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Order by disorder in the classical Heisenberg kagome antiferromagnet
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Antiferromagnetic ordering on a kagome net is frustrated by the geometry of the lattice. The infinite
number of classical ground states suggests that the system might not order at zero temperature, even for
Heisenberg spins. However, high-temperature series expansions and earlier simulations indicate that
this degeneracy is resolved by thermal Auctuations (i.e., order by disorder), suggesting a nine-sublattice
coplanar Neel-like ordering of the spins. Coplanar nematic, random three-state Potts, and Neel order-
ings for the Heisenberg kagome lattice antiferromagnet are investigated with Monte Carlo simulations
coupled with state-of-the-art histogram methods for data analysis. We see strong evidence for thermal
selection of long-range order with the spin correlations exhibiting algebraic decay, but the low-

temperature phases are also seen to posses a chiral domain structure and very short-range chiral correla-
tions. It is argued that the spin correlations are, surprisingly, rather insensitive to this lack of chiral or-
der. Our results are consistent with T =0 being a critical point for this model system.

I. INTRODUCTION

Frustration in periodic spin systems is known to result
in a number of diverse phenomena such as noncollinear'
and helical Neel-like ordering (i.e., sublattice ordering)
as well as more subtle types of ordering such as nematic
order ' where the spins select a single axis or plane in
spin space and orient themselves randomly within that
submanifold. It has long been known that frustration due
to lattice geometry in some Ising systems can result in
infinite ground-state degeneracy and no long-range order
at any temperature, the most famous example being the
two-dimensiona1 triangular-lattice antiferromagnet, for
which the statistical mechanics was solved exactly by
Wannier. For vector spins (XY or Heisenberg) on a tri-
angular lattice, the frustration is somewhat relieved and a
noncollinear state forms with neighboring spins making
angles of 120'. The fcc Ising antiferromagnet also has
infinite ground-state degeneracy, but in this case thermal
fluctuations select a long-range-ordered state at nonzero
temperature. This process of thermal fluctuations
resolving a degeneracy is known as ordering by disorder.

Even since Anderson proposed his resonating-valence-
bond (RVB) theory of high-temperature superconductivi-
ty, there has been intense interest in finding spin models
and magnetic materials which exhibit spin-liquid
behavior. Of these, the best studied are the S=

2
J

&

-Jp
square-lattice antiferromagnet and the S=

—,
' triangular-

lattice antiferromagnet. ' It is still not clear" whether
the ground state of the triangular-lattice system is Neel-
like with a large moment reduction' or spin-liquid-like
with no sub1attice order. ' Other likely candidates for
spin-liquid behavior are frustrated lattice models with
highly degenerate classical ground states such as the
kagome- and pyrochlore-lattice antiferromagnets.

The kagome lattice is a two-dimensional lattice of
corner-sharing triangles (Fig. 1) and the pyrochlore lat-
tice is a three-dimensional network of corner-sharing
tetrahedra and is a natural three-dimensional (3D) analog
of the kagome lattice. Mean-field theory for these sys-
tems' predicts no long-range order, and both systems
have infinite ground-state degeneracy' ' for Heisenberg
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FIG. 1. Nine unit cells of the kagome lattice showing (a) the
q=0 and (b) the &3X&3 Neel-like ground states. The dashed
ellipses indicate possible spin rotations for each ground state
that cost zero energy.
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spins. The question remains as to whether the order-by-
disorder mechanism will be effective in these systems.
Even if thermal fluctuations select a subset of the
ground-state manifold at low temperature, it is still not
clear that this subset is restrictive enough to result in
long-range Neel order. Of course, long-range order,
which breaks a continuous symmetry, will only occur in
the T~O limit' for a 2D 1attice model. Then the ques-
tion of long-range order translates to the question, which
of the infinitely many types of ground states has the larg-
est Boltzmann weight or probability in the limit T~O?
In general, the ground states with large Boltzmann
weights will be the ones with the softest low-lying excita-
tion s.

Landau theory for the kagome-lattice antiferromagnet
predicts that an infinite number of zero modes, corre-
sponding to all wave vectors in the first zone for one
branch, becomes unstable below the mean-field critical
temperature T, ".' A zero mode is a collective motion
of the spins that costs zero internal energy. A recent
high-temperature series expansion' has shown that
thermal fluctuations will not break this degeneracy, up to
seventh order in J/T, where J is the exchange constant.
Only at eight order does wave-vector selection occur, de-
pending on the number of spin components, n. For XY
(n =2) and Heisenberg (n =3) spins, the &3 X&3 phase
[Fig. 1(b)] with q~3=2vr( —,', —,'), is selected, and for the
random-walk problem (n =0), the q=O phase [Fig. 1(a)]
is selected. Ising spins (n =1) do not select a wave vector
at this or any' order in the series. Although the high-
temperature series cannot predict any low-temperature
properties with certainty, it does prove that the wave-
vector degeneracy present at seventh order in J/T is not
due to a fundamental symmetry of the system. Chu-
bukov has shown that quantum fluctuations will also
lift the q-space degeneracy in the large-S (spin quantum
number) limit, by proving that the q=O and the +3X V'3

phases are both local energy minima. However, the rela-
tive stability of the two phases and the possibility of other
local minima is still an open question in this context.

Low-temperature expansions indicate that coplanar
nematic order occurs through the order-by-disorder
mechanism. In the harmonic approximation, all coplanar
ground states are shown to have an entire branch of zero
modes and no nocoplanar ground state has as many zero
modes (at harmonic order) as the coplanar ground states.
Hence coplanar states are selected at low temperature be-
cause they have the largest number of soft excitations. A
saturation of the nearest- and next-nearest-neighbor
planer nematic correlations as T—+0 has been observed
in Monte Carlo (MC) simulations, thus supporting the
low-temperature expansion result. No evidence of wave-
vector selection was reported in Ref. 4. Further work '

taking nonlinear interactions between the normal modes
into account indicates that +3 Xv'3 order is thermally
selected in the low-temperature regime.

Within the manifold of coplanar states, there are an
infinite number of ground states, with all spins pointing
along one of three directions mutually oriented at 120,
satisfying the minimum-energy condition for each trian-
gle S&+S2+S3=0. Because each spin can be in one of

three states, we will refer to these as three-state Potts-like
ground states. The Potts-like ground states are for the
most part random. The q=0 and &3 X &3
configurations are special members of this set of ground
states because they are characterized by a single wave
vector. For vector spins both the &3 X&3 and q=O
phases are chiral and therefore doubly degenerate.

The branches of zero modes mentioned above corre-
spond in real space to the so-called weathervane defect,
where all spins in a hexagon can rotate about a common
axis [Fig. 1(b)]. For a general Potts-like ground state, this
rotation has zero cost in energy at order 0, where 0 is
the rotation angle; anharmonic forces provide a restoring
force at order 0, thereby stiffening the modes. However,
the &3 X &3 ground state has the special property that
all neighboring spins for any hexagon are collinear and
there is no restoring force to all orders in 0. The q=O
ground state also has zero modes along straight lines
[Fig. 1(a)] with no restoring force, but these are much
fewer in number than the weathervane defects, which are
localized. Based on this qualitative discussion, we expect
that the q =0 and v 3 X &3 ground states will have
different Boltzmann weights and that of the two the
&3X&3 phase is more likely selected at low tempera-
ture.

Huse and Rutenberg' calculated spin-spin correlations
at low temperatures, T/J=0. 005, and report correla-
tions consistent with short-range v 3 X +3 order that are
approximately equal to the corresponding correlations of
the three-state Potts model at T=O. When the spin-spin
correlations are extrapolated to zero temperature, they
are found to be significantly stronger than the three-state
Potts correlations. Since the Boltzmann weights of all
three-state Potts-like ground states are ecpal, this sug-
gests that for Heisenberg spins the &3 X &3 ground state
has a larger Boltzmann weight as T~O. They also show
that the three-state Potts model is critical at T=O, and
since the extrapolated Heisenberg correlations are
stronger, they suggest that the Heisenberg model should
exhibit true long-range &3 X &3 order.

