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Spectrum of 180 Bloch-type domain-wall excitations in yttrium iron garnet
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The spectrum of excitations of a 180' domain wall in a cubic crystal with light uniaxial anisotropy
is studied. Numerically, we have found high-frequency branches. The low-frequency (Goldstone)
branch of excitations has a square-root long-wavelength singularity in almost all directions of the
wave vector. For this branch our asymptotic long-wave expansion gives the angular dependence of
the singular contribution.

I. INTRODUCTION

Here we present results of our numerical and analytical
study of the excitation spectrum of a 180 domain wall in
yttrium iron garnets (YIG). Samples that are made from
YIG are widely used in experiments since they have ex-
tremely low dissipation of spin waves and a high Curie
temperature. The effective anisotropy of YIG is quite
small and therefore the dipole-dipole interaction becomes
very important. There is a theory that describes the dy-
namics of a domain wall in an external magnetic field if
the anisotropy of a sample is strong enough (or if the
so-called quality parameter Q &) 1). A straightforward
extrapolation of the results of that theory to the case of
small anisotropy is obviously inconsistent and leads to
disagreement with experimental data; in particular, the
experimentally found group velocity of excitations prop-
agating along the domain wall proved to be unexpect-
edly high. YIG have a complicated crystal structure and
the theory that has been recently developed for uniax-
ial anisotropy requires modification. Moreover, due to
this structure new branches of the excitation spectrum
do appear. Any nonlinear model that claims to describe
the dynamics of domain walls should have a correct lin-
ear limit, i.e. , demonstrate the true dispersion law corre-
sponding to the excitation spectrum of a domain wall.

II. FORMULATION OF THE PROBLEM

The real crystallomagnetic structure of yttrium iron
garnets is extremely complicated. ' In a typical experi-
mental situation one can approximate it by a cubic crys-
tal with a negative magnetocrystalline anisotropy coeK-
cient and with the easy directions that lie along one of
the cube diagonals. The uniaxial anisotropy could be due
to other reasons like mechanical stress or the geometry
of the sample and magnetostriction.

Thus we shall study the Landau-Lifshitz model with
cubic and uniaxial anisotropy in the magnetostatic ap-
proximation:

1 bH—M = M x, div(H+ 4m. M) = 0, curlH = 0,bM'

where M is the magnetization vector, 8 is the magnetic
field, and p is the gyromagnetic ratio. Here the Hamil-
tonian

II = (h,„+h + hd d)dv

corresponds to the exchange, anisotropy, and dipole-
dipole interactions:

h(7 4 (Mi M2 + M2 M3 + M3 Mi
S

(M. n)'l
12 ( M2 ) '

1
hg g= ——(M H)
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where M, is the saturation magnetization (M = M, ),
o. is the exchange constant, Kz is the cubic anisotropy
constant, and the constant w characterizes the uniaxial
anisotropy along the unit vector n. More accurate ac-
counting of the magnetoelastic interaction slightly modi-
ffes coefficients in h [see Refs. (5—7)] but does not affect
the following consideration much.

Let n = (1, 1, 1)/~3 and the normal vector to the
Bloch-type domain wall is assumed to be parallel to
[0, 1, 1]. It is convenient to make an orthogonal change of
coordinates and a rescaling to introduce the unit length
vector field S, S = 1 instead of M:

2 1
Mg ——M, — Sg + S3

6 3 )
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S, — S, + S. ~,6 2 3
P; that means that

a —+ 1, b-+ QP/o. , cm 0. (3)

(1
S, + S, + S,

I

6 2 3 )
[in new coordinates the vector n = (0, 0, 1)). The
anisotropy contribution in the Hamiltonian in the new
variables is

[3S + 4Ss + 4~2S~ Ss + 6S~ Sz
Ki

—12~2SgSz Ss + 7.(1 —Ss)].

The form of the other contributions is obvious.
An exact solution of Eqs. (1) that depends on one

spatial coordinate y and corresponds to the Bloch-type
domain wall has been found by Lilley. In terms of S and
8 it can be rewritten as

1 A(by)

( gl + A(by)' gl + A(by)' )
where

In this limit solution (2) turns into the well-known Bloch
solution of the uniaxial model.

