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W'e consider the effect of the exchange disordering, mainly the nonmagnetic dilution, on the low-

temperature properties of the quasi-one-dimensional classical antiferromagnets. Dynamic susceptibility
expansion in defect concentration shows that even a low level of doping substantially changes the spin-
wave stiffness and the transverse susceptibility. We investigate the nonperturbative concentration depen-
dencies of the spin-wave velocities and susceptibility arising when the impurity concentration exceeds
the small characteristic value xo =+J, /J1. A general result, pertinent to the true three-dimensional an-

tiferromagnets as well, concerns the excitation spectrum of the disordered nonfrustrated antiferromag-
nets with nonAuctuating anisotropy. In this case the hydrodynamical description of long-wave excita-
tions breaks down, and the spin waves with energies near the anisotropy gap are overdamped.

I. INTRODUCTION

The properties of the one-dimensional (1D) and quasi-
one-dimensional antiferromagnets have been intensively
investigated for many years. It is well known that there
is no long-range magnetic order in the ground state of the
true one-dimensional antiferromagnet. The (small) inter-
chain interaction J~, which is always present in any
quasi-one-dimensional substance, suppresses the strong
quantum spin fluctuations in the chains and leads to a
three-dimensional magnetic order. This effect of J~
differs for different spin systems. For integer spin-S sys-
tems, the J~ coupling should exceed a threshold value to
be able to produce an ordered state, ' while for half-
integer spin-S systems antiferromagnetism is established
whatever the small J~ is. Clearly, the properties of the
quasi-one-dimensional antiferromagnets characterized by
strong zero-point spin fIuctuations can be quite unusual.

The spin-wave expansion of staggered magnetization
demonstrates that these fluctuations are suppressed only
if the parameter y =(2rrS) 'ln(J
in-chain coupling). The corresponding system may be
treated classically. Let us stress that the parameter y de-
pends on JI~/J~ only logarithmically, while the preloga-
rithmic factor is small for S )—,. This explains why the
Neel ground state is a good approximation for many
strongly anisotropic antiferromagnetic systems. '

In this paper we consider the effects of disorder in the
classical quasi-1D antiferromagnets. The accent is put on
the disorder resulting from nonmagnetic dilution.

It was recognized quite long ago that nonmagnetic im-
purities cut the chains into segments, connected only by a
weak interchain coupling and, thus, strongly affect their
magnetic properties. There was a series of very illumina-
tive experimental and theoretical papers (Refs. 4—7 and

references therein) in the 1970s and 1980s that focused on
the study of the Neel temperature dependence of the
dopant atom concentration. It was shown, e.g. , that
0.5% of Cd atoms depress the Neel temperature of
(CH3)&NMnC13 (TMMC) by a factor of 2. The theory de-
rived in Ref. 6, although not rigorous, gives a fairly satis-
factory interpretation of these measurements.

The available experimental and theoretical results are
concerned mainly with the situation above the Neel tem-
perature. As for the low-temperature static and dynami-
cal properties, the information is poor and fragmentary.
Neither systematic measurements of the transversal spin
susceptibility and spin-wave spectrum has been per-
formed nor a theory for the concentration dependence of
these quantities been worked out. We are aware only of
the very interesting neutron studies of static and dynamic
spin correlations inside one-dimensional segments.
However, no data have been obtained concerning the
spectrum of the spin waves delocalized due to segment
exchange coupling via a J~ interaction.

We would like to point out that it is practically impos-
sible to get such data on materials such as TMMC with
low Neel temperatures T~=1 K. As we will see below,
the upper limit of the delocalized spin-wave excitation
spectrum co,„(T& (x =0) is too small to be resolved in
a neutron-inelastic-scattering experiment (x is the non-
magnetic impurity concentration). From this point of
view, magnets such as K2Fe, Ga F~, where
T(x =0)=6.95 K, s look more promising.

Here we present a theory of transverse magnetic sus-
ceptibility and the spin-wave spectrum of disordered clas-
sical quasi-1D antiferromagnets. The concentration ex-
pansion of the dynamical transverse susceptibility
demonstrated to us that in this case one should expand in
x(J~~/Jt)'~ . It follows that only at x &&xo=(Jt/J~~)'
are the concentration corrections to all the magnetic
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characteristics small. If xo «x « 1, the susceptibility g
strongly depends on x, and this dependence cannot be
calculated perturbatively. This is in contrast to the case
of the isotropic system with Jj =

J~~, where the natura1 ex-
pansion parameter is x.

