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Correlation functions of the one-dimensional random-field Ising model at zero temperature
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We consider the one-dimensional random-field Ising model, where the spin-spin coupling J is fer-
romagnetic and the external field is chosen to be +h with probability p and —h with probability 1 —p.
At zero temperature, we calculate an exact expression for the correlation length of the quenched average
of the correlation function &sos„)—&so) &s„) in the case that 2J/h is not an integer. The result is a
discontinuous function of 2J/h. When p =—', we also place a bound on the correlation length of the

quenched average of the correlation function & sos„).

I. INTRODUCTION

where the spin at each site, s, , takes the values +1 and
J )0. The external field {h;] is frozen with the value of
the field at each site chosen as an independent random
variable with, say, 50% probability to be +h and with
50%%uo probability to be —h. For a fixed external field {h, ]
and h ~2J, there is more than one spin configuration
{s,], which minimizes the energy. The zero-temperature
entropy has been calculated, ' and for 2J/h not equal
to an integer it depends only on the integer q, defined by

2Jq( (q+1 . (1.2)

For 2J/h equal to an integer, the entropy is larger than it
is when 2J/h is slightly less than or greater than this in-
teger. Thus, the entropy is a discontinuous function of
2J/h. For h )2J, i.e., q =0, the entropy is zero, since the
spins must follow the external field.

We are interested in the correlations between the spin
at site j and the spin at site j+n. For a fixed external
field configuration, even at zero temperature, we must
average over the di6'erent degenerate spin configurations.
We denote this thermal average by & ). An object such
as &s s +„) will depend on the particular external field
configuration, most sensitively on the values of the exter-
nal field near and between the sites j and j+n. What is
typically measured in scattering experiments is the aver-
age over the sample

G(n)—:lim —g&s s +„),1

E J
(1.3)

where the sum is over the X sites of the system. By the

The one-dimensional random-field Ising model is an in-
triguing example of a system with nonzero entropy at
zero temperature. The Hamiltonian for this system is

H= —J ps, s, +, —gh, s, ,

usual ergodic arguments we can replace the spatial aver-
age by an average over the various possible external field
configurations. This allows us to write

G(n) =
& sos„), (1.4)

where the overbar means average over all external field
configurations generated with the probabilistic rule intro-
duced earlier for {h; ].

The ordinary (nonrandom) one-dimensional Ising mod-
el has spontaneous magnetization at zero temperature.
Any nonzero external random field, chosen with equal
probabilities to be +h, destroys this magnetization. This
means that for h %0,

lim —g&sj ) =01

w ~N J
(1.5)

or alternatively that & s ) =0. However, for a fixed exter-
nal field configuration &s ) will generally not be zero at
the site j. In fact, & s ) and &s.+„)will be correlated so
the calculation of

y(n)= lim —g[&s,s, +„) —
&s, )&s, +„)],1

J

which is the same as

y(. ) = &..s„)—&., & &s„), (1.7)

L=
in{2(p —p )'r cos[sr/(q+2)]]

is rather difFerent than the calculation of G (n).
In this paper we calculate the correlation length L of

y(n), which depends on its large-n behavior, i.e.,

y(n) e "~ . -If the external random field is chosen with
probability p to be h and with probability 1 —p to be —h,
we find that
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where q is defined by (1.2) when 2J/h is not an integer.
We study the correlation function G(n) in the case

when the external field is chosen with equal probability to
be +h. We are able to show that for any y such that
y )e with L, given by 1.8 for p =

—,', we have
G(n)~ &y" for large enough n W. e argue, but do not

prove, that the bound is saturated, which would imply
that the two correlation functions have the same correla-
tion lengths. For both y(n) and G(n) we also discuss
how our calculations are modified if 2J/h is an integer.

The random-field Ising model is closely related to the
random-bond Ising model in a uniform field. To see this,
replace each s; in (1.1) with h;s;/h. The new Hamiltoni-
an has a uniform field and random bonds
J;;+,=Jh;h;+, /h . If the h; are selected with equal
probabilities to be +h, then the bonds take the values +J
with equal probabilities, and additionally each bond is in-
dependent of the others. However, if h,. = +h with pA —,',
then the associated random-bond model does not have
the bonds chosen independently. The random-bond mod-
el with independently chosen bonds is what is usually
considered in the literature. For example, in Refs. 1 —3
the entropy is actually calculated in a random-bond mod-
el so these results only apply to the random field model if
p= p.

