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Phase diagram of the S = — quantum spin chain with bond alternation
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We study the ground-state properties of the bond-alternating S = 1/2 quantum spin chain whose
Hamiltonian is H = P.(S2 S2 +i + S2.S2.+i + AS2~S2~+i) + P P. S2i i S2~ . When P = 0,

the ground state is a collection of local singlets with a finite excitation gap. In the limit of strong
ferromagnetic coupling P ~ —oo, this is equivalent to the S = 1 XXZ Hamiltonian. It has several
ground-state phases in the A-P plane including the Haldane phase which has a finite excitation
gap above the ground state. They are characterized by a full breakdown, partial breakdowns, and a
nonbreakdown of the hidden discrete Z2 x Z2 symmetry. The ground-state phase diagram is obtained
by series expansions.

I. INTRODUCTION

We study the ground-state properties of an S = 1/2
alternating spin chain with the Hamiltonian

) (~2~ 2 +1+ 2 2'+1+ 2 2 +i)

+P) S2s i S2, ,

where S~ = (S,S",S') are S = 1/2 spin operators. This
model has two exchange couplings 1 and P alternately.
When P = 1 and A = 1, it is the spherically symmetric
S = 1/2 Heisenberg model which is solvable by the Bethe
ansatz. When P = 0, the ground state is composed of
local singlets that are formed by spins on sites 2j and
2j + 1. In the limit of strong ferromagnetic coupling
P ~ —oo, spins on sites 2j—1 and 2j form a local triplet.
The first order degenerate perturbation in 1/P from this
limit gives the S = 1 spin chain with the Hamiltonian

H =' = ) (S; S, , + S,"S,",+ AS; S;. ,), (1.2)

where S, , S,".
, and S, are S = 1 spin operators at site

i. When A = 1, the Hamiltonian (1.2) is the Heisenberg
antiferromagnetic chain with S = 1.

In 1983 Haldane conj ectured that there are quali-
tative difFerences between integer and half-integer spin
quantum antiferromagnetic chains based on the large-S
expansion. While there is no excitation gap when S is a
half-integer, he argued that the Heisenberg Hamiltonian
has a unique disordered ground state with a 6nite exci-
tation gap when the spin S is an integer. These claims
have been confirmed by experimental, numerical, and
analytical studies at least for the S = 1 case. The el-
ementary excitations and the temperature dependence
of the Haldane phase are investigated using the de-
fect approach. Although the ground state is disordered
in the sense that the usual spin-spin correlation func-
tion decays exponentially, it has turned out that the
ground state has a nontrivial hidden order. den Nijs and

Rommelse argued that the Haldane phase is character-
ized by the hidden antiferromagnetic order based on the
analogy of the preroughning transition. It is measured
by the string order parameter. Kennedy and Tasaki
introduced a nonlocal unitary transformation which re-
veals the relation between the hidden antiferromagnetic
order and the hidden discrete Z2 x Z2 symmetry break-
ing. The hidden Z2 x Z2 symmetry is completely broken
in the Haldane phase. This is confirmed numerically.
Extensions to higher integer S cases were discussed by
several authors.

The S = 1/2 spin chains with bond alternation have
been investigated by several groups. Recently Hida
studied an S = 1/2 Heisenberg chain with alternating fer-
romagnetic and antiferromagnetic couplings. Its Hamil-
tonian is (1.1) with A = 1. Hida considered a string
order parameter for S = 1/2 which leads to the den Nijs-
Rommelse string order parameter in the P —+ —oo limit.
He concluded numerically that the gap and the string
order parameter for P = 0 remain nonvanishing in the
P —+ —oo limit. It suggests that the S = 1/2 spin chains
with disordered ground state are characterized by the
string order parameters, and that for A = 1 there is no
phase transition between P = 0 (S = 1/2 local singlet-
triplet gap) and P = —oo (S = 1 Haldane gap); thus they
belong to the same phase.