To study small excitations of the domain wall we lin-
earize Eqs. (1) near the exact solution (2). Thus we
represent S and H in the form

S = S +s, ~s~ && 1, H = M.divg.

I inearizing S = 1, we get (S s) = 0, therefore the
three-component vector field s can be parametrized by
two functions. Than we separate variables assuming that
s and P are plane waves with wave vector r = (K, r, )
and frequency 0 and introduce dimensionless variables:

s = Ss C (() cos(r x + r, z —At),
s„=4(() sin(r. x+ r.,z —At),

—s, = S,4(() cos(It x + r, z —At),

P = 2nb f (() sin(r x + r, z —At),

2po.620= ~, v. =gbsin6, r, =gbcos6, y= —.
S

g~'+ gra= )8+ 7.
~%~(8+ ~)

Functions C and @ characterize the deviation of S in the
plain of the domain wall and across it, respectively. In
these variables the linearized equations have the form

A(by) = asinh(by) + c.

For small r the 180 domain wall (2) (see Fig. 1) is a
combination of two domain walls of 71 and 109
separated by a distance of about

3n

( 4a )

DgC = (u4' —rIT((, 6)f,
Dz@ = ~4+ f',

f"—ri'f = —[@'+rIT((, 6)C.],

where

(8+ 7')~Kq~ cos6 —sin@A(()
24~M.'

and the difI'erential operators D~ and D2 are of the form

A pure uniaxial anisotropy model can be obtained from
the above as a limit when 7 M ooq ~Ky

~

M 0, r~Ky ~/12 +

d
$/2

g(2

( z 6(az + cz —1) —2 —6cA(()
1+ +(

16cA(() —8(az + cz —1) )
(1 + &(&)')'

( z 2(az+ cz —1) —2+ 6cAQ)
1+ &(&)'

6cA(() —3(az + c' —1) l
(1 + &(&)')' )~

—1
—6.6 —2.2 0.0 2.2 6.6

FIG. 1. Typical shape of a Bloch-type domain wall
(Sz ——0) corresponding to solution (2) with r = 3.8 x 10
One can see 109 and 79' subdomains.

Now the problem of finding the excitation spectrum of
the domain wall can be formulated in the following way:
in three-dimensional space with coordinates (ri, 6, tu) one
has to And a set of points such that the system of equa-
tions (5) possesses a solution vanishing with ( ~ +oo.
This set is nothing but the dispersion law of the linear
excitations of the domain wall. It depends on the param-
eters Q and r.

The excitation spectrum of a domain wall represents
a set of sheets located within a band forbidden for space
volume spin waves:
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( (1+ q ) [1 + q + (sin 6) /Q]. for small g and w, are of the form

In the case of the uniaxial anisotropy, the spectrum is
invariant (see Ref. 3) with respect to the complete re-
Aection where

exp(kg p(), exp(+(), exp (+(/ ~Q),

(5)

and the reBection with respect to the x axis r
0 ~ O. In the case under considera-

tion we obviously have (5) but there is no last symmetry
which exists in the uniaxial case due to an extra symme-
try of the domain wall. There is no mathematical reason
to expect invariance of the spectrum with respect to the
usual spatial re8ection r ~ —r, 0 —+ O.

III. LONG-WAVELENGTH ASYMPTOTE
OF THE-LOW FREQUENCY BRANCH

The method that we use here is rather similar to the
one that we have developed for the case of the uniax-
ial anisotropy. But the problem under consideration is
much more complicated and we have to assume Q (( 1
to obtain the main contribution in the long-wavelength
asymptote of the low-frequency branch of the spectrum.