The description of the degenerate configurations,
which contribute to the zero-temperature entropy, which
we give in Sec. II, is needed before we can attempt to cal-
culate the correlation functions (Secs. III and IV).

{h;j= . +++++
The two spin configurations,

~ ~ ~+

and

{s;j= . . +++++
have the same energy (by symmetry), and by comparing
with two other configurations (where the spins are —+
and + —in the middle) we see that the two illustrated
configurations minimize the energy. This is an example
of zero-temperature entropy.

We have seen that regions of constant h; longer than
2J/h force the spins to line up with the field and that
there are configurations that do not determine the spins.
We now state the general rules that dictate which regions
of the {h; j configuration necessarily determine the spins.

We denote a region of sites as [I,r] if the leftmost site is
l and the rightmost site is r. We define

(2.1)

which measures the difference between the number of
sites at which the random field is positive and the number
at which it is negative in the region [i, r]. We further call
[l, r] an R+ region if it meets the following three condi-
tions:

II. SPIN CONFIGURATIONS AT ZERO TEMPERATURE

For a given external field configuration {h;j, the spin
configurations {s;j are those that minimize the energy
(1.1). The first term in the energy favors agreement be-
tween adjacent sites, whereas the second term prefers the
spin at a site to agree with the random field at that site.
A given {h; j will not uniquely specify the {s;j. However,
there can be stretches of the {h; j that force the associat-
ed spins to take unique values. For example, if we find a
very long stretch where all of the h; =+ 1, then clearly in
that stretch all of the s, =+ 1.

Consider a sequence of k sites at which h; = —1 and
imagine that this sequence is Hanked on both sides by
very long stretches where h, =+1. In the Aanking re-
gions all s;=+1. A simple calculation shows that if
k )2J/h, then the spins in the sequence all match the
external field, i.e., s; = —1, whereas if k (2J/h the spins
are all s; =+1. Note that if 2J/h is an integer and k is
equal to 2J/h, then these two spin configurations both
minimize the energy. Here we see a source of entropy
present only when 2J/h is an integer.

To understand how entropy arises for any noninteger
value of 2J/h & 1, consider a long stretch where h; =+1
followed by a long stretch where h; = —1. This is a deter-
ministic situation where the spins follow the external
field. Now at the break point imagine inserting two addi-
tional sites where the external field takes the values —1

and + 1 so the {h; j configuration is

(i) W'[l, r]) W[l i], / &i &r
R + conditions: (ii) W[l, r ]) W[i, r ], I &i & r

(iii) 8'[i, r] ~2J/h .

(2.2)

Condition (i) says that starting from i, the number of sites
at which h;=+1 minus the number at which h;= —1

has a maximum in [i,r] at r and condition (iii) tells us
that this maximum exceeds (or equals) 2J/h. Similarly,
we call [l,r] an R region if

R conditions:
(i) W[l, r] & W[l, i], l &i &r
(ii) W[l, r] & &[i,r], i &i &r
(iii) W[l, r] & —2J/h .

(2.3)

Now an R+ region favors having all of the spins in
[i, r] be + 1 over having them all be —1, whereas an R
region prefers all —1 spins over all +1. To guarantee
that all spins in an R + region [l, r] be + 1, there should
be no R subregions of [l, r]. We call the region [i,r] a
D+ region if it is an R+ region with no R subregion.
Similarly, we call the region [i,r] a D region if it is an
R region with no R + subregion.

The spin at a given site will be +1 if the site is in a
D + region. Similarly, if a site is in a D region the spin
at that site will be —1. Now a given site will be either in
a D+ region, a D region, or in a region where the spin
is not forced, an E region. With our definitions a D+ re-



9510 EDWARD FARHI AND SAM GUTMANN

gion can be contained in a larger D+ region. We call a
D+ region D+ (for maximal) if it is not contained in any
other D region. Similarly, a D region is a D region,
which is not a subset of a larger D region. Every lattice
site is either in a D, D, or E region. We cannot have
consecutive D+ regions, since together they would form
a D+ region that contained them both. Similarly, two
consecutive E regions will be considered as one E region.