Sachdev has studied the classical and quantum spin
cases at finite temperature using the so-called large-X ex-
pansion technique, which is the Sp(N) generalization of
the Sp(l ) Heisenberg Hamiltonian. For large N the
&3 X &3 ground state is found to have the largest
Boltzmann weight and the q=0 state the smallest, all
random Potts ground states having intermediate stability.
The correlation length of the &3 X &3 ordering was
found to diverge exponentially as T~0, /~3 ~ exp(c /T ).

The kagome-lattice antiferromagnet is realized in a
number of experimental systems. The second-layer He
adsorbed on graphite is believed to be an 5= —,

' kagome
antiferromagnet. ' ' This system shows no sharp
features in the low-temperature heat capacity; however,
two broad peaks are observed in C~. SrCr8 Ga4+ 0/9
consists of alternating kagome and triangular sheets of
Cr + (S=—,') ions and is nonstoichiometric with at least
15% of the Cr sublattice occupied by Ga. Both He
and SrCr8 Ga4+„0&9 exhibit diffuse neutron scattering
over a wide temperature range and show no signs of
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long-range magnetic order. The family of jarosites
MFe3(OH)6(SO4)2 (M=H30, Na, K, Rb, Ag, NH4, Tl,
Pb, and Hg) (Ref. 26) have layers of Fe + (S=—,') spins
forming kagome sheets which stack in a cubic close-
packed ( ABCABC . ) fashion. Those members of
the series that have been studied using neutron difFraction
are found to order at finite temperature with the q=0 in
plane structure, presumably because of interplanar in-
teractions. The hexagonal tungsten bronze form of FeF3
consists of kagome layers of Fe + which are stacked in a
regular (

. . A A A ) fashion with no in-plane offset
between layers. Long-range magnetic order of the q=O
sort occurs in this material below T, =97 K.

Our purpose here is to establish a connection between
the low- and high-temperature theoretical results and elu-
cidate the nature of any spin ordering that occurs as
T~O using the MC methods described in Sec. II. In par-
ticular, we attempt to determine if the wave-vector selec-
tion predicted by the high-temperature series persists at
low temperature. MC methods are also useful for study-
ing the nonperturbative intermediate-temperature re-
gimes that have not yet been investigated. Simulations at
high temperatures enable comparison with the series-
expansion results. The spin configurations tend to freeze
at low temperatures in MC simulations, so that only a
small region of the low-energy phase space is sampled in
finite-length simulations. In an attempt to overcome this
problem, we have averaged the results of numerous simu-
lations at low temperature, which gives a larger sampling
of phase space and emulates a situation in which all de-
grees of freedom are, in principle, allowed to relax.

In our simulations we see a power-law decay of the
correlation functions on finite-size lattices, indicating a
tendency toward long-range order as T~O. However,
the low-temperature ordering is not of the ideal +3X +3
type. The ideal &3X&3 structure also has long-range
staggered chiral order which is unstable toward the for-
mation of chiral domain walls. These domain walls form
at no cost in internal energy, but do give a gain in entro-
py, at the expense of a stiffening of some of the soft
modes. However, the chiral domain structure has a
surprisingly small effect on the spin-spin correlations.
Our results are consistent with T=O being a critical
point for this model system. A more detailed summary of
our results and conclusions can be found in Sec. X.

The outline of the rest of the paper is as follows. De-
tails of the MC methods used are described in Sec. II.
The effects of the zero modes on some elementary ther-
modynamic functions are discussed in Sec. III, and re-
sults for nematic, chiral, and random Potts order parame-
ters are presented in Sec. IV. Section V addresses the
more dificult question of Neel ordering as T~O, fol-
lowed by a brief discussion of the long relaxation times at
low temperatures in Sec. VI. The decay of some correla-
tion functions and the predicted powder neutron-
scattering patterns at various temperatures are described
in Sec. VII. The chiral domain structure and its effects
on the spin-spin correlations are discussed in Sec. VIII.
A comparison with the high-temperature series results in
Sec. IX is followed by summary and conclusions in Sec.
X.

II. MONTE CARLO METHOD

P&(E )exp[(P —P')E ]
Pp(E )=

g„P&(E„)exp [(P—/3' )E„] (2)

Here P&, (E,) is the probability of the system having ener-

gy E, at inverse temperature /3'=(ks T') ', which is cal-
culated in (2) from the probability distribution at a
different temperature /3 Because of t.his sharing of infor-
mation between simulations at different temperatures, the
effectiue number of MC steps at each temperature is
much larger than the 10000 steps actually simulated.
This extra information is discarded in conventional MC
methods. In total, 131 temperatures for each lattice size
were simulated and combined using the multiple-
histogram method. Equilibrium spin configurations for
one temperature were used as starting configurations for
the next nearby temperature, and 1000 MC steps were al-
lowed to reach equilibrium after each temperature
change. Cooling runs were initiated with a random-spin
configuration at T/J= oo, and warming runs were ini-
tiated with both the q=0 and V'3 X &3 ground states.
Unless otherwise specified, data presented below are cal-

A standard isotropic classical spin Hamiltonian

&=—J g g S(R+r, ).S(R+r, +r)1

R, a

was simulated, where R is a lattice vector, r, is a sublat-
tice vector for sublattice a, v is a nearest-neighbor bond
vector, S=(S„S,S, ) is a unit three-vector, and J )0 is
the nearest-neighbor antiferromagnetic exchange con-
stant. System sizes I =6, 12, 18, and 24 unit cells with
periodic boundary conditions were considered. The num-
ber of spins, %=3L, ranged from 108 to 1728. Simula-
tion lengths were 10000 MC steps per spin at each tem-
perature and covered many decades in temperature,
0.002~ T/J ~. We define one MC step as one at-
tempted spin move for every spin in the lattice. Because
of the large number of temperatures simulated and our
use of the histogram method of data analysis (to be de-
scribed below), the eQectiue number of MC steps at each
temperature is actually much larger than 10000. Some
simulations at temperatures as low as T/J=O. OOOS were
performed in order to calculate spin-correlation func-
tions. Random spin moves were attenuated by a factor 6;
i.e., a random AS is replaced by 56S and 0 ~ 5 ~ 1. 6 was
adjusted in such a way that on average 50% of the at-
tempted spins moves were accepted. This was important
at low temperatures. When a spin move was rejected, the
spin was then randomly pivoted around its local ex-
change field. Such pivoting has no eff'ect on the internal
energy, but does increase the rate at which phase space is
sampled.

All thermodynamic quantities were calculated using
multiple-histogram methods. The multiple-histogram
method makes optimal use of all data because probability
distributions, or histograms, generated by MC at a given
temperature contain information on distributions at near-
by temperatures through the reweighting transforma-
tion
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culated starting from a random-spin configuration at
T= ~ and systematically annealed. All runs (warming
and cooling) were repeated between 50 and 100 times,
and the data were combined by adding the histograms for
each temperature. A complete cooling run from
T/J= ~ down to T/J=0. 002 involved =10 MC steps
per spin, which corresponds to =2.5 X 10" attempted
spin Aips for a 24 X 24 unit-cell lattice.

Another feature of the histogram method is that infor-
mation on the temperature dependence of the partition
function, and hence the free energy, is automatically pro-
vided. Strictly speaking, the partition function is only
determined to within an arbitrary multiplicative factor
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Hence the MC method determines the entropy to within
an arbitrary additive constant, which we determine by
fixing the entropy at T= ~ to S„„,(T= ~ )=kiiln(4m)
per spin. Calculating the absolute entropy at low temper-
atures requires overlapping histograms over the whole
temperature range from T= ~ down to the desired low
temperature.

