in
the exponential of Eq. (2.25), however, worsens the quan-
titative comparison with quantum Monte Carlo simula-
tions»nce 1+21F„~1.

We shall anyhow postpone the comparison of the RPA
and MRPA results for g, with the data of Ref. 1 to Sec.
IV, where numerical results will be presented for the
more realistic case of a nonvanishing anisotropy ratio
(e) 0).

III. PRESSURE DEPENDENCE
OF THE ANISOTROPY RATIO e

Recent experiments have explored the pressure depen-
dence of the antiferromagnetic properties of La2Cu04
samples. We shall consider specifically two different sets
of experiments, ' in which the pressure dependence of
J~~ and TN was, respectively, measured. This will enable
us to deduce the pressure dependence of J~, assuming
that @=10 is a reasonable estimate of the anisotropy
ratio at atmospheric pressure.

We begin by rewriting Eq. (2.22) of paper I, where the
e dependence of TN is approximately obtained in the ana-
lytic form

T(RPA)
B N

B+ ln1/e
(3.1)

t(P) t(P) (3.2)

where e(0) stands for the value of e at atmospheric pres-
sure and with the notation

(P)=J~~(P)/J~~(0),

t(P)=T (P)IT„(0) .
(3.3)

3 and B being numerical constants. [Although expres-
sion (3.1) holds also within the MRPA, for the sake of
definiteness we shall consider in this section only the
RPA values for A and B.] We assume at this point that
it is possible to account for the pressure dependence of
the magnetic properties of La2Cu04 with a Heisenberg
model whereby the pressure acts only to modify JII, E,
and T&. This implies that we consider Eq. (3.1) to hold
at any given pressure by inserting the proper pressure-
dependent values of J~~(P), e(P), and T&(P).

A simple manipulation of Eq. (3.1) yields then for the
pressure dependence of e

Quantum Monte Carlo simulations confirm the result The measured values of the ratios e(P) and t(P) have
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been reported in Refs. 9 and 10, respectively, for
La2Cu04 samples. In particular, e (P) is found to follow
approximately the linear trend

[4D( T)~~(( 1'

T(MF)
(T)—=

8 N

(3.10)

e (P)= 1+1.39 X 10 P(kbar) (3.4)

for P &60 kbar, while t(P) follows the more marked
linear trend

t (P)= 1+8.2 X 10 P(kbar ) (3.5)

for P ~ 15 kbar. ' Thus, for P = 15 kbar we obtain
e (P) It (P) —=0.91 and for P =60 kbar we obtain
e(P)/t(P)=—0.72 (if we make the further reasonable as-
surnption that the linear pressure dependence of TN can
be extrapolated up to 60 kbar). Equation (3.2) yields then
the values 3.7X10 and 5.8X10 for e(P) at the two
pressures, in the order. Notice that the variation of e(P)
is strongly nonlinear, and that e turns out to vary by al-
most 2 orders of magnitude from atmospheric pressure to
60 kbar. From Eqs. (3.2) and (3.3) we can finally evaluate
the ratio

Ji(P) e(p)
Ji(0) e(0)

=e(P) (3.6)

Ji&2D( &iv ) =1 (3.7)

where yzD( T) is the temperature-dependent two-
dimensional staggered static susceptibility. Equation
(3.7) has the meaning of an instability condition for the
intraplane coupling of two-dimensional magnetic
domains and depends crucially on the form one assumes
for the function yzD(T). Thio et al. approximate for
T «T~™1(=2J~~ Ik~ in the two-dimensional case)

which takes the values 3.8 and 63 for P =15 kbar and
P=60 kbar, respectively. This result would imply that
J~ is extraordinarily sensitive to pressure, increasing by
almost two orders of magnitude in 60 kbar.

This gigantic pressure effect on J~ was already noticed
in Ref. 9, although by relying on a law for the depen-
dence of T& on e different from Eq. (3.1). It is
worthwhile to comment brieAy on this difference. Ac-
cording to Thio et al. , the condition which determines
TN in terms of J~ is given by

instead of Eq. (3.8). The RPA approach thus replaces the
actual T~ on the right-hand side of Eq. (3.9) by its much
larger mean-field value T~~

"' (when @ && 1), with the net
effect of somewhat reducing the pressure dependence of
Jq.

The strong pressure dependence of the anisotropy ratio
e discussed here for La2Cu04, although it may look rath-
er surprising, is indeed consistent with the marked tem-
perature dependence of e which we shall discuss in the
next section by comparing our calculation of g, (e, T)
with inelastic-neutron-scattering data on the same ma-
terial.