To understand what an E region looks like, consider
three consecutive regions D+, E, and D, and let I be the
leftmost site of E and r be the rightmost site, i.e.,
E=[l,r]. Consider W[l —l, i] as a function of i T.hen
W[l —I, l —1]=+1,since I —1 is the rightmost site of
D+, which must end in a +1 site. For any k E-E,
W[l —l, k] & 1 because if this were not the case then the
D + region could be extended. Similarly
W[r+I, r+ I]=—1 and W[k, r+I]) —1 for kEE.
These two inequalities imply that W[l, r] =0, which
means that the entropy region has the same number of
h; =+1 sites as h; = —1 sites. The function W[I —l, i] is
equal to 1 at i =l —1 and at i =r. It can achieve the
value 1 but not exceed it at other sites in E, and it also
can never go below 1 —2J/h. If it did, subregions of the
E region would meet the conditions for being D+ or D
regions. These properties of W[l —l, i] will be used
when we calculate the correlation functions.

We now describe the degenerate spin configurations as-
sociated with a D ED region. The spins are all +1 in
D and continue to be +1 until some point in E, where
they switch to —1 and remain —1 through D . The last
site at which s; takes the value + 1 must be at i = l —1 or
r or any other possible site in E at which W[l —l, i] hap-
pens to be +1. We will illustrate this with an example
momentarily. First note that a mirror construction is
used for a D ED+ region. It is also possible to show
that no D ED or D+ED+ regions can exist (when
2J/h is not an integer).

As an illustration, suppose 2 & 2J/h & 3 and we have
the [ h; I configuration

[h;}= ++++ ++ + +
1 2 3 4 5 6 7 8 9 101112131415

where the numbers below are the site labels. It is useful
to plot W[l, i] from which we can infer the values of W
on subregions (see Fig. 1). We can see that [1,4] is a D+
region, whereas [11,15], which has W[11,15]=—3 is a
D region. The region [5,10] is an entropy region and if
we look at W[4, i] for 4&i & 10 we see that it is equal to

1 at i =4, 8, and 10. The three degenerate spin
configurations are

[s;]= . ++++-
[s;]= . ++++++++ ~ ~ ~

[s;]= . ++++++++++ ~ ~ ~

1 2 3 4 5 6 7 8 9 101112131415

~ ~ ~

7

It is also interesting to study the same [ h, ]
configuration if 1 &2J/h &2. In this case the only E re-
gion is [9,10] and the two possible spin configurations are

[s, ]
= . ++++ ++ ~ ~ ~

{s;]= . ++++ ++++ ~ ~ ~

1 2 3 4 5 6 7 8 9 101112131415

III. THE CORRELATION LENGTH OF y(n)

Recall that

g(n) = (sos„)—(so ) (s„), (3.1)

where ( ) is the average over different degenerate spin
configurations for fixed [h, ] and the overbar indicates
the average over [h;] In this section we determine the
dominant large-n behavior of y(n) for q &2J/h &q+1
with q an integer. Note that for a given [h, ], sz and s„
are either determined by the external field or they are
not. We can think of so and s„as random variables and
(sos„)—(so)(s„) as their statistical covariance. If ei-
ther so or s„ is forced by the [h;] to take a particular
value, then (sos„)—(so ) (s„) vanishes. Thus for
(sos„)—(s~)(s„) to be nonvanishing, both so and s„
must be in E regions. However, (sos„)—(so ) (s„) also
vanishes if so and s„are independent. Now if so and s„

which do not coincide with any of the three possibilities
for 2 & 2J/h & 3. If 2J/h =2 then all five configurations
are degenerate and the entropy is larger than it is on ei-
ther side of 2J/h =2. In general, when 2J/h is an integer
there are even more degenerate configurations than those
one would discover by looking at 2J/h just above and
just below its integer value. This is because there can be
degenerate configurations, which within a single E region
look in part like those for 2J/h just above its integer
value and in part look like those for 2J/h just below.