We will see that in the concentration interval
xo «x «1 the excitations inside the segment can be
neglected. Thus we can consider segments as rigid spin
molecules connected by the J~ coupling. This gives for
the static transversa1 susceptibility y ~ x lnx '. The
transversal and longitudinal spin-wave velocities are pro-
portional correspondingly to x (lnx ') '~ and
x '(lnx ') '~ . The system becomes more isotropic as
x increases.

As a by-product of our calculations, we received a gen-
eral result concerning the spin-wave spectrum of any an-
tiferromagnetic system with exchange disorder. It is
known that in a Heisenberg system low-frequency spin
waves are hydrodynamical however strong the disorder
is, provided there is no frustration. In this paper we
show that a combination of small nonAuctuating easy-
axis magnetic anisotropy and nonfrustrated exchange dis-
order leads to nonhydrodynamical spin-wave behavior:
The spin waves are overdamped in the q ~0 limit.

Clearly, nothing like this can occur in ferromagnets.
Indeed, while no solution with uniform rotations of sub-
lattices is possible for disordered antiferromagnets, for
ferromagnets a uniform spin rotation does give the q —+0
solution. Our result may explain the experimental obser-
vation by Uemura and Birgeneau.

The paper is organized as follows. In Secs. II and III
we present the results of a concentration expansion for
bond and site defect models. In Sec. II one can find also
a discussion of nonhydrodynamic spin-wave behavior in
easy-axis antiferromagnets with exchange disorder. The
nonperturbative case x & xo is discussed in Sec. IV.

A short version if this paper has been published in Ref.
10.

II. VERY DILUTED SYSTEMS:
BOND PROBLEM

To begin with, let us consider the simplest defect: a re-
moved bond between two nearest neighbors in a chain.
In the experiments mentioned above, the site-diluted anti-
ferromagnets have been investigated, but the simplest
model we are going to study in this section allows us to
understand the most important features of the problem in
the low-concentration limit.

The Hamiltonian of a two-sublattice quasi-1D antifer-
romagnet with a removed bond between the nearest-
neighbor spins S and S„ in the chain may be written as

H= g J;(S,, S~)—6 g (,')2 —ll(S, S„2) .
&ij ) P =1,2 I

Here the sum is over all nearest-neighbor bonds, 5)0 is
the magnetic anisotropy constant, and the intrachain J~~

and interchain J~ exchange interaction energies are posi-
tive.

We shall consider low temperatures T « T&
-(JllJ~)', when the thermal Iluctuations can be
neglected, and suppose that the parameter y «1. Thus,
as has been explained in the Introduction, the quantum
fluctuations can be neglected too. Let us introduce the
retarded boson Green's function

(2)

where 8(t) is the step function, ( . . ) z denotes a
Boltzmann average, and c, , c; are the Holstein-
Primakoff operators for the spins in the sublattice p.

The transformation from S to c,c is

S;1 =(2S)' c;1, S;1 =(2S)' c;1, S 1
=S—c;1c;1,

S;2 =(2S)' c;2, S,2 =(2S)' c;~, S,'2 = —S+ct2c,2 .

—SJ(q)
—co+J(0)S+2Sb

In an ordered crystal the Green's-function matrix is given by

co+J(0)S+2SA
p(co, q)=g(co, q) SJ( )q

where

g ( co, q ) = (co —co )

co (q) =coll(q, )+coj(q~)+4Jll(0)S b, ,

ll(q, )=S [Jll(0) Jll(q )]

The spin-wave spectrum

co~=S I[J(0)+26] —J (q)] .

In the quasi-1D antiferromagnets, the spin-wave
dispersion law can be written in the form

The axis z is directed along the chains and
q~=(O, q„,q ). At small q and b, =O, the spectrum is
linear with velocities

(0)S, c ~ [Jll(0)J~(0)] 2S

The Careen's function in the doped crystal can be writ-
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ten in the form

G(q, q, )=Go(q)6 +Go(q)T(q, q, )CO(q, ), (8)