IV. DISCUSSION OF THE NUMERICAL RESULTS
AND CONCLUSIONS

We have shown in Sec. II how the correlation length g,
can be obtained within the RPA in terms of the parame-
ter 1+X defined by the integral equation (2.9) [and within
the MRPA in terms of the analogous parameter 1+1,
defined by Eq. (2.21)]. We have also remarked that, for
given e, 1+X~1 at the critical temperature TN while
I+A, —= T/T~~™) for T ))Tz "'. [Recall that
kiiT& "'=DJl, where D =(z~~+ezi)/2 can be regarded
as an e+ectiue dimensionality of the system for 0& e & 1,
which interpolates between three (e = 1 and D = 3) and
two dimensions (a=0 and D =2).] In the paramagnetic
phase we are considering in this paper, TN and TN

"' act
thus as the low- and the high-temperature scales, respec-
tively.

Numerical results for the parameter 1+k given by Eq.
(2.9) within the RPA are shown in Figs. 1 —3 as a function

3.0

2.0

[kD(»~~~~]
Xzn( T) -=

B
(3.8)

which reduces Eq. (3.7) to the form
2

kD(T~)
J~

II

(3.9)

This is the dependence of T~ on e (apart from a
coefficient of order unity) which was used in Ref. 9 to es-
timate the pressure effect on Jz.

It can be readily shown that the RPA result (3.1) can
also be cast in the form (3.7) (again apart from numerical
coefficients of order unity), but with the replacement of
the RPA dependence of yzD on T when T«TN "',
namely,

t ~t r

0.0 ~
0.0 1.0 2.0 3 0 4.0 5.0 6.0

FIG. 1. The parameter 1+A, calculated within the RPA vs

k&T/Jll for (a) @=10 ' and (b) @=1. Dashed lines represent
the respective asymptotes for T))T~ "' and arrows locate the
Neel temperature T~ in the two cases. 1+1, is defined by Eq.
(2.9) of the text.
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1.8

1.4

1.0
1.0 2.0

/T,
3.0

FIG. 2. The parameter 1+A, calculated within the RPA vs
T/T~ for (a) g = 1, (b) g = 10 ', (c) g = 10, (d) e= 10,and (e)
a=10 4.

1.8

of T and e (similar results are obtained within the
MRPA, but they are not reported). In particular, in Fig.
1 the parameter 1+k is plotted versus the reduced tem-
perature kz T/Jll for two different values of e, showing
that 1+1, reaches its asymptotic value for large T only
rather slowly. It is further instructive to plot 1+A, versus
the rescaled temperature T/Tz, which is possible in our
case since T& can be expressed in terms of Jll and e only
[cf. Eq. (3.1)]. Figure 2 shows that, at any given value of
T/T&, A, can be made arbitrarily small by decreasing the
value of e. According to Eq. (2.15), this result implies
that g, /b,

l
can be quite large even for temperatures well

above T~ whenever e is sufficiently small (i.e., in the
quasi two di-men-sional case). This is consistent with the
experimental finding, as discussed below in more detail.
Finally, in Fig. 3 the parameter 1+A, is plotted versus e
for two characteristic temperatures. Notice that 1+A,
essentially saturates at its two-dimensional value when
e= 10, a value that thus characterizes the crossover
from three to two dimensions for an anisotropic Heisen-
berg system also in the paramagnetic phase. We recall in

this context that one of the main results of paper I was
just that most properties of the anisotropic Heisenberg
antiferromagnet saturate at e= 10 as e decreases from
1 to 0, the only exception to this rule being the Neel tem-
perature which has to vanish in the limit t ~0.

Once the parameter 1+A, has been calculated, the
correlation length g, can be obtained from Eq. (2.15)
within the RPA (and from a similar expression within the
MRPA). Figures 4 and 5 show the RPA and MRPA re-
sults for g„ in the order, versus the rescaled temperature
T/T& for three different values of e all verging on the
two-dimensional side. The experimental results for
LazCu04 from Ref. 1 are also shown for comparison, to-
gether with the strictly two-dimensional results versus
the rescaled temperature T/T~ which is associated with
the corresponding value of e [cf. Eq. (2.25) and the simi-
lar expression within the RPA]. Accordingly, the two-
dimensional curves for different e are mutually displaced
since the horizontal scale varies with e. In Figs. 4 and 5
the experimental results for g, are plotted versus the re-
scaled temperature T/Tg t" (for the particular sample re-
ported Tn"~'=195 K). Notice that fits to the experimen-
tal data obtained in Ref. 13 via Eq. (2.27) are strictly two
dimensional, that is for a=0, and require adjusting Jll as
a fitting parameter. In other words, looked at from the
present approach, those fits require two parameters,
namely, Jt and J~~. Our results for g, versus T /Tz con-
tain instead only one parameter, namely, e, which has the
advantage of being the (dimensionless) ratio of the two
coupling constants of the model and of determining the
universality class of the system. Notice further that, as
T/Tz increases, g, (e, T) converges to g', '(T) with a
crossover temperature that depends on e and on the ap-
proximation.