W[1, i]
2

FICx. 1. The function W[1,i] for an external
field configuration, which has associated entro-
py'

I I I I I I

1 2 3 4 5 6 7

I I I I I I I

9 10 11 12 13 14 15
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are in different E regions, that is, E regions separated by
at least one D+ or D region, then the value of so is in-
dependent of the value of s„and the correlation vanishes.
For (sos„)—(so ) (s„) to be nonzero for a given {h,. },
both so and s„must be in the same E region.

For a given value of n we will calculate the probability,
i.e., the fraction of configurations {h; },which have 0 and
n in the same E region. The distribution of {h; }
configurations is given by assuming for simplicity that at
site i, h;=+1 or —1 each with probability one-half.
(The calculation is easily carried through with —, replaced
by p. ) As a first step we calculate the fraction of E re-
gions which have length R. Consider an E region, which,
for exampjke, begins at site 1 and ends at site R and has a
D+ region to the left and a D region to the right.
(Note that the sites 1 and R have nothing to do with the
sites 0 and n mentioned above. ) The function W[O, i] as

discussed in the preceding section has the following
properties: (i) W[0, 0]= 1, W[0, 1]=0, W[0,R]= 1,
W[O, i] & 1 for i H [1,R], and, since W[O, i]) 1 —2J/h
with q & 2J/h & q + 1 we also have (ii) W[0, i] ) —

q for
i H [O,R]. The sites just to the right of R form the begin-
ning of a D region. Therefore, the function W[0, i] for
i )R must take the value —

q before it takes the value
+ 1 or else the E region could have been extended beyond
R. So (iii) W[O, i] for i )R goes through —

q before it
goes through +1.

The randomly generated field I h; } can be thought of as
determining (or as equivalent to) a random walk (RW),
where position at time i changes by h;/h. The function
W[O, i] with W[0,0]=1 is the position of the random
walk at time i given that at i =0 the walk is at + 1. If we
call f~ the normalized probability that an E region has
length R we see from (i), (ii), and (iii) above that

fz =N X Prob (RW goes from 1 to 1 in R steps without hitting +2 or —q)

X Prob (RW starting at 1 goes to —
q before returning to 1),

where N is the normalization factor. Actually, we will calculate the transform

(3.2)

f (A. ) = g fbi A,

R=0
(3.3)

which is more useful for our purposes and from which we can infer fz. (The R =0 term in the sum corresponds to an
E region of zero size, which occurs when there are no sites between a D region and a D region. ) Note that the trans-
form (3.3) is intimately connected to the transform of the correlation function g(A, )= gg oy(R)A, ; however we only
need to calculate (3.3) to infer the large n behavior of g(n)

Turning to the first term in (3.2), let

Z, (R)=Prob (RW goes from 1 to 1 in R steps without hitting +2 or —q) .

To find this, we solve for the more general function

Z.(R)=Prob (RW goes from j to 1 in R steps without hitting +2 or —q)

(3.4)

(3.5)

and then set j =1. Since a walk starts at j and immedi-
ately goes to j +1 or j —1 we have for —

q + 1 ~j ~ 1,
with the boundary condition that Z (k) =0 and
Z2(&) =2/X as explained above. The solution is

ZJ(R) =
—,'Z. ,(R —1)+—,'Z ~, (R —1) . (3.6)

By (3.5), Z (R) =Z2(R)—:0 for R )0 and Z, (0)=1. If
we define Zz( —1)=—2 and Z ( —1)=—0 for —

q &j & 1,
then (3.6) holds for R =0 as well as for R )0.