III. COUNTING ZERO MODES

As Chalker, Holdsworth, and Shender have pointed
out, modes with harmonic restoring forces contribute
—,'k&T to the internal energy and anharmonic modes (0 )

contribute —'k&T, where kz is Boltzmann's constant. For
a single unit cell of a kagome system in one of its copla-
nar ground states, there are six transverse modes, of
which one has a quartic (8 ) restoring force, which leads
to an internal energy per spin of

E =Eo+ —'„' kii T +0 ( T ),

FIG. 2. Extrapolation of the heat capacity to zero tempera-
ture for the four lattice sizes studied. The expected theoretical
limit is C/k&(T=O)

2
0 917.

suits. The remaining entropy after subtraction still shows
linear behavior as a function of ln(T/J) in the range
0.01 ~ T ~ 0. 1. Next to each straight-line fit, we show
the measured slope plus —,", , which corresponds to the ac-
tual ln(T/P coefficient in (7). For L =6 two linear re-
gimes are clearly seen. In the temperature range
0.01 ~ T/J & 0. 1, the entropy behaves like ln( T/J),
which is consistent with all six modes having a quadratic
restoring force and therefore the system is not yet fully
coplanar. A trend toward the expected low-temperature
behavior in the entropy [S=—'„'ln(T/J)] only starts to

0.99
0

0

where Eo/J= —1 is the energy per spin for any three-
state Potts ground state. The zero-temperature heat
capacity is therefore —'„'k~ per spin. As the heat capacity,
derived from energy Auctuations by MC simulations at
low temperature, is rather noisy, we prefer to test this
mode counting by inspecting the internal energy and en-
tropy. Similar arguments to the one above predict that
the low-temperature entropy per spin will be dominated
by a logarithmic singularity as T—+0,

S= —,",ksln(T/J)+O(1) .
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Figure 2 shows extrapolation to T=O of the quantity
(E Eo)/T for variou—s lattice sizes cooled from high
temperature. The agreement is to within less than l%%uo of
—,",. The entropy, with the expected logarithmic singulari-
ty in (7) subtracted, is shown in Fig. 3, for L =6 and 24.
The L = 12 and 18 data are very similar to the L =24 re-

FIG. 3. Low-temperature behavior of the entropy for two
lattice sizes (a) L =6 and (b) L =24. The temperature axis is on
a logarithmic scale. Numbers next to the straight-line fits indi-
cate the coefticient of the ln(T/J) term in the entropy, as ob-
tained from the slope. These slopes are slightly larger than the
expected low-temperature limiting value of —,'2 =0.917.
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occur for T/J (0.01, depending on the lattice size. The
decrease in the ln(T/J) coefficient below 1 can be inter-
preted as a sign of the onset of coplanar ordering.

IV. NEMATIC AND CHIRAL ORDER
2

OC

CIi,n at

Nematic order can be characterized in a general
manner with tensor order parameters which make no as-
sumption about the selected spin plane. However, in or-
der to simultaneously collect information on chirality, we
prefer to look at the normal vector to each elementary
triangle of spins,

2n= —(S, XS2+S2XS3+S3XS,),
3 3

where S&, S2, and S3 belong to the same triangle. When
the three spins form a coplanar 120' ground state, n
points above or below the spin plane (depending on
chirality) and n n= 1. Here we use the convention that
the chirality is +1 when the spins rotate clockwise in
120' increments as one traverses around the triangle
clockwise. Also note that collinear normal vectors corre-
spond to coplanar spins.

We have calculated the chiral correlation function

C„,(r —r')=(n n, ),

0

2-
E.

0
300-

OC 0

-300

~ 500-
E.

0.01

attic

I I I I I IIII I I I I I IIII
0.1 1

18
Z4

3—State Potts (d)

10

the nematic correlation function

n, )') —
—,',

and their corresponding susceptibilities

Ty„, = g C„,(r), i =1,2 .

(9b)

(10)

FIG. 4. (a) Uni. form and (b) staggered chiral susceptibilities
g„, and y„'&, (c) nematic susceptibility g„z, and (d) the random
three-state Potts susceptibility yc . The temperature axis is on

3
a logarithmic scale.

T+st —y Cst(r) (12)

where co,=0 if the triangle at r is pointing up and co,=~
for down-pointing triangles. For random Potts-like
ground states that are close to the 3/3X3/3 phase in
structure, we expect y„', to be large.

The two chiral susceptibilities are shown in Figs. 4(a)
and 4(b). y„& is small at all temperatures, while y„'& grows
logarithmically at lower temperatures. y„'& shows no ob-

The summation here is over triangles (not lattice sites).
Throughout we will always plot radial correlation func-
tions C(~r —r'~ ), with any angular dependence on r aver-
aged over. C„& and y„, are sensitive to the q=O phase
where all triangular plaquettes have the same chirality.
For random Potts-like ground states that are close to the
q=O phase in structure, we expect p„, to be large. In the
&3 X &3 phase, the normal vectors order antiferromag-
netically and we expect C„i(r) to be rapidly oscillating
and y„&=0. On the other hand, g„2 is insensitive to
chirality and only indicates whether or not the spin
configuration is coplanar. In the same spirit as above, we
have also calculated the staggered chiral correlation func-
tion and its corresponding susceptibility,

C„',(r —r')=(n, n, . )exp(i[su, co;]), —

and

vious lattice-size dependence, indicating that the stag-
gered chiral correlations are short range. There appears
to be no long-range chiral order of the varieties con-
sidered here. The nematic susceptibility y„2 [Fig. 4(c)]
also grows at low temperature and is much larger in mag-
nitude than either of the chiral susceptibilities. This indi-
cates that the normal vectors at least line up in collinear
fashion as Chalker, Holdsworth, and Shender have sug-
gested. The strong dependence of g„2 on lattice size
below T/J=0. 004 is clear evidence that the nematic
correlations are long range at these temperatures com-
pared to r /a„» =24. y„2 has essentially two temperature
regimes. As T/J is reduced from 1.0 to 0.01, the normal
vectors are growing in magnitude (as seen from ( ~n~ ),
not shown) and are relatively unaligned. In the range
0.002» T/J»0. 01, the normal vectors have essentially
attained unit magnitude and tend to line up in a collinear
fashion which corresponds to a coplanar spin state. For
the largest lattice (L =24), coplanar order only starts to
set in below T/J=0. 004. This is seen clearly in Fig. 5(a)
where the nematic correlation function C„2(r) for an
18 X 18 lattice becomes long-range ordered below
T=0.005, indicating that the nematic correlation length
$„2/a„» ) 18, where a„» is the lattice constant. The ap-
parent long-range order at nonzero temperature is an ar-
tifact of the periodic boundary conditions and the finite
lattice. The inset in Fig. 5(a) shows the rapidly oscillating
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where I'& is a Legendre polynomial. In particular,

Ci(r —r') =
& S,.S, )

is the normal spin-spin correlation function,

Cz(r —r')= —,'[3&(S,.S, ) ) —1] (16)

is sensitive to collinear spin ordering [see Eq. (9b)j, and

C, (.—')=-'[5&(S S.)'& —3&S S )] (17)

Tyc = g C, (r), (18)

is the correlation function for all three-state Potts-like
ground states. The three correlation functions just de-
scribed, as well as their corresponding susceptibilities

0.0
0

0.002
0.005

2 4 6 8 10 12 14

FIG. 5. Radial correlation functions for (a) the nematic or-
dering C„2(r) and (b) the random three-state Potts ordering
C3 {r ) at four temperatures. The inset in {a) shows the short-
range chiral correlations C„&(r) at T/J=0. 002.

nature of C„i(r) and the rapid decay of chiral correlation
strength with distance at the lowest temperature con-
sidered. Beyond about three lattice spacings, all chira1
correlations average to zero within statistical errors.
Huse and Rutenberg have pointed out that the chiral
correlations in the three-state Potts model at zero tem-
perature have a very strong power-law decay' with dis-
tance like r "with g=4. They could not measure such a
strong decay in their simulations. It is not clear if this re-
sult also holds for the Heisenberg problem; if it does, we
also cannot measure the decay.