T(q qi)= V(q qi)+ —& V(q q2)GO(q2»(q. qi) .
q2

(9)

where the single-defect T matrix is governed by the equa-
tion

Here V(q, q, ) is the perturbation energy and N is the
number of sites in a sublattice. For the model described
by the Hamiltonian (1), the matrix V(q, q, ) has the form

exp[i(q —q ) R ]
V(, )= —2J S exp(iq R„—iq, R )

exp(iq R —iq, R„)
exp[i(q —q, ) R„] (10)

The integral Eq. (8) can be solved easily, since all matrix
elements of the perturbation energy V(q, q, ) are separ-
able functions. The solution can be written as

T(q, q, ) =A '(co) V(q, q, ),
where

2JiiSA(co)=1+ g [J(0)—J(q) cosq, dll+2b, ]g(~,q)

(12)

The dynamical susceptibility

y(co, q) = —S g G~~ (co, q) (14)

can be now calculated immediately. It follows from Eqs.
(9)—(13) that

x(~,q)

2S [J(0)+25 J(q) Jll( 1 q dll )A ( )]
co —co —2x coque( co, q)

(15)
Here the self-energy X(co,q) equals

(,q)= —A-'( )","J„S'[J(0)+2~—J«) o &,d,l].
(16)

For the Heisenberg antiferromagnets (b, =0), the spin-
wave dispersion is given by the equation

(q)[1 A (~) (q)[~II(q)+ ~~(q)]] (17)

In the hydrodynamic limit ra((S[Ji(0)Jll(0)]', the
renormalization of the spin-wave velocity is proportional

d~~ is the lattice constant in the z direction.
One can easily check (and we will show it a little bit

later) that for quasi-1D systems A(0)-(Ji/Jll)' «1.
Thus, at low frequencies, the scattering by the defects is
strongly enhanced.

Averaging Eq. (7) over the random distribution of the
removed bonds, we obtain at first order in the defect con-
centration x the following expression for the averaged
function G (co, q):

C(co, q) =Co(co, q)+Co(co, q)xT(q, q)G'0(cu, q) . (13)

to A '(0). For quasi-1D systems, A(0) can be written as

J (0)Jll(0) —J (q)Jll(q)A(0)= d q
(2ir )' J (0)—J (q)

(18)

where Q is the unit-cell volume.
The main contribution to the integral (18) comes from

the small values of the longitudinal component of the
momentum q, - ( J~ /Jll )

' . Thus the denominator in Eq.
(18) can be expanded in q, . Integrating over q„we find

A 0) a[J& 0)/8Jll(0)
1jZ

Ji(0)

(19)

where c (8) [co(0)] is the spin-wave velocity in the doped
[undoped] crystal and 0 denotes the angle between q and
the z direction.

One can see from Eq. (20) that the concentration ex-
pansion parameter is not x, but rather x ( Jll /Ji )'; i.e.,
the modification of the spectrum by impurities is large
even at small x if x )xo=(Ji/Jll)' . At such concen-
trations the expansion in a power series in x is not appli-
cable, and new concentration dependences of the spin-
wave velocity and susceptibility should be expected.

To clarify the origin of the parameter x (Jll/Jl )'/', let
us consider the motion of the spin excitation near the de-
fect. We denote by n the number of transversal bonds,
which the spin excitation uses to go around the defect.
Then the time ~ that the spin excitation needs to go
around the defect is a sum of 1/J~n and n /J~~ ..

n 1+
J[/ JJ n

(21)

Indeed, the term 1/J~n is a characteristic time of jump-
ing to an adjacent chain, while the term n /J~~ describes
the time necessary to go through the chain section con-
taining n transversal bonds.

It is not accidental that Eq. (21) looks like the formula

Equations (15)—(19) yield the renormalization of the
spin-wave velocity,

c(0)—co(6) = —xa '(8Jll/Ji )' (coll cos 6+ —,'coi sin 9),
(20)
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for the connection of conductivities J~~ and J~ in parallel
and in series. The deep analogy between the propagation
of spin excitations in an antiferromagnet with exchange
couplings J, and electrical current in the network with
conductances o.

," ~ J; between the sites i and j has been
established by Harris and Kirkpatrick. " The time ~ has
a minimum (the probability to leave the chain has a max-
imum) for large n =(J~~/Ji )' . Perturbation theory
breaks down when this quantity is of the order of the
mean segment length x

The spin-wave damping is given by

I (rd, q) = ImX(cd, q)
26)

q

x QJii(0)rd (coiiK +2 'co%i )

3irJi(0)co~~coia rd(q)
(22)

The relative damping I (rd, q)/rd «1 if cd «S(JiJ~~)'~
and x «xp.