We define the transform

with

1 1u= —+ —1
i,2

1/2 =1and v=

uq J vq+J
J g q+2 q+2

1 —1
A,

2

(3.10)

1/2

Z (A, )= g Z (R)A.
R= —1

which from (3.6) gives for —q + 1 &j & 1,

Z. (A, ) =—,'AZJ, (A. )+ —,'AZJ i, (A, ) .

We can solve (3.8) by making the ansatz that

(3.7)

(3.8)

Thus we obtain

q+ 1 q+ 1

„,+2,q+2

(3.11)

(3.12)

Z,.(A, ) =aui+Pui (3.9) We now return to (3.2) and we see that the second
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which by (3.12) gives

q+1 q+1

q+2 q+.u U

(3.14)

Now (3.14) can be expanded in only non-negative powers
of A, as in (3.3). The normalization condition
gg cfz =1 is equivalent to f(1)=1,which allows us to
solve for N and we obtain

r

q+2 1 uq+' —uq+'
f(A, )= q+2 q+Z (3.15)

Again, if we expand f(A, ) as a power series in A, , the
coefficient fz is the probability that an E region has
length R.

We now turn to finding

Q„=Prob (0 and n are in the same E region) . (3.16)

The answer is

Q„=X' g Rf~
R)n

(3.17)

where we explain each factor in turn. The factor N' con-
tains the probability that 0 is in an E region and other n-
independent factors. For the E region to contain 0 and n
it must have length R ) n. The factor Rf~ is proportion-
al to the probability that an E region has length R given
that 0 is in it. The factor (R n)/R i—s the probability
that n is in an E region of length R given that 0 is in it.

We can also define the transform

Q(&) = g Q„A,",
n=0

which by (3.17) is

(3.18)

Q(&) =X' g g f~ (R n)k" .—
R=1 n=O

(3.19)

It is straightforward to do the sum on n and then on R to
obtain

1 d

i.=1

(3.20)

We have the explicit form of f(A, ) through (3.15) so the
coefficients Q„ in (3.18) can be determined for all n. Thus
we have computed the (unnormalized) probability that 0
and n are in the same E region.

The large n behavior of Q„can be extracted if we know
the smallest value of A, )0, say k„, at which (3.20) blows
up. This is because the expansion (3.18) will blow up first

probability factor is independent of 8 and can therefore
be absorbed in the normalization factor 2V. Thus we have
for the transform f(k) defined by (3.3),

(3.13)

at A, =A,, if Q„-A,, ". Now (3.20) does not blow up at
X= 1 as can be seen by expanding f(A, ) about A, = i. The
only way for (3.20) to blow up at A&1 is for f (A, ) to blow
up. From (3.15) we see that this can occur only if
u i+ =Uq+, where again u and U are given by (3.11). A
simple calculation gives

= cos
q +2 (3.21)

from which we conclude that, for large n, the probability
that sites 0 and n are in an E region goes as

Q„—cos"
q+2 (3.22)

q+2
from which we infer that the correlation length is

(3.23)

ln cos[m/(q +2)] (3.24)

It is worth noting that if we add a constant external
field, no matter how small, then we destroy the zero-
temperature entropy, since the degeneracy is lifted. In
this case y(n)=0 and there is also a nonzero magnetiza-
tion, i.e., (so &&0. Alternatively we can pick the random
field at each site to be +h with probability p and to be—h with probability 1 —p, and then (so &%0 unless

p =
—,'. In this case it is straightforward to redo the calcu-

lation of the correlation length, and we get (1.8).
If 2J/h is an integer, say k, then the calculation of the

large n behavior of g(n) changes in two ways. First, the
probability that sites 0 and n are in the same E region is
larger when 2J/h is equal to k than when 2J/h is slightly
greater than k. For example, when 2J/h =1, site 0 and
site n are in the same E region in the following
configuration:

[h;I = ++ + + + ++
0 n

whereas the entire pictured region is D+ if 1 &2J/h &2.
But this only approximately doubles the chance that 0
and n are in the same E region and has no e6'ect on the

Given that 0 and n are in the same E region we need to
calculate (sos„&—(so&(s„& where the E on the over-
bar denotes average only over those [h; I for which 0 and
n are in the same E region. By examining the d.egenerate
spin configurations in an E region one can see that
(sos„&—(so &(s„&)0 for all [h; I, so no cancellations
take place in this average. We are interested in n large
and the most probable configurations contributing to this
average are those for which the E region is just slightly
longer than n so the site 0 and the site n are near the
edges of E. The number of degenerate spin
configurations associated with an E region is proportional
to its length from which we can estimate that