The nematic order parameters are not sensitive to the
120' ordering that we expect to take place in the coplanar
state. Labeling the angular coordinates of the spins as
0= (9,P), we define the correlation function

Ci(r —r') =
2I +1 (13)

Ci(r —r') =
& Pi(S S ) ), (14)

where 0 and Q' are directions of the spins at r and r', re-
spectively, and I'i (Q) is a spherical harmonic. In a coor-
dinate system where the z axis in spin space is perpendic-
ular to the plane spanned by S, and S, , we have

I (A)I,"(0')+I; '(Q)Y; '(0') cos(lg. ..),
where P. .. is the angle between the two spins. Summing
over m yields a scalar invariant, which is largest when the
angle between S, and S, is some multiple of 2~/l. For
l =3, Eq. (13) will be the order parameter for any 120' co-
planar state, independent of the orientation of the plane
in spin space. Using the summation of spherical harmon-
ics theorem, we have

have been calculated. yc and C&(r) are shown in Figs.
3

4(d) and 5(b), respectively, and are consistent with long-
range three-state Potts-like order below T=0.005 for
I.=18. Similar to g„2 we see that yc appears to be

3

diverging as T~O and the strong lattice-size dependence
again indicates long-range order for the lattice sizes con-
sidered. A more detailed analysis of these correlation
functions will appear below once the v'3 X i 3 correlation
function has been introduced. The results for the nemat-
ic ordering are in good agreement with the low-
temperature expansion and MC results of Chalker,
Holdsworth, and Shender. Below we will address the
more dificult question of wave-vector selection and Neel
ordering.

V. FEEI, QRDER

&m, ) =&Qm, m,*),
&m', )=&m, m,*&,

Ty, =X(&m', ) —
& m, &'),

(19)

(20)

(21)

We have shown that coplanar ordering, with all spins
pointing along one of three possible directions in a plane,
takes place at temperatures below T/J=0. 01 for finite
lattices (I. ~24). There are an infinite number of these 3
three-state Potts-like ground states, and here we will try
to determine whether or not some subclass of these states
is selected over the others. This question is dificult to
answer with MC methods due to the freezing in of certain
degrees of freedom at low temperatures. Moving from
one Potts state to another involves the simultaneous rota-
tion of a large number of spins. The weathervane rota-
tion is the most likely as it involves only six spins; howev-
er, this mode only occurs when there is local &3 X&3 or-
der. In general, loops larger than the elementary hexa-
gon must be simultaneously rotated in order to sample all
degrees of freedom. An algorithm which finds loops and
rotates them with a Metropolis acceptance scheme
should work, but for simplicity we have chosen to aver-
age the data from a number of cooling runs as described
in Sec. II.

Order parameters and susceptibilities were calculated
for the q=O phase,
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where

mo= —g S(R+r, )exp(iP, ),1

R, r
(22)

10

X is the number of lattice sites, and the P, are sublattice
phase angles, P&=0, Pz=2vr/3, and $3=4rl/3. Similar
quantities m~3 and &~3 were calculated for the v'3 X v'3

phase where

m&3 =—g S(R+r, )exp( i q&-. [R+r, ]),1

R, I.

(23}

0.5

0.4—
L = 6
L = 12
L = /8
L = 24

and q&3=2~( —', , —', ) is the &3X&3 ordering wave vector.
Our wave vectors refer to the standard crystallographic
unit cell for which the a and 1 real-space basis vectors,
which subtend an angle of 120', are represented by (1,0)
and (0,1), respectively.

The two order parameters are shown in Fig. 6 where it
is clearly seen that the &3 X &3 ordering is favored. The
v'3 X v 3 order parameter fluctuations, Ty &3 for the
largest lattice size (Fig. 7), have power-law behavior with
two distinct temperature regimes. Above T/J=0. 01
where the system tends to a coplanar state, we see that
Tg&3=T . Below T/J=0. 01 where the V3Xv'3 or-

der parameter starts to grow, the divergence of the fluc-
tuations becomes much stronger, Ty&- = T
Iy = 1.24( 5 ) ]. The corresponding Iluctuations in

mo, Tyo, are more than an order of magnitude smaller.
This strongly suggests that the system goes critical at
T =0 and that m &3 is the correct order parameter.

The theory of finite-size scaling for critical phase tran-
sitions at finite temperature is now rather well developed
and tested. Such finite-size scaling assumes power-law

0.1 I I I I III[
0.01

I I I I I I I[

0, 1 10

FIG. 7. Mean-squared fluctuations of the &3X &3 order pa-
rameter showing two power-law regimes and a possible diver-
gence as T~O.

divergence of the correlation length and the ordering sus-
ceptibility. One might argue that the low-temperature
properties of the Heisenberg kagome antiferromagnet
should instead be like those of the 2D classical Heisen-
berg ferromagnet (2D CHF}. The 2D CHF is known to
exhibit long-range order at T=O and exponential diver-
gences in the susceptibility and the correlation length. '

Standard finite-size scaling theory for critical points does
not apply to systems such as the 2D CHF (which are re-
lated to the nonlinear o model). However, because of the
soft modes and the unusual chiral domain structure (to be
discussed below), we would argue that the critical proper-
ties of the Heisenberg kagome antiferromagnet are funda-
mentally diff'erent than those of the 2D CHF and perhaps
difT'erent from other known critical points. Here we
proceed with the assumption that the power-law diver-
gences of g&3 and algebraic decay of the spin-spin corre-
lations (see below) indicate that T=O is a critical point
and hence that finite-size scaling is applicable. In the ab-
sence of any better theory, we will attempt to scale our
order parameter data according to the standard theory of
finite-size scaling,

l'L/ ~
~r

0.0

~ ~m mm ~et
e m L~~'=/(L '~'T )-V'3 (24)

0,4—

0 ' 0
0.01

I I I I I I

0.1
V/J

l 11 I I I II I I I I I I I I

1 10

/(x)=x~ " ~, large x, (25)

where I3 and v are critical exponents, L is the lattice size,
and / is a nonuniversal scaling function. In practice, the
critical exponents must be determined by trial and error
in such a way that the data in the critical region, for all
lattice sizes, collapse onto a single line /(x). Figure 8
shows our best attempt at scaling the data, yielding very
approximate critical exponents P=O. 3(1) and v= 1.0(2).
The data noise is too severe to allow a more accurate
determination of the exponents. The asymptotic
behavior for/(x),

FIG. 6. Root-mean-square order parameters (a) mo for the
q=O and (b) m~3 for the &3 X &3 Neel ordered phases for four
lattice sizes. The temperature axis is on a logarithmic scale.

where d is the lattice dimensionality, provides a further
check of the exponents. The asymptotic slope (Fig. 8)
gives P—v= —0.6, which is consistent with P=0.3(1)
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FIG. 8. Finite-size scaling analysis for the &3 X &3 order pa-
rameter m&-, at low temperature. The exponents P and v were
chosen such that the data for all lattice sizes collapse, as well as
possible, onto a single line.
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and v= 1.0(2), within the estimated error. The ex-
ponents P, v, and y are also consistent with the scaling
relations a+2P+y=2 and dv=2 —a, if o, =0. The ob-
jective here is merely to show that the data can scale as
expected for a critical order parameter and not to deter-
mine accurate exponents. An accurate determination of
the exponents (assuming T=O is a critical point) would
require extremely long simulation times and most cer-
tainly larger lattices.

Further insight is gained by comparing mo and m &3 as
the system is warmed, from both the q=O and the
&3 X&3 ground states, with the results obtained from
slow cooling. mo and m~3 are shown in Figs. 9(a) and

9(b), respectively. Here 50000 MC steps were allowed
for the ground-state configurations to relax. A discussion
of the validity of this relaxation time will be given in Sec.
VI. The cooling data are intermediate between the data
for warming from the two ground states, but much closer
to the v 3 Xv'3 warming results. When warming from
the q =0 ground state, m &3 and m o jump to their cooling
values near T/J=0. 008, suggesting that the q=O phase
is really out of equilibrium. This is confirmed by the
sharp feature in the heat capacity [inset Fig. 9(b)] at the
same temperature. No such feature occurs when cooling
or warming from the &3X&3 configuration. Also, we
see that mo remains rather large when warming from the
q=O ground state, while m&3 decays from 1 to =0.5

during the relaxation time. This efFect is presumably due
to the larger number of soft modes in the v 3 X &3
ground state.