If the q = 0 system of equations (4) has an exact solu-
tion,

Ap cosh(()
(d =0) Co 1+A(()2 ' 4o =0, fo ——0,

Q+ sin6
Q+1

Like the uniaxial case here we are looking for the asymp-
totic expansion of the vector eigenfunction (4, @) and
eigenvalue w of the form

ld = ~gKi + l7LO2 '+ 0('g),

C = 4p + g@i + o(g),
4 = ~q@, + qc, + o(q),

(8)

Gt.g
—q'G = 8(( —(),

one can formally solve the last equation in system (4):

4(&)

Ql + &(C)2

where 4i, 4i, and 42 are supposed to be exponentially
vanishing if ( —+ +oo. In order to determine this expan-
sion we move to the eigenvalue problem for an integral-
differential operator. Using the Green function

which corresponds to the "shift" mode. If ( goes to Woo
all of the coefficients of Eqs. (4) become constant and any
solution turns into a superposition of exponents which,

I

Now it follows from (4) that

Dgc = ~4+ vl

2
e "~ ~ [T((,6)4(() —sgn(( —()4(()]d(,

e-Pi~-~i [sgn(( —()T((,6)4(() —4 (()]d(

Substituting expansion {8) in (10) and (ll) and equat-
ing terms at each power of g, we obtain an approximate
anzatz for 4i, 4i, and 42. Namely,

where

1 1
D242 = —4'2 + (u2@p + I2,

2Q

/1+ A(()'
&(&)

V'1+ &(()'

(12)
2 cos 8AO

1
2 sin BAi

1+p 1+@

where Ai and B2 do not depend on ( and @i, 4'i, and
@2 are functions vanishing at ( ~ oo as e i~i. Now it
follows from {8) and (10)—(13) that

2 cos @Ape(() 2 sin 8Ap

o, /1 + +(()2 o +1 + Q (()2
(18)

1
Di@, = ~i%, + T((, 6)Ii,

2
1

D2C& ———C & + ~&C»,

(14)

(15)

There are two contributions in (14) and (16), namely,
a slow decaying part with exponential rate exp( —qp, [(~)
and a fast decaying one which vanishes as exp( —(). Col-
lecting the coeKcients of the slow exponents we get the
following linear equations:
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FIG. 2. The excitation spectrum for 6 = +m/2. Curves
1—4 correspond to di8'erent branches and 5 is the bottom of
the space volume spin @rave zone.

sin(tl) / cos(8) sin(tI) 1Ag- Ao — Ag+ B2 = 0,
Q ( a 1+p 1+@ )

FlG. 4. The excitation spectrum for 8 = 0, vr.

Now to determine wq we consider the solvability condition
of (14). Let us multiply Eq. (14) on 4o and integrate the
result over ( from —oo to oo. The left-hand side vanishes
because the operator D~ is self-adjoint and D&4o ——0.
The right-hand side gives us the equation for w~

1 i 1 cos(8)Ao1+ — B2 +— (2o) Q~, Ao ) Q"J„=
n=O

cosh(() T((, tl)
1+4(()

for coeKcients A~ and B2. Their solution gives where

sin 8 cos 8 cos 6
a(1+ Q)& a(1+ Q)

(21)
cosh(() cosh(()

1+A(() 1+ A(()2

In the uniaxial case we have succeeded in solving the fast
decaying part of equations corresponding to (14) and (15)
exactly and found wq for any Q. In the present case we
have not managed to find the solution in a closed form,
but if Q is small enough we can present the solution 4'q

in the form of a series

cosh(()
@g ———Q~gAp ) (QD2)"

n=0

or even restrict ourselves with the first term only:

4y = —QcugAp + O(Q ).cosh(()
1+A

It follows from (17) and (21) that

2AoQ cos t9

ag(1+ Q)[Q+ (sinter)2]

The last integral in (23) can be easily evaluated and fi-
nally the right-hand side of (23) takes the form

2Ao(cos tl) 2

a2Q(l + Q)[Q+ (sin&)']
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FIG. 3. The excitation spectrum for 8 = m/4, 5vr/4.