Combining (3.22) with the estimate of the last para-
graph gives, for large n,
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correlation length.
However the typical value of (sas„) —(sa)(s„) also

changes if 2J/h =k as opposed to k &2J/h &k+1. In
an E region of length n when 2J/h is not an integer there
are of order n configurations and (sas„) —(sa)(s„) is
of order n . When 2J/h is an integer there are more
configurations. For example, when 2J/h =1 an E region
of length L has F~+z configurations where Fz is the Lth
Fibonacci number (F, =F2 = 1, Fr +z =Fi +, +Fr ).
Now for each [h;], (s„s„)—(s0)(s„) is still non-
negative, but (sas„) —(s0)(s„) is of order F„. For
1 (2J/h (2 we have that g(n)-( —,

' )" as can be seen from
(3.22). For 2J/h =1 we have y(n) —( —,')"F„,and, since
F„—[(I+i 5)/2]", we infer that L '=In[(1+i/5) /2].

IV. A BOUND ON THE CORRELATION FUNCTION 6( n )

We are interested in the correlation length of (sas„) in
the case when the external field is chosen with equal
probabilities to be +h at each site. In this case (s0) =0.
We begin by using the symmetry of the problem to identi-
fy a class of the [b,. ], which has the property that (sas„)
averaged over this class is zero. Roughly, this is the class
of [h; ], where sites 0 and n are separated by at least two
disjoint D regions. We then will estimate the probability
that the sites 0 and n are not in this class. This turns out
to have the same large n behavior as the probability that
sites 0 and n are in the same E region, which was relevant
in calculating g(n).

Suppose we are given a particular external field
configuration [h, ]. Let [la, ra] be a minimal D+ or D
region with ra 0 and ra as small as possible. (A minimal
D+ or D region has no subregion that is a D+ or D
region. ) Let [l„,r„] be a minimal D or D region with
l„~n and l„as large as possible. Suppose [la, ra] and
[l„,r„] are disjoint, that is r0 (l„(which is likely if n is
large). Switching all the random field signs at
l„,l„+„l„+2, . . . has the effect of leaving ( sa ) unchanged
but reversing the sign of (s„). Note that
(s0)(s„)=(sas„) in these cases and also that perform-
ing the switch twice returns us to the original
configuration. Thus (s0s„) averaged over all of these
configurations is zero.

A =1—W[a +1,—1],
P = —

q
—1 —W[a +1,—1]

(4.1)

(where for a = —1 we define W[0, —1]:—0). Thus for a
fixed configuration at the negative sites, the distribution
of ro ~ 0 depends only on the single number
W[a + 1, —1],which obeys —

q
~ W[a + 1, —1]~ 0.

As in the preceding section, we view W[O, r] as
equivalent to a random walk. Let

Next we estimate the probability of obtaining a
configuration of external fields [h;] with ra~i„. It is
these configurations that produce a nonzero correlation
function. The reader who wishes to skip the details of
this estimate should proceed to Eq. (4.11), which gives
the result.

We begin by calculating the distribution of ro, which is
the smallest non-negative site which is the rightmost site
of a D region. Fix h, , h 2, h 3, . . . . We actually cal-
culate the distribution of ro conditional on these values.
We will see, however, that the probability of ro being
large will be essentially the same for any choice
h i h 2 A 3 . . ~ . Given the random field at the nega-
tive sites, find the largest value of a (0 so that [b,a] is a
D region for some b &a. Without loss of generality, as-
sume it is a D+ region. (Note that the external field at
the non-negative sites may make [b,a] part of an even
larger D region. However, a is defined only using the
values of the fields at the negative sites. )

Consider W[a + 1,r] as a function of r + a + 1. If
W[a+l, r] reaches the value 1 before it goes through—

q
—1, then the D+ region [b,a] can be extended. This

cannot happen for r & 0, for if it did a would not be the
largest negative site ending a D region on the right. If
W[a+1, r] reaches the value —

q
—1 at some r before

reaching the value 1, then there is a D region with r as
its right end. Again, but assumption, this cannot happen
for r &0. We can see now that ro is the smallest value of
r +0 such that W[a+ 1,r]=1 or W[a+1,r]= —

q
—1.