When the frequency exceeds the maximum transversal
spin-wave frequency rd))s(J~~~Ji)', the transversal in-
teraction can be omitted in Eq. (16). Thus

and

A(rd)=i +O(rd /J )
4JII(0)

(23)

If the spin-wave length A, =q,
' is smaller than the

mean segment length x ', the second term on the right-
hand side of the Eq. (23) is small; i.e., well-defined spin
excitations within a segment exist.

The uniform static susceptibility obtained from Eqs.
(15), (16), and (19) is given by

g= J~~ '(0) [ I+xa[2J~~(0)/J~(0)]' (24)

X(rd ado'q) rd Jli(0)s bA '(ado)

2J~~(0)

2 Ji(0)

2coo( cd ado )
+i2QS a vr

JJ (0)coicoi~

(25)

The susceptibility increases rapidly with the increase of
the doping. At small defect concentration x =x p, the
susceptibility is approximately 2 times larger than in the
undoped crystal.

Let us consider the effect of a small magnetocrystalline
anisotropy b, ((J&(0). It follows from Eq. (16) that at

q ~0 the self-energy is given by

It is proportional to the same parameter (J~~/Ji )' as the
correction to the spin-wave velocity. The relative damp-
ing

Imco x
COp

1/2

J J1/2 (27)

III. SITE DEFECTS

The problem of spin-wave renormalization in a cubic
crystal with site defects was studied many years ago. A
comprehensive review can be find in Refs. 12 and 13.
Here we shall consider how these results are modified by
strong exchange anisotropy in a tetragonal antiferromag-
net.

Suppose that the host spin in a site R is substituted by
an impurity spin S, interacting with nearest neighbors by
the exchange energy J'(r). The Hamiltonian can be writ-
ten as the sum of the perfect crystal Hamiltonian and the
interaction Hamiltonian H;„„which equals

0;„,= g [J'(5)SR SR+s —J(5)SR.SR+s] .
5

(29)

The vector 5 points to the nearest neighbors of the im-
purity spin S'.

According to Wan, Harris, and Kumar, ' it is con-
venient to define the operators c;,c; on the defect site
via a non-Hermitian transformation

becomes large at small q ~(rd —coo)'~ . This means that
the hydrodynamic description of spin-wave excitations
breaks down, and the spin-wave scattering resembles the
scattering of electrons on a short-range random potential.
This result does not depend on the relation between J~~

and J~ and is valid for any disordered antiferromagnet.
Indeed, the equations of motion for S,+, and S;2 in a
disordered antiferromagnet can be written as

rds;+, =Sg J;kS;+, +Sg J;kSk2+2b, ss;+,
k k

(28)
rds, 2

= —S g J k S,2
—S g Jij,s; i

—2b SS,2
k k

It is easy to verify that the uniform rotation of the sublat-
tices S;1 =C] S.2 =C2 does not satisfy these equations.

Let us recall that in disordered ferromagnets the situa-
tion is quite different. The equations of motion for S;+
have a uniform solution with a shifted frequency co —2AS;
i.e., the anisotropy does not affect the spin-wave damping
at all.

It should be noted that an anomalously strong increase
of the spin-wave damping has been observed in a diluted
antiferromagnet Mn zn, „F2 when x was near the per-
colation threshold, i.e., when the exchange disorder was
sufficiently high.

where rdo=2S [J~~(0)6]'
Thus the renormalization of the spin-wave gap is

rd(q =O, x =0)—cd(p =O, x) =xacdo[J~~(0)/2J (0)]'

(26)

S,+, =(2S)'"c,,
S;i =(2S)' c;, [I+(13—1)P;],

S,+, =(2S)'"c,', ,

S,2
=(2S)'i c;2[1+(13—1)p, ],

(30)
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where P=S'/S; P,. = 1, if site i is occupied by the impuri-
ty and P, =0 otherwise.

The Hamiltonian (29) can be rewritten with the aid of
(30) in terms of the operators c, and c,t

H;„,=Sg (cRi+cR+&2) IcR, [J'(5)—J(5)]
5

+ctR+s2[J'(5)/3 —J(5)]] .