If the &3X&3 state really has a larger Boltzmann
weight than the q=O phase, then it should also have a
higher entropy at low temperatures. In Fig. 10 the entro-
py difFerence AS =S&3—So is shown for two lattice sizes
L =6 and 12. As stated previously, accurate calculation
of the low-temperature absolute entropy with the MC

FIG. 9. Comparison of the order parameter (a) mz and (b)
m&3 for warming runs from the q=O and &3X&3 ground
states and cooling from a random configuration at T= ~. The
inset in (b) shows the heat capacity for the warming run from
the q=O ground state. The temperature axis is on a logarithmic
scale.

method is very dificult and requires data with good
statistics over a very wide temperature range. We are
looking at very subtle effects, and the entropy difference
here are on the order of 0.3% of the absolute entropy
below T/J =0.01. Nevertheless, a definite entropy

0.010

0.005

0.000

~ -O.005

~ —0.010

0.005

0.000 V

—0.005

—0,010 I I I I I I II I I I I I I I II I I I I I I I II

0.01 0.1 1
I I I I llll,

10

FIG. 10. Entropy difference between runs warming from the
q=O and &3 X&3 ground states for lattice sizes (a) L =6 and
(b) L = 12. The peak in the temperature range
0.003 ~ T/J ~ 0.008 indicates that the &3X &3 phase has
higher entropy than the q=O phase. The temperature axis is on
a logarithmic scale.
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difference below T/J=0. 01, consistent with the
&3 X V3 phase having higher entropy, can be seen and
the effect seems to become more pronounced for the
larger lattice size, except at the very lowest temperature.
The dip in AS at T=0.01 is an artifact of the phase
change that occurs at that temperature [see inset Fig.
9(b)] while warming from the q= 0 state.

VI. RELAXATION

1.0

(a)

0.5—

0.0

Figure 9(b) shows that m&3 decays from 1 to =0.5

during the relaxation time of SOOOO MC steps. It is natu-
ral to ask if 50000 MC steps is really long enough and
also if lattice size has an effect on the relaxation. The
time dependence, over 6.5 decades in MC time, of m&3 at
T/J =0.002 and three lattice sizes (L =6, 12,24) is shown
in Fig. 11. The 1.=6 lattice relaxes abruptly after 10000
MC steps, and L, =12 relaxes less abruptly after about
70000 MC steps. Thus, for the warming runs from the
&3X&3 ground state after the 50000-MC-step relaxa-
tion time, the system is about 95% equilibrated with re-
gards to &3 X &3 order. Our data at the two very lowest
temperatures simulated (J /T =500 and 490) may be
slightly perturbed by this, but none of our basic con-
clusions will be. The behavior of the I.=24 lattice is
rather different and seems to show a fast decay regime
5000 ~ t ~ 100000 and slower decay in the range
100000~ t 6000000. Even after 6X10 MC steps, it is
not clear that m &3 has equilibrated; a very slow decay in

m&3 may still be taking place. The spin configuration for
the 24 X 24 lattice run was saved after 10 and 6 X 10 MC
steps and used to calculate some correlation functions
and investigate chiral ordering.

VII. CORRELATIONS AND NEUTRON SCATTERING

Out of the infinite number of three-state Potts-like
ground states, our attention until now has been focused
on only two, the q=O and the +3X +3 ground states. It
seems rather clear at this point that the &3 X &3 ground
state is (a) definitely favored over the q=O state and (b)
also shows some tendency toward being naturally select-
ed upon cooling. These conclusions are based on the fol-
lowing results:

(1) The staggered chiral susceptibility, which is con-
sistent with &3 X&3 ordering, is growing at low temper-
atures and is always larger than the uniform chiral sus-
ceptibility.

(2) The order parameter m&3 grows and is naturally
selected on cooling at low T, while m0 gets very small as
T—+O.

(3) The order parameter fiuctuations y&3 show an ap-
parent power-law divergence and g&3 %%+0.

(4) There is a similarity between the order parameters
for cooling runs and runs warming from the V3XV'3
ground state.

(5) There is a phase transition observed while warming
from the q=0 state, indicating it is really out of equilibri-
um (metastable) at low temperature.

(6) There is a slightly larger entropy for the &3 X V3
phase at low temperature.

There still lurks the possibility that ordered states
characterized by wave vectors other than q = (0,0) and
q=2m( —', , —', ) may show an equal or stronger tendency to
be selected. The selection of a small number of other
"mystery" wave vectors seems unlikely because q =0 and
q=+2m( —', , —', ) are the only wave vectors consistent with a
120' spin arrangement that is observed in the C3(r) corre-
lation function. Any of the random three-state Potts-like
ground states wil1 be characterized by a distribution of
wave vectors (or Fourier modes) and will not fall into the
above category, but such random 120' structures are the
most likely alternatives to the &3 X +3 ordering.

We have calculated the correlation function for
+3 X +3 ordering,

&s, s, )
C~3(r) = (26)

cos q&3 r

0.0

0.5—
(c)

t2

which is equal to unity for all r when the spins are in the
&3X&3 configuration. The &3XV'3 correlation func-
tion becomes positive definite for all r on an 18X18 lat-
tice below T/J =0.01, which is similar to the behavior of
the three-state Potts correlation function C3(r) except
that the strength of the correlations in C&-(r) are much
weaker. All correlation functions studied except the
chiral correlations seemed to exhibit power-law decay
with distance

0..0 I I 1 f I Ill/ I

1 10 10 ' 10 ' 10 10 ' 10 '
t (mes)

FIG. 11. Relaxation of the &3 X &3 order parameter m ~-, as
a function of Mc time for three lattice sizes (a) L =6, (b) L = 12,
and (c) L =24. The time axis is on a logarithmic scale.

at temperatures below T/J =0.01, as exemplified by the
data for T/J=0. 002 in Fig. 12. For comparison, we
have also included the correlations obtained from a
24X24 lattice (Sec. VI) that was allowed to relax from
the &3Xv'3 ground state for 10 MC steps and then
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FIG. 12. Power-law decay of three correlation functions (a)
C„2(r), (b) C, (r), and (c) C&-, (r} at T/J=0. 002 for systems

cooled from T= ~ and relaxed from the &3X &3 ground state.
Straight-line fits yield estimates for the critical exponents g.

averaged over 10 MC steps. All three correlation func-
tions decay much more rapidly for the annealed system,
indicating that one or possibly both of these
configurations are not really at equilibrium, the truth be-
ing somewhere in between. Hence the data in Fig. 12
may be thought of as representing lower and upper
bounds on the true equilibrium correlation functions.
The power-law decay with distance, of C 2(r), C3(r), and
most notably C&3(r), suggests long-range order for these
finite lattice sizes, i.e., g/a„&I ))L.

In order to check for other ordering wave vectors, we
have calculated the radial Fourier transform of the spin-
spin correlations CI(r),

1 + ~ ~
sin(2m. qr)

N „' " 2' r
where angular degrees of freedom in q have been in-
tegrated out and X, is the number of spins at distance r.
For a short-range-ordered system, this is similar to what
is observed in a powder neutron-di6'raction experiment.
The Fourier transforms for an 18X 18 lattice cooled from
high temperature are shown in Fig. 13(a) for three
averaging temperatures T/J =0.02, 0.005, and 0.002. At
T/J=0. 02 no sharp features are present, which is con-
sistent with neutron-di6'raction experiments by Broholm
et al. , the high-temperature series expansion, ' and
Gaussian approximation calculations. Arrows indicate
the angles where one expects to see the (—,', —,') and the
( —,', —', ) Bragg reAections from the +3 X V3 structure.
Indeed, there does seem to be some intensity increase at

FIG. 13. (a) Powder-averaged magnetic structure factor
CI(q) at three temperatures for L =18. (b) C, (q) for the two
lowest temperatures with the diffuse scattering at T/J=0. 02
subtracted. Arrows indicate expected Bragg angles for the
( 3 3 ) and ( 3 3 ) magnetic reflections from the &3 X &3 phase
(c) Fourier transform of the chiral correlation function C„&(q)
showing only broad features which grow in intensity but do not
narrow as the temperature is lowered.

these wave vectors, which is most clearly seen in Fig.
13(b) where the dift'use data from T/I=0. 02 have been
subtracted. All peaks in Fig. 13(b) can be indexed with
reciprocal-lattice points corresponding to the &3Xv'3
structure. The asymmetric peak shape is a standard
feature of powder-averaged scattering from any two-
dimensional ordered system.