Because W[a + l, r]= W[a +1,—1]+W[O, r] for r ~0,
we can say that r0 is the first r such that W[O, r]= A or
W [0,r] =8 with

Y (R ) =Prob (RW starting at j first hits 2 )0 or B (0 at step R ) . (4.2)

Note that

Prob(ra=R ~h, , h ~, . . . )= Y'0(R +1) .

Now

Y.(R)= —,
' Y i(R —1)+—,

' Y +i(R —1)

(4.3)

(4.4)

Y (A, )= g Y,:(R)A,
R=0

as we did in the preceding section to obtain

A+g —B B
0(~)— ~+2 ~+2

(4.5)

(4.6)

with the boundary conditions that Yz(0) = Yii(0) = 1 and
Yz (R ) = Yji(R ) =0 for R )0. We can solve for the trans-
form of Y (R),

where again u and v are given by (3.11) and we have used
the fact that A B=q+2. Note th—at Y0(A, ) blows up
for the first time at A, , given by (3.21), which is indepen-
dent of 2 and 8.
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The coefficient of A,
+' in (4.6) gives the probability

that ro has the value of R given a fixed h
which determine 3 and 8. Similarly we could obtain an
identical expression for the probability that n —l„has a

given value for a fixed h„+&,h„+2, . . . . We are interested
in calculating the probability that ro l„with
h, , h z, . . . —= [h I and h„+,, h„+2, . . . =—[h I both
fixed. Now

Prob(ro & l„[h & I, [h & I ) =1—Prob(ro ( l„~ [h & I, [h & J )

=1— g Pr ob(r o=i, n —l„=j~[h & I, [h& I) .
i j ~0

i+j(n

(4.7)

The probability that ro =i depends on the random field at sites ~ i, while the probability that n —l„=j depends on the
sites & n —j, which do not overlap in the sum in (4.7), so the distribution can be taken as independent. It then follows
that

Prob(ro & l„[h & I, [h & I ) = g Prob(ra=i [h & I ) Prob(n —l„=j [h & I ),
i j ~0

i+j~n

(4.8)

so for the purposes of our calculation we can treat the full distributions of ro and n —l„as independent. Consider the
transform of the probability that ro+n —I„has the value k:

Pr ob(r 0+n —i„=k~ [6& J, [h& I)A,"= g Prob(ra=i [h & I)X'
k=0 i=0

Prob(n —l„=j ~ [h & I )V
j =0

(4.9)

Both transforms on the right-hand side are of the form
(4.6) and the product blows up at k, given by (3.21) so we
can say that for k large

We can write & sos„& as

&s,~„&=/(~)+&s, &&s„& . (4.13)

Prob(ro+ n —l„=k
~ [h & I, [h & I ) —cos"

q+2

(4.10)

from which we infer that

Prob(ro & 1„)-cos"
q +2 (4.1 1)

if y & cos, then
~ &sos„& ~

~y",
q+2

for n large enough . (4.12)

for large n.
The only configurations of the external field which con-

tribute to &sos„& are those for which ro&l„. Given a
configuration with ro & l„we expect &sos„&—+1 or —1.
We have not shown that cancellations do not conspire to
make the average of &sos„& over those configurations
with ro & l„of order x" with ~x (1. Hence, we can only
assert that

We know that g(n) &0, and from (3.23) we see that it de-
cays as cos"[m/(q+2)]. Therefore, if &so&&s„& is non-
negative, we can conclude that & sos„& has as its correla-
tion length L, given by (3.23). However, we have not
been able to prove that & so & & s„& & 0, although the fol-

lowing argument makes us believe that it is. Consider
setting the spin-spin coupling, J, equal to zero, which
gives &so & & s„&=0. For J & 0 we expect the ferromag-
netic coupling to induce a positive correlation between so
and s„, even in the quenched average. For this reason we
believe, but have not proven, that the correlation length
of & sos„& is L given by (3.24).

Finally we remark that if 2J/h =k, an integer, the ar-
gument leading to (4.11) again gives (4.12) with q =k.
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