From the comparison of our results with the experi-
mental values of g, /A~~ shown in Figs. 4 and 5 we may
conclude the following.

(i) There is reasonable agreement between the experi-
mental values and our calculations for a giuen Value of e
(within both RPA and MRPA) if we assume that
6- 10 -10

10

14

1.2

1.0
0.0 1.0 2.0 3.0 4.0

lc)

FIG. 3. The parameter 1+A, calculated within the RPA vs

log&o1/e for (a) k& T/Jll 3'0 and (b) k& T Jll 2.5.

lOL~
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

FIG. 4. Correlation length g, in units of A~~ calculated within
the RPA vs T/T~ for (a) e=10, (b) e= 10 ', and (c) e= 10
Dashed lines are the corresponding two-dimensional results as
explained in the text.



DIMENSIONAL CROSSOVER IN THE. . . . II. 963

10

il 10

0.5

0.4

0.3

0.2

0.1
I I I E

10 L

10 12 14 16 18 20 22 24 26 2S 30

FIG. 5. Same as in Fig. 4 within the MRPA.

(ii) The agreement is best in an intermediate range of
the rescaled temperature T /T&, say for 1.4
~ T/T~ ~2.4.

(iii) For small values of T/T& (or, equivalently, for
large values of g, /A~~) the theoretical values for g, are
larger than the experimental ones. This may be due to
physical limitations affecting g„originating, for instance,
from crystal grain boundaries or other defects.

(iv) For large values of T/T~ (or small g, /b~~) we un-
avoidably expect discrepancies between our results and
the experimental values of g„owing to the approximate
method we have used in Sec. II to calculate the asymptot-
ic behavior of the instantaneous spin correlator.

(v) A better agreement between our calculation and
the experimental results is obtained if one assumes that,
beginning at T/T& —= 1.4, e starts decreasing with increas-
ing T up to T/T&——-2.4 according to the MRPA. As al-
ready noted, the main physical difference between both
approximations is a better treatment of the transverse
and longitudinal fluctuations in the MRPA as compared
to the RPA. Since, upon changing from RPA to MRPA
the required variation of e decreases by 1 order of magni-
tude, one could perhaps assume that the exact theoretical
calculation of g, would yield a good fit with a fixed e.
Our suspicion that this might not be the case is based
upon the large variation of e with pressure which seems
to be implied by experiments under hydrostatic pressure.
It looks physically reasonable on this basis that this
softening of e with increasing temperature is correlated
with the hardening of e with increasing pressure dis-
cussed in Sec. III.

These conclusions call for a further analysis of the ac-
tual mechanism responsible for the interplane effective
exchange coupling and of its dependence on thermo-
dynamic variables like T and I'.

We conclude this section by commenting on the rela-
tionship between the RPA and MRPA approaches
through the temperature dependence of the first-nearest-
neighbor instantaneous spin correlators F~~ and FL. It is
expected that these approaches coincide when T/T& is
sufficiently large, owing to the decrease of ~F~~ ~

and ~F„~
as T grows, which quenches the corrections to the RPA
introduced by the MRPA. Figure 6 shows that indeed
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FIG. 6. First-nearest-neighbor instantaneous spin correlators
within the MRPA vs k~ T!Jl for e= lo '. (a) IF~~ I

and (b) IF&I
(the horizontal scale is the same for both curves). Arrows locate
the value of T&.

the interplane short-range-order parameter ~Fi~ drops
abruptly as T increases above T&, while the intraplane
short-range-order parameter ~Fl ~

decreases instead fairly
slowly. This result indicates that the convergence of the
MRPA to the RPA will actually be effective only at tem-
peratures substantially larger than T&, as it depends on
the vanishing of both correlators F~~ and F~. The results
shown in Fig. 6 are also quite interesting by themselves
because they clearly demonstrate that only intraplane spin
correlations persist for T ~ TN when E~ 10, thus favor-
ing the persistence of two-dimensional localized excita-
tions at high temperature. In this context, it is worth
noticing the remarkable resemblance between the experi-
mental data reported in Ref. 15 (and, specifically, the top
part of Fig. 2 therein) with our Fig. 6(a) over the whole
temperature range covered by our calculation (a resem-
blance that we have already noticed in paper I but for
T ~ T~).
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