There are studies on the S = 1/2 spin chains with
bond alternation using other types of nonlocal uni-
tary transformation. ' In particular, Kohmoto and
Tasaki studied the Hamiltonian (1.1) by the nonlocal
unitary transformation used in the work of the Ashkin-
Teller model by Kohmoto, den Nijs, and Kadanoff.
They found that this transformation plays a role of the
Kennedy- Tasaki unitary transformation for the S = 1
chain, although they are distinct. The nonlocal unitary
transformation maps the S = 1/2 alternating chain to
an S = 1/2 quantum spin system which is similar to
the highly anisotropic version (one-dimensional quantum
system) of the two-dimensional Ashkin-Teller model. It
also maps the string order parameters of the original
chain to the ferromagnetic "local" order parameters in
the transformed system. They argued for a correspon-
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dence between the breaking of the Z~ x Z2 symmetry
in the transformed system and the hidden antiferromag-
netic order in the original system. In the transformed
system, they showed that the region including the decou-
pled model (P = 0) and the S = 1 chain is characterized
by a full breakdown of the Z2 x Z2 symmetry. The Neel
ordered phase (in terms of S = 1) is characterized by a
partial breakdown. They also proposed a ground-state
phase diagram.

The unitary transformation maps the quantum spin
chain with bond alternation into the Ashkin-Teller type
quantum spin system on a pair of chains. The spin chains
are similar to the Ashkin- Teller quantum chain. The lat-
ter model is obtained by a highly anisotropic limit of
the two-dimensional Ashkin-Teller model. ' The two-
dimensional Ashkin-Teller model consists of two Ising
models on a square lattice coupled by a four-spin in-
teraction. In the time-continuum Hamiltonian formal-
ism, a two-dimensional classical system is reduced to a
one-dimensional quantum system by taking the extreme
lattice anisotropic limit. The transfer-matrix method is
used to convert a statistical mechanics problem at a 6.—

nite temperature in two dimensions into a ground-state
problem for a one-dimensional quantum Hamiltonian.
In this formalism, the ground-state energy of a quan-
tum system is the free energy of the corresponding two-
dimensional classical system. The excitation gap in the
quantum system corresponds to the inverse of the corre-
lation length of the classical system. If there is no exci-
tation gap in the quantum system, the classical system
is critical. Namely, phase boundaries of the ground-state
phase diagram of a one-dimensional quantum system cor-
respond to critical points of the two-dimensional classi-
cal spin system. Thus we shall use the concepts of the
critical phenomena (universality, critical indices, etc.) in
order to discuss the ground-state phase diagram of the
one-dimensional quantum system even in the parameter
region where a corresponding two-dimensional classical
system does not exist.

The purpose of the present paper is to determine the
phase diagram of the Hamiltonian (1.1) quantitatively
by a series expansion technique. Some limiting cases
are considered analytically. The critical lines and crit-
ical indices are evaluated from the Pade method. The
obtained phase diagram shows a rich structure. It con-
tains the Haldane phase which has a finite excitation gap
above the ground state, the Neel phases, and the XY-like
gapless phase. It also has a critical line with continuously
varying critical indices.

II. DISORDER OPERATORS AND THE Z, x Z,
SYMMETRY BREAKINC S

We shall perform series expansions in terms of P. The
unperturbed system [(1.1) with P = 0] has a ground state
which is a collection of uncorrelated local singlets. It is
disordered in the sense that the expectation values of lo-
cal order parameters vanish and series expansions cannot
be applied to these quantities. Thus we consider the dis-
order operators which are nonzero in disordered phases
and zero in an ordered phase. We choose the disorder
operators

(~) ( ( 2k 2k+1 + 2k 2k+1) )
k&~

2k 2k+1 + 2k 2k+1)
k&~

(2.1)

and

&'(&) =
I 4 I

k&j
( —4S2kS2k+1 ) (2.2)

to characterize the ground states of the Hamiltonian
(1.1), where S are the S = 1/2 spin operators.

We describe the derivation of the above disorder oper-
ators and their relations to the hidden Z2 x Z2 symmetry.
The nonlocal unitary transformation reveals the Z2 x Z2
symmetry of the Hamiltonian (1.1). This transforma-
tion is exactly the same as that used by Kohmoto, den
Nijs, and KadanoK, which maps the staggered XXZ
model into the Ashkin- Teller quantum chain. Applying
this transformation to the Hamiltonian (1.1), we get

H= —) (cr, +r, +ho., r, )

p ) (~x O'+1 + ~x r'+1 + ~i ~x+1rx ra+1) ~ (2.3)

o, +~,.
2

(2.4)

02 ——o-, 7 (2.5)

The disorder operators which are dual to these order
operators are

Dg(i) = ~k+~k
)

I 2
k&i

(2.6)

D2(i) =
k&i

(2.7)

respectively. These disorder operators have nonzero ex-
pectation values in disordered phases. Applying the in-
verse of the above transformation to the disorder opera-
tors (2.6) and (2.7), we get the disorder operators (2.1)
and (2.2) of the Hamiltonian (1.1).