We have compared our &3 X &3 spin correlations with
those of the three-state Potts model in its ground state as
calculated by Huse and Rutenberg. ' We find that at
T/J=0. 002 the correlations for an annealed 24X24 lat-
tice are essentially identical to the corresponding three-
state Potts values. However, for a 24X24 lattice that was
relaxed from the &3X+3 ground state for 6X 10 MC
steps, the spin correlations are noticeably stronger than
the three-state Potts values. We were unable to make a
connection between the annealed and relaxed systems.
Conventional MC methods seem incapable of establish-
ing, in a simulation of reasonable length, what the equi-
librium spin correlations are at this low temperature. As
the spin correlations obtained after relaxing for 10 MC
steps were essentially identical to those obtained after
6X10 steps, it seems that little progress will be made
with even longer simulations. All we can say is that the
truth lies somewhere in between our relaxed and an-
nealed simulations. Hence we cannot verify that the
Huse-Rutenbergs extrapolated (T~0) spin correlations
are really correct. This is an important question because
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their argument —that true long-range order (i.e., a
nonzero order parameter as opposed to T=0 being a crit-
ical point with m&3=0) occurs at T=O—relies on the
fact that the (T~O) spin correlations are stronger than
the corresponding three-state Potts correlations.

As mentioned in the Introduction, both the q=O and
&3X&3 ground states are chiral. Every triangle in the
q=O structure has the same chirality, i.e., all + or all —.
For a &3 X +3 state, up-pointing triangles have opposite
chirality to down-pointing, triangles. Hence &3 X &3 or-
dering implies antiferromagnetic ordering of the normal
vectors n, defined in Eq. (8). If the chiral ordering is long
range, we expect sharp peaks in the Fourier transform of
the chiral correlation function C„,(r), which is shown in
Fig. 13(c). No such sharp features occur. The intensity
of the broad peak at q=1.33 grows as temperature is
lowered, but does not become narrow like the peaks in
C&3(q). C„,(q) is reminiscent of a liquid-structure fac-
tor. We obtain the same result for systems that are al-
lowed to relax from the &3 X &3 ground state, even at
temperatures as low as T/J=0. 0005. This suggests that
the strength of near-neighbor chiral correlations is grow-
ing, but the range of correlations remains very short and
temperature independent. We know from the long-range
correlations in C„z(r) that the normal vectors are some-
what collinear IFig. 12(a)j, which means that the short-
range chiral order is not only due to nematic spin waves,
but must also be due to chiral domain walls. How can
+3X+3 correlations be long range in the absence of
long-range chiral ordering' We will address this question
in the next section.

domains, which corresponds to the highest-entropy situa-
tion with respect to the relative concentrations. Small
domains in which a whole hexagon of triangles alternates
chirality are very common and correspond to a weather-
vane defect with the six spins on the hexagon rotated by
roughly 180 .

The chiral domain walls in Fig. 14(a) cost zero internal
energy. An example is shown in Fig. 14(b) where all
spins and the chirality of each triangle are shown. A
chiral domain wall is indicated by the dashed line.
Within each domain neighboring triangles have opposite
chirality. Along the chiral domain wall, neighboring tri-
angles have the same chirality. Also note that all spins

T/J = o. ooz
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(b) Chiral Domain, FaH

VIII. CHIRAI. DOMAIN STRUCTURE

In order to describe the nature of the thermally select-
ed ground states of the Heisenberg kagome antiferromag-
net, we must first introduce some nomenclature. We in-
troduced the notion of chirality in Sec. IV, with the con-
vention that + 1 chirality corresponds to spins around a
triangle rotating clockwise by 120' increments as one
traverses clockwise around the triangle. The &3Xv'3
ground state is doubly degenerate due to chirality, and
because neighboring triangles have opposite chirality, the
normal vectors are ordered antiferromagnetically. We
will label the v'3X&3 ground state in which all up-
pointing triangles have + 1 chirality and all down-
pointing triangles have —1 chirality, as the + chiral
&3X&3 ground state. Correspondingly, in the —chiral
&3 X &3 ground state all up-pointing triangles have —1

chirality and all down-pointing triangles have + 1 chirali-
ty. The + and —&3 X &3 ground states have wave vec-
tors +q&3 and —

q&3, respectively.
In Fig. 14(a) we show a snapshot of the system where

the chirality of each triangle is marked (black triangles
have chirality +1). This snapshot is for a 24X24 lattice
system (discussed in Sec. IV) that was relaxed from the
&3X&3 ground state for 10 MC steps at T/J=0. 002.
The —

q&3 chiral domains, with all down-pointing trian-
gles black, have been shaded for clarity. The system is
roughly an equal mixture of both +q&3 and —

q&3 chiral

(c) Chu"aL Domain, IP'aH

FIG. 14. (a) Schematic view of the chiral domain structure
on a 24 X 24 lattice with periodic boundary conditions at
T/J =0.002. The system was allowed to relax from the
&3X&3 ground state for 10 MC steps. Here +1 chirality tri-
angles are shaded black and domains of —chiral order are
shaded grey. (b) Schematic view of a &3X&3 ground state
with the chirality of each triangular plaquette indicated. A
chiral domain wall is indicated by the dashed line. (c) As in (b)
except the domain wall has moved as a result of a 180 weather-
vane rotation of the spins on the central hexagon.
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which reside on the domain wall are collinear and simul-
taneously make 120 angles with all neighbors. No 120
antiferromagnetic nearest-neighbor bonds are violated;
hence, the domain wall costs zero internal energy. By
performing a 180' weathervane rotation of the six spins in
the central hexagon in Fig. 14(b), the domain wall can be
moved to a new location shown in Fig. 14(c). This is an
example of domain-wall motion that has zero internal ac-
tivation energy. This implies that the domain walls are
never static, but will ftuctuate at arbitrarily low tempera-
tures. The wall motion does, however, involve spin rota-
tion out of the thermally selected spin plane. Also, be-
cause entropy prefers equal amounts of + and —chiral
domains, the domain walls at low concentration actually
have a negative free energy. At high concentrations the
opposite should be true since soft modes in the neighbor-
hood of a domain wall will be stiffened by the wall.

Each chiral domain can also be labeled by a phase an-
gle P„which takes on one of three distinct values P& =0,
$2=2~/3, and $3=4m/3 and corresponds to 120' spin
rotations within a chiral domain. Hence there are actual-
ly six domain types labeled by (oq~3, of )=(+,1),
(+,2), (+,3), ( —,1), ( —,2), and ( —,3). We can now
write down a general expression for spin directions in any
domain (spins are in the XY plane):

S(r, o., v)=(cos[cr(q&-, r+P )],sin[o. (q~-, r+P, )],0),
(29)

where the position vector is r =R+r„R being a lattice
vector and r, being the coordinates of sublattice a within
a unit cell. In general, the spin-spin correlations

S(r, o, v) S(r', o', v')=cos[q&3 (or —o'r')+of —o.'P ]

(30)

will be affected by the chiral domain structure. If spin
waves are for the moment ignored, then the thermal aver-
age of (30) is equivalent to averaging over domain types
(o, v) and (o', v'), since the chiral domain walls are con-
stantly fiuctuating. For example, fixing S(r, o, v) and as-
suming all domain types (o', v') are equally probable at
distance ~r —r', the average over v' is strictly zero, in-
dependent of o. '. As we shall argue below, at any finite
distance the domain types are not all equally- probable
and some spin-spin correlations will survive.

There appear to be short-range forces acting on the
chiral structure as exemplified by the short-distance
correlations in C„&(r) [Fig. 5(a) inset]. The chiral domain
structure at short distances is clearly governed by some
nontrivial rules. Below we will employ a simplified model
which we call the "statistical model, " which ignores all
chiral correlations beyond first neighbor. This grossly
overcounts the number of allowed states, as dictated by
the 120 rule for all nearest-neighbor spins. We use the
statistical model as a worst-case scenario and argue that
&3 X&3 spin correlations will survive even in this crude
approximation. If &3 X &3 spin correlations survive
within the statistical model, then they must certainly sur-
vive when stronger (and more realistic) antichiral correla-
tions are present.