(31)

It is seen from this expression that the interaction matrix
for the simple tetragonal lattice is a 7 X 7 matrix with ele-
ments depending on four exchange parameters

c. =J' —J c =J' —J
II II

(32)

Here JII and J~ are the nearest-neighbor interaction ener-
gies along and perpendicular to the tetragonal axis. The
numbers of the nearest neighbors are zII

=2, z~ =4.
To solve the set of Eqs. (8) and (9), we should use the

unitary transformation, decoupling the set of equations
into subsets in accordance with the irreducible represen-
tations of the crystal point group. For the simple tetrag-
onal crystal, the matrix of the transformation is'

1 0
0 1/2
0 1/2

U= 0 1/2
0 1/2
0 0
0 0

0
1/v'Z

1/&Z

0
I /&2

—1/&2 0
I/&2

0
I /&2

—1/&Z

1/2
1/2

—1/2
—1/2

(33)

After the matrix T'"' is found (p labels the representa-
tions), the Green's function, averaged over the impurity
distribution, can be obtained at first order in the defect
concentration from Eq. (13) with

A' '(co)=1 —
2pllS

—g sin (q, dll)[J(0)S —co]g(co, q) .
1

q

(39)

T(q, q, )= g T"(q, q, ) .

T is a 2 X2 matrix in the sublattice space.
The self-energy X(co,q), defined by

co =coq+2xco X(co,q),

(34)

can be written in terms of the T-matrix elements

X(co, q)=(2co ) '[J(0)S(T„+T~~)—J(q)S(T,2+T2, )

+co(Tii —Tz2)] . (36)

T i (q, q') =
&z&

sin(q, dll )sin(q, 'd
A' '(co)

(38)

For a quasi-1D crystal, only the representations 2, [the
first three columns in the matrix (33)] and 22& [the fifth
column in (33)] are relevant, since only these representa-
tions describe the spin-wave scattering by the perturba-
tions of the in-chain interaction proportional to cII and pII.

Let us begin with A2&. It follows from Eqs. (32) and
(34) that the corresponding perturbation energy is (for
definiteness we put the impurity at a site of sublattice 1)

1
VI =2pllS z g sin(q, dll )sin(q'dll cq2cq. z . (37)&'

q, q

Equations (9) and (37) yield

Q d g coque

3 2

ReX' '(coq, q) = —
coll(q, )

COq

= —
coll(q, )[Jll (0)/Ji(0) ]'i (41)

Thus, as in the case of the bond dilution, the renormaliza-
tion of the spin-wave spectrum is small only at
x &(xp &&1.

The spin-wave damping

Equations (38) and (39) resemble Eqs. (11) and (12) for a
bond defect.

In the case of a vacancy, J'S'=0, and we have, for
A"'(0),

A' '(0)=l- eo (q, )
(40)

Jll(0) X co2(q)

which is of the order of (Ji/Jll )'~ ((1.
If the defect is located in sublattice 2, then

T2' '(co)=TI '( —co). The matrix elements of the full T
matrix are

T(2) T(2) T(2) T(2) T(2) T(2) 011 2 & 22 1 & 12 21

From Eqs. (36)—(40) we find that, in the case of a vacan-
cy,

where I l2l=x lmyl2l(co, q) =x(Jll Ji ) co (q)coll(q ) q" (42)
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is smaller than the frequency cuq if x ((xo.
When J'S'WO, the function A(0) is of the order of uni-

ty and the contribution of the representation 22U to the
self-energy is small at x «1. The effect of the represen-

tation A
&

is more important in this case.
It follows from Eqs. (32) and (34) that the perturbation

energy, corresponding to A ), is given by (the impurity is
in the first sublattice)

1
~1 X [ ll(c ) + Yll(q) —,2)(Ell '1+Pllyll('q ) — '2 )+ )( 1 +y)(q) —2)(E). '1+P)y)(q ) —'2 )]&'

q, q

Here

yll q)=2 ' g exp(iqll~ll) cosq, d

y~(q)=4 ' g exp(iq5) )=2 '( cosq d~+ cosq d~) .
5~

Let us define two-component column and row vectors

(43)

(44)

(45)

Then the solution of Eq. (9) with Vz~ given by Eq. (43) can be written in the form

(46)

where

g &g (q)~C (q)~q (q)&
q

(48)

1=—g~.g (q, ~) t s.[co+J(0)S —J(q)Sy, ,(q)] —p„y (q)[co—J(0)Sy,(q)+J(q)S]] (47)
q

AI"(~)=(1—A
llll

)(1—A~, ) —A, g~

The matrix T'2" for the antiferromagnet with the defect in the second sublattice is governed by Fq. (46) with ~ re-
p»ced by —ro and the elements of the column

~

r)" & (the row & g ~ ) interchanged.
A s™pieexpression for A(0) can be obtained when Jll /Jll =J~ /J~—:j:

+ ll(o) )(0)(jP— )—g [yl, (q) —y, (q)]'co '(q), .