A nonzero expectation value of one of the disorder op-
erators corresponds to a spontaneous breaking of a Z2
symmetry. The ground-state phases are characterized
by a full breaking, partial breakings, and nonbreakings
of the Z2 x Z2 symmetry. Thus the ground-state phase
diagram can be obtained from analysis of the disorder
operators (2.1) and (2.2).

where o, and r, (o. = x, y, and z) are different kinds of
Pauli matrices at site i. For details, see Appendix 8 of
Ref. 21.

This Hamiltonian has symmetries of the dihedral group
of order 4 which includes several Z2 symmetries. There
are many varieties of order parameters to measure the
spontaneous symmetry breaking of these symmetries. We
choose the following order operators:
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The disorder operators (2.1) and (2.2) are related to
the string order parameters of den Nijs and Rommelse,
and Hida. It is expected that they have the same critical
properties.

III. PHASE DIAGRAM

Before going into the detailed analysis, we summarize
our results by showing the obtained phase diagram in
Fig. 1. This phase diagram has seven phases and eight
critical lines.

(1) The Haldane phase (A). It is characterized by
( D ) g 0 (n = xy or z).

(2) The S = 1 Neel phase (B) which is characterized
by ( D' ) g 0 and ( D " ) = 0. This region continuously
connects to the Neel phase of the S = 1 Hamiltonian
(1.2).

(3) The XY-like gapless phase (C) where ( D ) (n =
zy and z) vanishes. The correlation function decays alge-
braically in the entire region and the critical indices vary
continuously.

(4) The ferromagnetic phase (D).
(5) The disordered phase (E) in which the ground state

is a disordered dimer state with ( D ) =0 (o, = xy and
z).

(6) The S = 1/2 Neel ordered phase (F). This phase is

characterized by ( D' ) g 0 and ( D " ) = 0.
(7) The Neel ordered phase (G) where spins on sites

2j and 2j + 1 prefer to align parallel and those on sites
2j —1 and 2j prefer to align antiparallel.

These phases are separated by the following critical
lines.

(1) Line 1 is expected to be in the Gaussian model
universality class. Critical indices vary continuously on
this line for —1 ( A ( 1. This critical line is expected to
bifurcate at A = 1.2

(2) Line 2 and line 3 are expected to be in the Ising
model universality class. Line 2 approaches the line P = 2
for large A. Line 3 approaches the line P = 2A for large
A.

(3) Line 4 is the phase boundary between the Haldane
phase and the Neel phase (in terms of the S = 1 model)
and belongs to the Ising model universality class.

(4) Line 5 is the phase boundary between the XY-like
gapless phase and the Haldane phase, and is expected
to be in the universality class of the Kosterlitz-Thouless
transition.

(5) Line 6 (A = —1, P ( 0) is the phase boundary be-
tween the XY-like phase and the ferromagnetic phase,
and is expected to be in the universality class of the
potassium dihydrogen phosphate (KDP) model. so

(6) The Hamiltonian (1.1) is solvable on line P = 0.
The ground state is degenerate on line 7. Thus, line 7 is
a critical line.

(7) Line 8 belongs to the Ising model universality class
and approaches the line P = ——A, for large IAI.

3 G
0--

7

~ e~ ~ ~

l( .x---
e '

r a~ ~r & il
~ R

2

A

4 ~col

A. Limiting cases

In this subsection we discuss the phase diagram in sev-
eral limits. Some of the critical lines are obtained by the
duality.

Limit A &) LPL ~1

Since the term with A dominates, we can restrict our-
selves to the space spanned by

D
t

I

L

- 1 0 1 2 3 4

l(~~)) = (3 I ~. )»,»+i

where the state ln~)»»+i is defined by

I~g =&)»,»+i =
I t)»l 4)2~+i

l~~ =&)»,z'+i =
I &)»I t)»+i.