The lattice of up-pointing triangles in a kagome net is a
triangular lattice. This triangular lattice can be random-
ly decorated with equal numbers of black and white tri-
angles, corresponding to +1 and —1 chirality for each
triangle. We can also associate black triangles with occu-
pied sites in a percolation problem. A typical chiral
domain structure can now be generated by choosing all
down-pointing triangles to have opposite chirality to the
nearest up-pointing triangle directly below it. Each
down-pointing triangle has three neighboring up-
triangles, and our particular choice of pairing each down
triangle with the up triangle below it is arbitrary and in-
troduces an artificial symmetry breaking into the model.
Although a more general algorithm may exist, we believe
our simple but arbitrary choice will have no effect on the
final conclusions. This restriction on the down-pointing
triangles results in a nearest-neighbor chiral correlation
of strength —,

' as observed in the inset in Fig. 5(a). The
prescription for random decoration ignores weak further
neighbor short-distance forces acting on the chiral corre-
lations. Within the statistical model, every up triangle
has equal probability of being either of + 1 or —1 chirali-
ty, regardless of the surrounding up-triangle
configuration. Hence all chiral correlations C„,(r) are
zero except for the nearest-neighbor ones. Our simula-
tions indicate that the statistical model is valid at large
distance r. However, the predicted power-law decay r
for the staggered chiral correlations for the three-state
Potts model at zero temperature may also hold for the
Heisenberg problem. As stated previously, our MC data
cannot measure such a strong decay if it exists. Weak
long-distance chiral correlations if present will have the
effect of enhancing V 3 X&3 order. Hence our following
argument showing that +3Xv'3 spin correlations can
survive in the absence of chiral correlations (statistical
model) is actually a worst-case scenario.

The statistical model is equivalent to the percolation
problem on a triangular lattice. At half filling (—,

' black
triangles), the triangular lattice is exactly at the L = ~
percolation threshold. In a percolation problem, the
probability of two lattice sites being in the same domain
is described by the pair-connectedness function

exp( r/g )—.—.+„'
r

(31)

where p is the fraction of occupied sites, g is the correla-
tion length which diverges near the percolation threshold
p„and g is a percolation critical exponent. For our
problem d=2, p, =

—,', and g =
—,'„which leads to a

power-law decay c (p„r ) ~ r ~. Hence, for the"Ip

kagome-lattice problem, the probability that any two
spins are in the same chiral domain also has a power-law
decay with distance, c( —,', r) o= r ~. Because p =p, and'Ip

= ~, there is no natural length scale in the system and
chiral domains of all sizes will exist. Also, the domain
walls of large chiral clusters will be fractal.

The knowledge borrowed from percolation theory is
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sufficient to draw some definitive conclusions regarding
the effects of chiral domains on the spin-spin correlations.
To begin with, we split the thermal (domain) average of
(30) (still neglecting spins waves) into two terms, the first

dealing with spin correlations between spins in the same
chiral domain and a second term treating interdomain
correlations. Without loss of generality, we can choose
v= 1 and 0.= +,

(S(r, +, 1) S(r', o', v')) =cos[q&3 br]c(p, br)+[I c(p,—br)] g w cos[q&3 (r 0—' r') —o'P .],
O', V

(32)

where hr=r —r' and the pair-connectedness function from percolation theory has been used. The interdomain (second)
term contains a summation over all six possible domain types with corresponding weights w ~ for each type. The
weights are functions of distance, Ar, and for notational convenience this will be implied throughout. By symmetry the
weights for domains of opposite chirality are all equal, m, =m2 =m 3 . Similarly, w2 =m3, yielding

g w cos[q&3 (r —o.'r') —a'P ]
C7, V

=w, cos[q&3 br]+wz+(cos[q&3 hr+ —,m]+cos[q&3 br —
—,~])+w, g cos[q&3 (r+r')+P .]

=cos[q~- b,r](w,+ —w2+ ) . (33)

Hence domain averaging destroys correlations between spins in domains of opposite chirality. We can now substitute
the result (33) into (32),

( S(r, +, 1 ) S(r', o'-, v' ) ) =. cos [q&3 hr] {c (p, b r ) + [ I —c (p, b r ) ][w,+ ( b r ) —w z+ ( b r ) ] ] . (34)
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FIG. 15. Intradomain (top) and interdomain (bottom)
&3 X&3 spin correlations for a 24X24 lattice at T/J=0. 002
averaged over 10 MC steps. At large distances the interdomain
correlations do not cancel the intradomain correlations.

It is possible that intradomain correlations (first term in
parentheses) will be partially canceled by the interdomain
correlations (second term). We should note at this point
that the +3 X v'3 correlation function defined in (26) is a
measure of the quantity in parentheses in (34) if spin
waves are neglected. We have seen that (26) is positive
definite at low temperatures, implying that the inter-
domain correlations do not exactly cancel the intra-
domain correlations.

To further check this, we have calculated the intra-
and interdomain correlations separately at T/J=0. 002
averaged over 10 MC steps for two lattice sizes I.=12
and 24. The results are shown in Fig. 15. The intra-

(3&)

Hence the &3XV'3 correlations are still long range in
the T~O limit. Our data in Fig. 12 indicate that

0 93~np+~sw-1 4 (36)

domain correlations are positive definite, while inter-
domain correlations are always negative definite. Howev-
er, at large distances the interdomain correlations are
about a factor of 5 smaller in magnitude than the intra-
domain correlations for both lattice sizes. This lends
strong support to our contention that interdomain corre-
lations do not cancel the intradomain correlations.

To summarize, at low temperature the Heisenberg ka-
gome antiferromagnet exhibits a chiral domain structure
and chiral correlations appear to be destroyed at large r.
Because the chiral domain structure maps onto a triangu-
lar lattice at its percolation threshold, the chiral domains
have no natural length scale. Domains of arbitrarily
large size will exist. The chiral domain structure attenu-
ates the spin-spin correlations with a power-law decay,
but does not destroy the correlations. Our discussion so
far has assumed no spin waves, which will be discussed
next.

The &3X&3 correlations will also be attenuated by
spin waves. The spin waves will be of two sorts: spin
waves which rotate the spins within the thermally select-
ed spin plane and nematic spin waves which rotate spins
out of the spin plane. Because the coplanar spin struc-
ture is thermally selected, the nematic spins waves will be
much softer than the in-plane spin waves and therefore
more populated at low temperatures. The spin-
correlation decay will be a product of the percolation
(chiral domain) and spin-wave decay functions which are
both power laws in the limit T~0,
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and we know from percolation theory that q =
—,', =0.21.

Then, since 0.7 ~ ps' ~ 1.2, the nematic spin waves
therefore dominate the decay of the spin-spin correlation
function at low temperatures.

IX. CQMPARISQN
WITH HIGH- TEMPERATURE SERIES

ings are selected is determined by the sign of yh, „. For
yh, „(0 the +3 X +3 ordering wave vector is selected.
We have calculated gh„by the MC method and com-
pared it with the series-expansion result

8 9
8 J J

&hex
= —

25 3T
+O (40)

(37)

where, as before, a and b are sublattice indices. Maximiz-
ing the largest eigenvalue of y(q) with respect to q deter-
mines the ordering wave vector. The maximal eigenvalue
X,(q) is independent of q at seventh order in J/T, imply-
ing no wave-vector selection. At eighth order in the ex-
pansion, A, &(q) takes the form

k, (q) =A. , (J /T )+2yh, „F(q), (38)

with extrema at q=0, where F(0)=4, and at q&3, where

F(q&3)= —2. y„,„ is related to the sum of spin correla-
tions around a hexagon,

= ( So'(Sl S2+ S3 S4+S5 S6) ) (39)

where the appropriate spin positions are labeled in Fig.
16. yh, should be averaged over all spins S& and all four
hexagons for each So. Whether q=0 or &3 X v'3 order-

0.0 ~g
4 ~ ~ ~ MC (I. = 1Z)

IIX Sevies

As pointed out in the Introduction, the high-
temperature series-expansion work of Harris, Kallin, and
Berlinsky' has shown that the mean-field wave-vector
degeneracy of the free energy is broken, at eight order in
J/T, by thermal fluctuations. The ordering wave vector

q&3 was determined by looking at the wave-vector-
dependent susceptibility

g,b(q)= g (S(r. ) S(R+rb))exp[ iq—(R+r„—r, )],

The series-expansion approximation to yh„drops very
rapidly near T/J =—,

' with the MC result, showing similar
behavior at a lower temperature (Fig. 16). The inset
shows the MC results at low temperature on a logarith-
mic temperature scale, where yh„ is seen to remain nega-
tive definite down to the lowest temperatures simulated.