The function A(0) =0 if j =0, i.e., if the defect spin does not interact with the host spins. Clearly, this result does not
depend on the value of the impurity spin.

In a quasi-1D antiferromagnet, the terms proportional to J) can be neglected in all expressions, except co(q). Then
Eqs. (44), (45), (47), and (48) yield

A')"(co)=J [1—coJll(0)(1 —/3)go((o)] —(oJll '(0)I1 —jP+cogo(co)[Jll(0)(j —I)+(o(jP—1)]],
where the local Green's function

(50)

go((o) =—g [co'—co'(q) ]
q

The T matrix in this case can be written as
2

T())(q q~)— +

(51)

(52)

It follows from Eqs. (52) and (36) that

()) + ()) [Jll( ) ll(q)yll(q ]+~['ll )'llyll(q)] ())
1 2 1

('o q) A', "(co) A', "(—co) A', "(co)
(53)
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In leading order in m and q, we get

X'"(co,q)=(1 —j ')coll(q, )

+co(q)J
~~

(0)(1—P)'go(0)

Jii (0)S
ReX"'(co, q) = —co(q)(1 —P) 3 Jd'q

(2n. ) co (q)

(P—1)'[Jii(0)/J, (0)]i"

(54)

(55)

be used to study the concentration dependences of the
spin-wave velocity and the susceptibility in the interval
xo &(x ((1.

We consider here only nonmagnetically diluted antifer-
romagnets. The interchain interaction will be treated in
the molecular-field approach. This approximation is
justified for the long-ranged J~(r) coupling. It is natural
to suppose that, as usual, the molecular-field approach is
good enough for the short-range interaction as well.

Using this approach, the energy per a segment contain-
ing n spins may be written as

We see that the renormalization of the spin-wave spec-
trum in quasi-1D antiferromagnets, doped by magnetic
impurities, is enhanced if S'WS. The enhancement factor,
as in antiferromagnets with vacancies, is equal to
[J~~(0)/JJ (0)]'

In the case of vacancies, the full renormalization is a
sum of the term (55) with p=0 and the term given by Eq.
(41):

Rex'(co, q) =xxo ' [b,co(q, )+b2co(q)], (56)

where b, =1, 62=1.
For magnetic impurities with S WS, only the contribu-

tion of the self-energy (55) is important. In this case the
spin-wave damping

E = —JiiS g cos(8;+0~ )

i,j =i+1
—Ji(0)S g cos(8;+8) HS g—sin8, . (60)

0~+02+6 0& =H 0 +0 ]+60 =H

20;+0, +&+0, , +h0, =H, i =2, 3, . . .n —1,
(61)

Here 0, is the canting angle of a spin S, in the external
field H and the angle 0 determines the mean value of the
spin direction in a sublattice (Fig. 1). The sum in the first
term is over the nearest neighbors in the chain.

Minimizing the energy at small H, when all 0, are
small, we obtain

I'"=x lmy'"=x (P—1) J (0)ccq
co'( )

2
coII cOJ

(57) where

The expression (57) determines the damping for all kinds
of impurities we are considered here.

The relative damping

Ji(0)/Jii, H =H/Jii —h 8 (62)

Solving these equations, we find (see the Appendix) that
for even segments (n =2k) all 8;=0, while for odd ones
(n =2k+1)

-xcoqJi '(P —1) (58) 0j=0„=H/hn . (63)

is small for frequencies mq « Tz if x «xo.
The unusual q dependence of the damping stems from

the local nonequivalence of the sublattices produced by
the impurities with S'AS. "

It should be noted that the representation 3, is
relevant also for the investigation of the impurity effect
on the properties of quasi-2D magnets. However, for
quasiplanar magnets the enhancement is smaller, of the
order of 111(J~~/JJ ).