(3.1)

(3.2)

FIG. 1. Phase diagram of the alternating quantum spin
chain with the Hamiltonian (1.1). Estimates of critical points
by a series analysis are shown with error bars. For those
without an error bar, the error is smaller than the size of
the plotted point. (~ ) data points from series analysis, (S)
solvable point, ( ) line of continuously varying criticality,
( . . . . .) lines of Ising transition, (——) line of Kosterlitz-
Thouless transition, (—. —) line of KDP transition, and
(———) P = 0 critical line.

1 - - 1II = —) o,* ——P ) o-,'a, +, , (3.3)

where a,. are the Pauli matrices which operate on

Here,
I g)~. and

I $)z are eigenstates of S. with eigen-
values +1/2 and —1/2, respectively. We treat the other
parts of the Hamiltonian by the degenerate perturbation
theory within the space spanned by (3.1). The first order
perturbation gives the effective Hamiltonian
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In; )2; 2;+z. This is the highly anisotropic version of the
two-dimensional Ising model. This Hamiltonian has the
property

define the operator v,' by w,
' = o; w; . Using this notation,

the Hamiltonian (3.7) becomes

(3.4)

under the dual transformation

(3.5)

For P ( 0, this d.uality of the Ising model tells us that
P = —2 is the critical line. Thus the critical line between
the Haldane phase and Neel phase approaches P = —2
as A becomes large. Above this line (phase A in Fig. 1),
the Z2 x Z2 symmetry are fully broken. Below this line
(phase B in Fig. 1), the ground state breaks half of the
Z2 x Z2 symmetry. Critical properties corresponding to
a partial breakdown of Z2 x Z2 symmetry are considered
as the Ising model universality class. Thus line 4 belongs
to the Ising model universality class.

For P ) 0, we apply a transformation S2~ -+ —S2~,
S2. ~ —S2, and Sz~ ~ Sz~ only for spins on the22

2j sites. Then we get the same duality relation as (3.4)
except for the sign of P. It implies that P = 2 is a self-
dual line for the effective Hamiltonian. Thus line 2 which
approaches P = 2 as A becomes large belongs to the Ising
model universality class.

2. Lim, it P, A ))2

The Hamiltonian is approximated by

(3.6)

H = —A) o.;r,.

P ) (a, a,+i + r,'r, +, + o, a,+ir,'r,'+i) (3.7)

We map the space spanned by the eigenstates of 0; and
~, to that spanned by the eigenstates of 0; w, and w,'. We

When A is suKciently large, the A coupling dominates in
the Hamiltonian (3.6) and spins on sites 2j and 2j + 1
must form a state

I g) 2~ I $)2~+q or
I $) 2~ I g) 2~+q. In

these bases, spins on sites 2j —1 and 2j favor the states
I g) ~~. q I $)2z or

I $)2~ q
I g&2~, due to the antiferromag-

netic coupling P. Therefore, the ground state is given
eithe»y S,(I &)2i I &)~i+~) «S, (I &)2i I &&2i+~). It is
a doubly degenerate Neel ordered state. The energy per
site is —A —sP. On the other hand, spins on sites 2j —1
and 2j favor forming a singlet for P )) A. The ground
state is given by an array of them. It is disordered and
the energy is ——P.

To investigate the phase boundary between these
phases, we map the Hamiltonian (3.6) into the model
without bond alternation. Applying the nonlocal unitary
transformation (see Sec. II) to the Hamiltonian (3.6), we
get

I
see (2.3)]

H = —A) r; —2P) (3.10)

apart from a trivial additive constant. The effective
Hamiltonian (3.10) is the Ising model in a transverse
magnetic field. Therefore, the boundary of the phases
is A = 2P in this limit (line 3 in Fig. 1). Note that
the phase transition for w spins is across the critical line
3. Since the Hamiltonian (3.7) is symmetric with respect
to 7 spins and o. spins, cr spins have the same behav-
ior as r spins. Therefore, the order parameter (2.4) has
a nonzero expectation value in phase E. The disorder
operator whose series has a singularity on line 3 is D'.
Below this line (phase F in Fig. 1), the system is ordered
in terms of S = 1/2 Neel order and is characterized by
( D' ) P 0 and ( D " ) = 0. Thus the ground state breaks
half of the Z2 x Z2 symmetry. Above this line (phase E
in Fig. 1), the system is disordered and is characterized
by ( D ) = 0 (n = xy and z). The Z2 x Z2 symmetry is
fully restored. Line 3 belongs to the Ising model univer-
sality class, since the Z2 symmetry is broken across this
line.