Harris, Kallin, and Berlinsky' have also calculated the
uniform static susceptibility y„(not to be confused with

yo) and compared it with the experiments of Aeppli
et al. They argue that previous estimates of the ex-
change constant J, based on Curie-Weiss law plots, were
too large because the measured data were not really in
the asymptotic regime. In Fig. 17 we show the series-
expansion, MC, and Curie-Weiss law results for (Jy„)
The agreement between the series-expansion and MC re-
sults is excellent for T/J & 1. A fourth-order Fade ap-
proximate to the series has also been included and allows
comparison to even lower temperatures. Harris, Kallin,
and Berlinsky have speculated that the roughly linear
temperature dependence of the exact theoretical result
for (Jg„) ' extends to much lower temperatures and the
MC data show that this is essentially correct. In the
zero-temperature limit, the MC result for (Jy„) ' seems
to approach 2, contrary to the measurements on
SrCr& Ga4+ 0&9 for which (Jg„) ' —+0 as T~O. The
discrepancy may be the result of (1) the nonstoichiometry
in SrCr~ Ga4+ 0», as nonmagnetic sites will locally
relieve the frustration, (2) non-negligible coupling be-
tween planes along the crystallographic c axis, and/or (3)
Cr + spins residing on the intervening triangular sheets
between kagome layers. These "extra" spins have so far
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FIG. 16. Comparison of yh, „as calculated from the series-
expansion approximation, Eq. {37), and the MC method for
L =12. The inset shows the MC result at lower temperatures
on a logarithmic temperature scale. The spin-labeling scheme
used in the definition of gh, „ in Eq. {39),is also shown.

J

—2 —1 0 1

FIG. 17. Comparison of the Curie-Weiss, series expansion,
and MC results for the inverse uniform static susceptibility.
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received almost no attention in the literature concerning
SrCr& Ga4+„0I9.

X. SUMMARY AND CONCLUSIONS

We have used the MC method to study magnetic or-
dering on the highly frustrated kagome lattice. The
ground state is highly degenerate, and any ordering that
occurs must be due to thermal Auctuations which lift this
degeneracy in the limit T~O. Obtaining a good statisti-
cal sampling of phase space, at very low temperatures
with MC simulations, proved to be difficult, and results
were averaged over many runs in an attempt to overcome
this problem. From this work our conclusions are as fol-
lows.

(1) By studying the low-temperature behavior of the
internal energy and entropy, we see evidence for the soft
mode predicted by low-temperature expansions. At tem-
peratures above =0.01J, the modes become renormalized
and the soft mode disappears.

(2) The nematic (coplanar) and three-state Potts-like
ordering susceptibilities y„z and gc3 indicate the onset of
coplanar three-state Potts-like ordering below
T/J =0.01.

(3) The uniform and staggered chiral ordering suscepti-
bilities y„ I and y„'& are much smaller than g„2 or gc in

3

the low-temperature regime. The growth of y„', as T~0,
while g„I decreases, indicates a weak tendency toward lo-
cal staggered chiral ordering.

(4) The nematic and three-state Potts correlation func-
tions appear to be long range at low temperatures, as in-
dicated by power-law decays with distance, while the
chiral correlations remain strictly short range to within
statistical errors. The Fourier transform of the chiral
correlations C„,(q) has the appearance of a liquid-
structure factor, indicating no long-range chiral order of
any sort. Even relaxing a +3 X v'3 ground-state
configuration (which has chiral order) at temperatures as
low as T/J =0.0005 resulted in short-range chiral order.

(5) In the low-temperature regime, a tendency toward
&3X&3 Neel ordering is observed in the order parame-
ter m&3. The &3 X+3 order parameter is shown to be
strongly Auctuating, in that y&3 apparently diverges as
T~O, indicating criticality. The theory of finite-size
scaling of the order parameter near a critical point has
been applied to m&3, yielding very rough estimates for
the critical exponents. These results are all consistent
with T=O being a critical point.

(6) Warming runs from the q=0 ground state show a
transition near T /J =0.008, indicating metastability
with respect to the &3 X &3 ground state.

(7) The &3 X&3 correlation function C~3(r) shows
power-law decay below T/J=0. 01, indicating a correla-
tion length greater than the simulated lattice size.
Whether or not this correlation length diverges as T~O
is impossible to prove using MC methods, but seems
plausible.

(g) The low-temperature neutron-difFraction powder
pattern shows weak reAections consistent with some de-
gree of &3 X &3 ordering of the spins.

(9) Snapshots of the chiral order indicate chiral
domains of various sizes. The domain walls are shown to
cost zero internal energy and can also move without any
cost in internal energy.

(10) The chiral domain structure is shown to map onto
a triangular-lattice percolation problem at half filling if
short-range chiral correlations are ignored. The triangu-
lar lattice at half filling is at its percolation threshold, im-
plying that there is no natural length scale in chiral
domain structure. Domains of all sizes can in principle
exist.

(11) The efFect of the chiral domains on the spin-spin
correlations is to attenuate them with a power-law decay
that describes the probability that any two spins, separat-
ed by a distance r, are in the same domain.

(12) Comparisons with some results from the high-
temperature series expansion are made. The predicted
behavior of the local susceptibility gh, „, which governs
wave-vector selection, as determined by the expansion, is
shown to be correct with a renormalized temperature
scale. The expansion result for the uniform susceptibility
is confirmed, and the low-temperature limit (Jy„) '=2
is also reported.

We were unable to verify previous reports that true
long-range +3X v'3 ordering takes place at T~O. True
long-range +3X +3 order implies the simultaneous ex-
istence of long-range staggered chiral ordering for which
we have seen no evidence, possibly because of their very
rapid decay with distance. Perfect chiral ordering is un-
stable toward the formation of chiral domain walls which
cost zero internal energy but do provide a gain in entropy
at low concentrations. At high concentrations the oppo-
site should be true since soft modes in the neighborhood
of a domain wall will be stifFened by the wall. Hence the
question of true long-range order at T=O as opposed to
T=O being a critical point will be decided by a subtle
balance between the positive entropy of chiral domain
walls and the soft-mode stiffening that they cause at high
concentrations. It is remarkable that the +3 X +3 corre-
lation function is rather insensitive to the chiral domain
structure. Chiral domain walls simply increase the ex-
ponent in the expected zero-temperature power-law de-
cay of C&3(r) with distance. The observed behavior (in

our work) of the &3 X&3 order parameter, its fiuctua-
tions, the chiral domain structure, and the algebraic de-
cay of the spin correlations all suggest that T=O is a crit-
ical point of the classical Heisenberg kagome antifer-
romagnet, implying that the ordered moment at T=O
vanishes. Our observation of ordered moments is purely
a finite-size effect, and we expect that they scale to zero as
L~ca [see Eq. (24)].

In light of our results, a number of interesting ques-
tions arise which are beyond the scope of this paper. For
example, what are the critical properties; i.e., how do the
various correlation lengths diverge? Also, how do quan-
tum Auctuations aA'ect the chiral domain structure? In-
sight gained from studying the kagome-lattice antifer-
romagnets may be useful in understanding its three-
dimensional analog, the pyrochlore lattice. Indeed, our
results indicate that previous MC studies' of the pyro-
chlore Heisenberg antiferromagnet may not have extend-
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ed to low enough temperatures to see thermal selection
effects.
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