Finally, we discuss the concentration dependence of
the static uniform susceptibility y. It appears that only
the representation 3

&
contributes to the renormaliza-

tion of g. The susceptibility increases as

P (n) = exxp( nx), —

we get that

g;&0
s;

SI

Averaging with the nearest-neighbor distribution func-
tion

Ily=(2J )
' 1+2x(P—1) f d q(2') co (q)

(59)

The renormalization, as for the spectrum, is of the order
of x /xo for all kinds of defects we are considering.

IV CONCENTRATIONS xo «x « 1'
NONPKRTURBATIVE TREATMENT Sj

6;&:0

When x &&x0, the concentration expansion breaks
down, though the dilution may be weak in the usual
sense, x «1. Thus a nonperturbative approach should

FIG. 1. Orientation of spins S&; (sublattice up) and S„(sub-
lattice down) which belong to the same segment. H is the exter-
nal magnetic field, and the angle 0 specifies the orientation of
the sublattice magnetization.
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xH
Ji(0)S

To calculate y, let us sum Eqs. (61). One gets

8;=—(8, +8„)+ nH—.1 1

2 " 4

(64)

Finally, averaging over n and using Eq. (63), we obtain
the concentration dependence of the susceptibility per
spin:

8; =Ji '(0)x lnx
xS
H, .

(65)

where o.
i~,

o.|are the conductivities of a network with con-
ductances J;. between sitesi and j.

According to Refs. 14 and 15, in a quasi-1D conductor
0

~~

Jix, cri Ji. Thus Eq. (66) yields

The dependence y(x) may be obtained qualitatively con-
sidering the orientation of the rigid spin segments in the
external field. Segments with an even number of spins do
not contribute to the low-field susceptibility, while the to-
tal spin of the odd segments is S, and there the contribu-
tions is y„-( nJi ) '. Averaging g„ leads to the depen-
dence (65).

The deviation from the rigid segment picture is of the
order of x '(Ji/J~~ )' && 1.

The spin-wave velocities can be determined from the
Harris-Kirkpatrick relation"

(66)

anisotropy of the exchange coupling in the host material
is important.

We considered above only the nearest-neighbor in-
teractions in a chain which connects segments cut by va-
cancies. However, it is not difficult to take into account
the interaction of the next-nearest neighbors as well. Cal-
culating a new expression for A(co), we have shown that
this coupling Ji may be neglected if Jl/Jll «(Jll/Ji)1/
Thus, even if J& exceeds Jz, it may still be irrelevant.

If this inequality is not fulfilled, the segment coupling
via the J& interaction is more important than that via the
interchain coupling. Hence, at sufficiently high x, the
susceptibility per segment with n spins is of the order of
J

&

', and the mean value of g per spin is ~ xJ
&

'. This is
in contrast with the dependence Eq. (65). Thus it is possi-
ble to find out experimentally whether the next-nearest-
neighbor coupling or the interchain interaction is more
important.

ACKNOWLEDGMENTS

I.Y.K. acknowledges the Israel Centre of Absorption
in Science, the Wolfson Foundation, the U.S.-Israel Bina-
tional Science Foundation and the Israel Ministry for Sci-
ence and Technology for financial support.

APPENDIX

Let us introduce the new variables P;=8;+8;+, and
sum any ith and (i +1)th equations of the set (61). Then
this set is rewritten in the form

c„J,(0)x -'( lnx -')-'",
ci ~ Ji(0)x '( lnx ')

(2+h)p, +$2=2H, (2+h)(t„,+$„~=2H,
(2+h)(t;+P;+, +P;,=2H, i =2, 3, . . . , n —2 .

(A 1)

When x increases, the ratio c~/c~~ also increases; i.e.,
the spectrum becomes more isotropic.

V. CONCLUSIONS

We investigated the concentration dependences of the
spectrum and transversal susceptibility. It was demon-
strated that this dependence is strongly nonperturbative
at small x (( 1 concentrations. Although we studied
mainly the simplest case of two-sublattice collinear spin
ordering, our results are not restricted to a specific type
of antiferromagnetic ordering. Only the strong spatial

The determinant D„ i of the set (Al) may be calculat-
ed at h =0. It satisfies the recurrence relation

(A2)

~2k-i = ~ok =k . (A3)

Substituting the value of P, into the first equation of
the set (61), we arrive at the formula (63).

It follows from (A2) that D„,= n Thus.

$, =2HA„, n ', where A„, difFers from D„, by re-
placing any element in the first column by 1. Now it is
easy to see that
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