8. Limit P, IAI (A ( 0) ))1

Similar to the previous subsection, the Hamiltonian of
this regime is

II = —IAI) s;,s;,+, +P) s„,. s„. (3.11)

In the case of large IA, spins on sites 2j and 2j + 1
prefer to form a state $)2~I g)2~~q or

I
1.)2~I $)2z+q.

Spins on sites 2j —1 and 2j favor the state
I g) 2~

$)2~+q or
I $) 2~ I g) 2~~q, since the coupling P

is antiferromagnetic. Therefore, the ground state
is given by S, ( I t)4. I T)4j+& I &)4.+2 I &)4~+. ) and

S, ( I &&42 I &&42+~ I &)42+2 I &)42+s ) Th e ergy «
this state is ——IAI —I~P per site. For P )) IAI, spins
on sites 2j —1 and 2j favor a singlet state. The ground
state is given by a collection of local singlets with en-
ergy —sP. In this case, the phase boundary is the line
A = —2P (line 8 in Fig. 1). Below this line (phase G in

(3.9)

In this Hamiltonian, the coupling of 7;. is negative, since
1 + 7; 7;.'+l is always positive. Thus w spins appear as
the one-dimensional Ising model with the ferromagnetic
coupling. In the ground state, w spins are completely
ordered ferromagnetically. We can replace the operator
r r.+~ by. its expectation value (r r + ~ ) = 1 . Thus we
have
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Fig. 1), the system breaks half of the Z2 x Z2 symmetry.
Thus the transition across this line belongs to the Ising
model universality class.

Line P =0

has degeneracy due to the rotational symmetry at A =
—1. On the other hand, for A ( —1, the ground state
is twofold degenerate. Therefore, the phase boundary
between the XY-like and the ferromagnetic phases is A =
—1 in this limit.

We have the simplest situation. The Hamiltonian is
written

) ( 2jS2j+1 + 2j 2j+1 + 2j 2j+1) (3.12)

It is a collection of independent two-spin systems.
For A ) —1, the ground state is given by

S,( ~2 (I t) 2j I 4&2j+1 I &) 2z I &)2j+1)) with an ~~~~gy

+8 per site. For A ( —1, the ground state of an in-
dependent two-spin system is given by

I t&2jl $&2j+1 or

I $&2jl $&2j+1. Therefore, the ground state of the total
system is 2 ~ -fold degenerate, where M is the number
of sites. Therefore, this is a critical line. The energy is

s per site.

IV. SERIES EXPANSION

We will make a series expansion in terms of P and ob-
tain a series of the "specific heat, " the "magnetization, "
and the "susceptibility" to estimate critical points and
critical indices.

A. Outline of the method

It is necessary to have a long series to extract reli-
able estimates of the critical points and critical indices.
We use the linked cluster expansion method proposed by
Kadanoff and Kohmoto. It is suited to calculate high
order terms efFectively.

Hamiltonian (1.1) is written

5'. Ferromagnetic phase P (0, A ( —1 H =T+PV, (4 1)

In this region, the Hamiltonian is written

H —) (S2 S2,.+, + S2 S2,.+, —IAIS2, S2 +1)

—IPI).S2 (3.13)

where

) ~( 2j 2j+1 + 2j 2j+1 + AS2jS2 '+1)

and

V=) S2, 1.S2, .
2

(4 2)

(4 3)

The ground state is given by
I t) 2j I t) 2j+1 or

S, I &&2j I &)2j+1 with the energy —'"'s
Line 6 is expected to be a critical line in the universal-

ity class of the KDP transition, since the system is in
the perfectly ferromagnetic ordered state in the A ( —1
side and is in the XY-like gapless phase in the A ) —1
side.

8. Limit P m —oo

In the P ~ —oo limit, the S = 1j2 Hamiltonian (1.1) is
equivalent to the S = 1 XXZ Hamiltonian (1.2). It has
the Neel, the Haldane, the XY-like, and the ferromag-
netic phases depending on the parameter A. We denote
Ai for the boundary between the Neel and the Haldane
phases, A2 for that between the Haldane and the XY-like
phases, and A3 for the XY-like and the ferromagnetic
phases.