FIG. 5. Angular dependence of the frequency in the Gold-
stone branch 1. The solid line corresponds to (24), blocks are
numerical results. Here Q = 3.4 x 10, 7. = 3.84 x 10
g = 10
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FIG. 6. The bend Goldstone mode (branch I, 8 = s'/2).
On the upper part s2 and s3 are eigenfunctions corresponding
to deviations of vector S . On the bottom part: Two opposite
phases of oscillation of S3.

FIG. 8. The Gilinskii mode (branch 3, 6 = m/2).

IV. DISCUSSION OF NUMERICAL RESULTS

On the left-hand side of (23) each integration can be, in
principle, evaluated in elementary functions. For small
Q we shall keep the first term

cosll(()
jI + [a sinh(() + c]s)2

1
Jo ——[I + c tan '(c)] + O(I) if a m 0.

Thus for Q (( I and any 8 we have

v 2~ cos 8~
rI , , +Otl.

aQ / [Q+ (sin8) ]i/ J (24)

The result obtained perfectly matches with the one for
the uniaxial case (see Ref. 3) if Q ~ 0 and 7 -+ oo.

This quadrature can be evaluated in elementary functions
but we have not found a compact form for the result. If
a is small (as in the case of yttrium iron garnets) one can
expand Jo.

We have been studying the spectrum of excitations
numerically for the parameters Q = 3.4 x 10 2 and
7. = 3.8 x 10 that experimentalists usually use to de-
scribe the yttrium iron garnet. In the most interesting
long-wavelength region we have found four branches of
the spectrum (see Fig. 2). We remind the reader that
in the case of uniaxial anisotropy there are two branches
only, namely, the low-frequency branch and the Gilinskii
branch.

The low-frequency branch corresponds to a bend Gold-
stone mode (see Figs. 2—4, branch I). Due to the dipole-
dipole interaction it has a square root singularity at
q —+ 0 in all directions (except for tl = +sr/2 where it
has linear behavior). Our asymptotical result (24) per-
fectly coincides with the computer simulation at small g
(see Fig. 5). In particular, this means that the group ve-
locity vg, ——grad„u becomes very high at low values of g
(and can in principle violate the applicability of the mag-
netostatic approximation). In the real experiments an
anomalously high velocity of propagation of pulses along
a domain wall in the direction 6 = 0 has been observed.
Eigenfunctions 82 and 83, corresponding to the deviation
of the vector S in this mode are shown in Fig. 6. Two
difFerent phases of oscillation of the component S3 are
shown in the bottom part of Fig. 6.
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FIG. 7. The width oscillating mode (branch 2, 8 = 7r/2). FIG. 9. New mode (branch 4, 8 = s /2).



9574 A. V. MIKHAILOV AND I. A. SHIMOKHIN

Branch 2 in Figs. 2—4 has a gap and corresponds to
oscillatjons of the width of a domain wall. In Fig. 7 one
can see that the 109 and 79 subdomains are moving in
opposite phases. This mode resembles the one that exists
in the simple mechanical model of two weakly interact-
ing strings. It does not exist in uniaxial ferromagnets.
There was an attempt to find the gap of the spectrum at
g = 0 theoretically. Unfortunately the result obtained
is not in good agreement with our computer simulation.
Our analysis has shown that the theoretical construc-
tion in Ref. 10 had been based on a wrong assumption.
Namely, the author has neglected the contribution of the
fast exponents exp( —~(~/~Q) that become important for
the finite gap modes (contrary to the Goldstone one).
Our computed eigenfunction does not fit the assumption
which had been made in Ref. 10.

Branch 3 exists if 0 ( 6 ( vr. It corresponds to the
Gilinskii branch in the uniaxial case. ' Gilinskii had

found it at 8 = z/2, the angular dependency has been
recently described in Ref. 12. Here we do not see a big
difFerence with the uniaxial case. One can imagine the
oscillations with the help of Fig. 8.

Branch 4 exists in a narrow region of angles 6 vr/2
when the spin wave gap is high enough. It seems that this
branch has been unknown. In Fig. 9 the eigenfunctions
and deformations of the domain wall at difI'erent phases
of oscillation are shown.
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