The phase boundary between the Neel and the Haldane
phases is estimated to be A~ 1.2 numerically. ' The
critical line 4 is expected to approach A = Aq. The
boundary between the Haldane and the XY-like phase
is estimated A2 0 numerically. ' The XY-like phase
boundary which starts from the point (A, P) = (—1,0)
approaches A = A2.

For A = —1, the S = 1 X'XZ Hamiltonian (1.2) can
be mapped to the ferromagnetic Heisenberg model by
the rotation in the spin space for the 2j sites, Sz —+

S2j ~ S2j ~
and S2i ~ S2j ' The ground state

We shall perform series expansions with respect to P.
The unperturbed states are

1(~j) ) = (3l~j)2j, 2.+1 (4.4)

where Icrj&2j 2j+1 is one of four eigenstates of the op-
S2jS2j+1 + S2j S2j+1 + AS2jS2j+1' IS)2j,2j+1

~2 (I t&2j I ~)2j+1 I ~) 2j I &&2j+1)~ IT+1)2j,2j+1

l&2j+1) ITo&2j,2j+1 = ~~(l t&2j I &&2i+1

+
I $)2jl $)2j+1), and IT 1&2~ 2j+1 ——

I $&2~I $&2j+1. For
A ) —1, the unperturbed ground state is

I
G) = (3 Is) 2j, 2j+, . (4.5)

Z(A, P) = ) Zi"~(A)P" .
n=0

The "specific heat" is obtained by

(4.6)

0
C(A, P) = E(A, P) . (4.7)

We use the disorder operators defined per site,

(4.S)

The ground-state energy is expanded in a power series as
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where o. = xy and z, and M is the number of sites. To
calculate a series for the "magnetization" of the opera-
tors, we simply add a magnetic field,

.25

H = T+ PV+ h'D (4.9)
~ 15

Ising value

The ground-state energy in the presence of h, is calculated
in a power series of P and h as

*
~ ~ ~

Eg..p, h. ) = ) ) El"-l(~)p"h,-
n=o m=0

(4.10)
.05— predicted value from the

extended scaling relations
The expectation value of the "magnetization" is given by

BE(A; P, h)
Bh

h=o
(4»)

FIG. 2. Critical index P „as a function of A on lines 1
and 2.

and the "susceptibility" is

B(27 ) BzE(A;P, 6)
Oh 662

h=o
(4.12)

E(A, P) const
B2 P

C

(4.13)

BE(A; P, h)
Bh,

P. —Pconst '
(P —+ P,), (4.14)

B E(A;P, h)
862

h=o

P. —Pconst (P ~ P.),

(4.15)

where j is xy and z.

B. Result from series analysis

We use the Pade method to estimate critical points P,
and critical indices. The definitions of the critical indices
are as follows:

show good convergence. We estimate critical points from
the series for ('D ") (Fig. 1). In Figs. 2 and 3, critical
indices P~'s (j = xy and z) are shown. Results for p~'s

(j = xy and z) and n are shown in Figs. 4, 5, and 6,
respectively. In this region, critical indices P~ s (j = xy
and z) vary continuously, and seem to be divergent near
A = —1. The critical index P, agrees well with the result
by Hida obtained numerically. Critical indices p~'s (j
= xy and z) and cr are also varying continuously. The
critical index p „also seems to be divergent near A = —1.
However, we cannot determine critical indices accurately
close to A = —1 due to poor convergence. In the case of
the Ashkin-Teller quantum chain or the staggered XXZ
model, there is the "critical fan" in a finite region of the
parameter space —1 ( A ( —~. The "critical fan"

is a region where a line of continuously varying critical-
ity "fans out" and becomes an area of critical behav-
ior. In that case, critical indices show divergence near
A = ——on the self-dual line of the Ashkin- Teller quan-

tum chain. In the present model, there is no sign of a
"critical fan" within this analysis, since critical points
show good convergence and critical indices do not show

The quantities calculated by series expansions were (1)
the "specific heat" (13 terms), (2) the "magnetization"
(15 terms), and (3) the "susceptibility" (13 terms). Crit-
ical points and critical indices are evaluated by the Dlog
Pade method. The estimates for the quantities are ob-
tained by averaging the three or four highest-order di-
agonal elements and near-diagonal elements of the Pade
tables. Error bars are then set to include these three or
four values.

~ 4

1. Region P )0
For the region —1 ( A ( 1, the Haldane phase is char-

acterized by (D ) g 0 (n = xy and z). The disordered
phase (E) is characterized by ('D ) = 0 (cr = xy and z).
Thus the phase boundary (line 1) between these phases is
determined from the series for 27 (cr = xy and z). Crit-
ical points obtained from the series for ('D ") and ('D')

predicted ljalue from the
extended scaling relations

— 5

FIG. 3. Critical index P, as a function of A on line 1.
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Ising ualue

.8

.6

I I I I I

predicted ualue from the
* M extended scaling relations

.4-

predicted value from the
extended scaling relations

I

4

~ 2 Ising value

l- ——4 ——4—
4 5

FIG. 4. Critical index p „as a function of A on lines 1
and 2. 2.

FIG. 6. Critical index n as a function of A on lines 1 and

o = 0.55 6 0.01 (- = 0.666. . .), (4.i6)

P~ = 0.08202 + 0.00008 (—= 0.0833. . .), (4.17)

p~ = 1.23 + 0.02 ( —= 1.166. . .) . (4.i8)

1.5

z 1

predicted ualue from the
extended scaling relations

divergence. However, we cannot discuss the existence of
the "critical fan" near A = —1 for poor convergence of
critical indices.

For P = 1, A = 1, the model is solvable by the Bethe
ansatz. We can map it to the six-vertex model at this
point. The extended scaling relations predict critical in-
dices o. , P~'s, and p~'s (j = xy and z), with the help of the
standard scaling relations. These indices have been ob-
tained from mappings between the six-vertex model and
the Gaussian model. ' The equivalent mapping is that
between the XXZ model and the Tomonaga-Luttinger
model. The estimated values of the critical point from
the series analysis are P, = 1.003 + 0.002 (from a series
for the "specific heat"), P, = 1.00168 + 0.00004 (from a
series for (17 ")), and P, = 0.99782 + 0.00009 (from a se-
ries for (17 "17 ")). The critical indices n, P~'s, and p~'s

(j = zy and z) are

The values in parentheses are the expected values from
the mappings.

Next we consider the region A ) 1. The Haldane phase
is characterized by (17 ) g 0 (o. = xy and z). The S =
I/2 Neel phase (F) is characterized by (17 ") = 0 and
(17') g 0. Thus the phase boundary (line 2) between
these phases is determined from the series for 'V &. In
phase E, both (D") a'nd (17 ) vanish. Therefore, the
phase boundary (line 3) is determined from the series for
P . These results are shown in Fig. 1. Line 2 and line 3
belong to the Ising model universality class (see Sec. III).
Thus critical indices a. , P „,and p „must be 0, N~, and 4,
respectively, on line 2. Critical indices o. , P„and p, must
be 0, 8, and 4, respectively, on line 3. The series analysis
shows that line 2 approaches the line P, = 2, which is
consistent with the result in Sec. III. For A ) 1, the
critical index P „agrees well with that of the Ising model,
8. The critical index p „also agrees well with that of the
Ising model, 4. Near A = 1 they do not agree with the
Ising values. We regard this as a numerical efFect. The
critical index o. does not agree well with the Ising value
o. = 0 as A becomes large. In the series analysis for ('D'),
there is a pole near line 2. We choose the second pole
to determine the critical points and critical indices for
line 3 as shown in Fig. 1. The operator D has nonzero
expectation value in phase A and in phase F. We regard
the first pole as unphysical consequences, since the series
for 0 has no singularity on line 2. The series analysis
shows that line 3 approaches the line P = —A. This is
consistent with the result in Sec. III. However, their
convergence is poor. Critical indices n, P, and p, are
not included here for poor convergence. Critical indices
P, estimated from series analysis are P =—0.03—0.1 for
A = 2—5. They do not agree well with the Ising values.
The critical index p, does not converge. We think that
these are due to the first pole near line 2 and the large
value of

5 .5 2. Region P (0

FIG. 5. Critical index p as a function of A on line 1.
Let us consider the region A ) 0. The S = 1 Neel phase

(B) is characterized by (D") = 0 and '('D') g 0. Thus
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1.5—

Z 2

~ 5 ~
Ising ualue

Qggg
f I I

3 4 5 —.8 —4 —.2

FIG. 7. Critical index P „as a function of A on lines 4

and 5.
FIG. 9. Critical index P, as a function of A on line 5.

the phase boundary (line 4) between the Haldane and
the S = 1 Neel phases is determined from the series for
B ". The best estimates are obtained from the series for
('D ") as shown in Fig. 1. line 4 belongs to the Ising model
universality class (see Sec. III). Therefore, critical indices
are expected to take the Ising values throughout line 4.
In the limit P ~ —oo, line 4 is expected to approach
the Neel-Haldane transition point Ai of the S = 1 XXZ
model. The critical points and critical indices obtained)
from the series for (17 ") are well convergent for A 2.5,

and stable for 2 A 2.5. However, they are unstable

for A 2. No pole was found in every highest-order

element of the Pade tables for 0 ( A 1.2 except for
those with a small residue (( 10 s). Note that if we

investigate the behavior of Pade tables carefully, they
show a high unstableness near A 1.8. Thus, for the

region 1.2 A 1.8, we regard the critical points as
poor convergence of the Pade approximation. For large
A, the critical line approaches the line P, = —2, which is
consistent with the result in Sec. III. The critical index

P „ is well convergent to that of the Ising model, — (see
Fig. 7). The result for p „ is shown in Fig. 8. It shows a

good agreement with the Ising value 4. Convergence of
critical indices becomes poor around A = 2. This is due
to the large value of P, .

Next we focus on the region —1 & A ( 0. In the XY-
like phase, both (17 ") and (17') vanish. Thus the phase
boundary (line 5) between the Haldane and the A Y'-like

phases is determined from the series for 'D (n = xy
and z). We choose the operator 17' to determine line
5, since critical points obtained from it converge better.
The critical points and indices are stable near the point
(A, P) = (—1, 0). The convergence of them becomes poor
when A approaches 0, and it is diFicult to determine the
critical points and critical indices. Continuously varying
critical exponents are observed for P „and P, along this
line, which are shown in Fig. 7 and Fig. 9, respectively.
Critical indices n and p~ s (j = 2;y and z) are not included
here for poor convergence. These values estimated from
series analysis are o. = 2.2 + 1.1, p „=3.4 + 2.6, and

= 3.1+2.6 at A = —0.8. Line 5 is expected to be in the
universality class of the Kosterlitz-Thouless transition.
However, we cannot evaluate the critical index g for poor
convergence of critical indices p~. s (j = 2;y and z).

V. SUMMARY ANI3 DISCUSSION

Ising uaiue

FIG. 8. Critical index p „as a function of A on line 4.

We studied the ground-state properties of the S = 1/2
quantum spin chain with bond alternation. This model
is equivalent to the S = 1 antiferromagnetic XXZ model
in the strong ferromagnetic coupling limit. We focused
on the disorder operators. These operators are also ob-
tained from the disorder operators of the Ashkin-Teller
quantum chain by using the nonlocal unitary transfor-
mation. The "magnetization" of these nonlocal opera-
tors measures a similar quantity that is observed by the
string order parameters which is extended by Hida for
the S = 1/2 quantum spin chains.

The ground-state phase diagram is obtained by series
expansions. Critical points are consistent with the phase
diagram conjectured by Kohmoto and Tasaki and de-
termined numerically by Hida. In the narrow region) —1, P 0, it can be proved rigorously that the
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ground state in the infinite volume limit is unique, all
the truncated correlation functions decay exponentially,
and there is a Gnite excitation gap. ' The present study
strongly suggests that this region covers a wide area sur-
rounded by lines 1, 2, 4, and 5 in Fig. 1. The results of
critical indices show that the phase transition between
the Haldane phase and the Neel phase (line 4 in Fig. I)
belongs to the Ising model universality class. The Ising-
like critical properties originate from the partial break-
down of the Z2 x Z2 symmetry in this case. This supports
that the hidden Z2 x Z2 symmetry breaking is to be a cri-
terion to distinguish the Haldane gap system. Although

the nonlocal unitary transformation discussed here is not
exactly the same as that used by Kohmoto and Tasaki,
the disorder operators have the same critical properties
as theirs. This result also supports the proposal by Hida
that the Haldane phase which is characterized by the
string order parameter belongs to the same phase as that
of the decoupled 8 = I/O chain.
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