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Constant-coupling approximation of the exchange-interaction model of ferromagnetism
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The ferromagnetic-exchange-interaction model is studied by the Oguchi method and the constant-
coupling approximation (CCA). The polarization q(T), which describes the ordering of the model, is
determined for various spins. The phase transition is first order for all spins S 1. The transition tem-
perature obtained with the CCA is kT, /J =2/IlnS(2S —1)—1n[(2S)~—S(2S+11]I,where g depends
on the lattice coordination number z and is given by /=2(z —1)/z. Both the CCA and the Oguchi
method show that the discontinuity of q at T, is q, =(2S —1)/2S, which is exactly the same as the
mean-field result.

I. INTRODUCTION

The Schrodinger exchange operator P, which per-
mutes the spin coordinates of two particles i and j has
been used to form an interaction Hamiltonian for a
nearest-neighbor model of magnetism' which contains
nonlinear terms in S;.S ~ The Hamiltonian of the
exchange-interaction (EI) model is given by

H= —1 gp,
(ij &

where J is the coupling constant and the summation is
over all nearest-neighbor pairs of sites. The EI model is
of theoretical interest and has been studied by various
methods.

The mean-field approximation (MFA), which is the
simplest approach for general models, is not trivial for
the EI model. In a recent article, the MFA of the EI
model was studied. The exchange operator is expressed
as inner products of Hermitian spin tensor operators Q' ',

2S 1

P,, = y y A(S, I)Q'"(S;)Q'"(S,),
1=0m = —1

(2)

(3)

the MFA predicts that the phase transition of the model
is first order with transition temperature k T, /J
=z(2S —1)/(4S ln2S), where z is the coordination num-
ber of the lattice and the discontinuity of q at T, is
q, = (2S—1)/2S. The assumption [Eq. (3)] is quite

where A(S, l) are coefficients. This model has 4S(S+1)
order parameters ( Q

' ' ), which are thermal averages of
Q' ' per spin. For any single-spin wave function lP), it is
clear from the permutation property of P; that the prod-
uct ltI)(Si))lg(Sz)) . lg(S&)) (i.e., all spins are in the
same state

l P ) ) is a ground state of the ferromagnetic EI
model. At T=O, (Q' ') =(QlQ' ~ P). By assuming that
all order parameters have the same temperature depen-
dence

reasonable because it has been shown that thermal Auc-
tuations of all multipole moments of the EI model have
exactly the same temperature dependence for all spins
and for all lattices. This assumption has also been
verified numerically for several spins.

For general spins the EI model has been studied by
high-temperature series expansions, Migdal-Kadanoff re-
normalizations, and quantum Monte Carlo simulations.
These studies make use of the permutation property of
the exchange operators, instead of expanding the ex-
change operators in terms of inner products of spin ten-
sors. Therefore order parameters of the system cannot be
obtained. Critical temperatures of the EI model are
determined by assuming that the phase transitions are
continuous (power-law singularity). Order parameters of
the EI model have been calculated for S=1 by the
constant-coupling approximation (CCA), 6 and a continu-
ous phase transition is found. So far, only the MFA pre-
dicts first-order transitions for the EI model for all spins.

The purpose of this article is to extend the CCA study
for the spin-1 system to general spins. Meanwhile, order
parameters of the EI model for general spins are also
studied by the Oguchi method. ' '" We find that phase
transitions of the EI model are first order in these
methods. The previous CCA study for S =1, which
showed a continuous phase transition, was qualitatively
incorrect. As the CCA is superior to the Oguchi method,
this article puts emphasis on the CCA; detailed results of
the Oguchi method will not be presented. In Sec. II we
describe the Oguchi method briefly. The constant-
coupling approximation"' and its results for general
spins are shown in Sec. III. A summary and discussions
of our results are given in Sec. IV.

II. OGUCHI METHOD

In the Oguchi method, the interaction of a pair of
nearest-neighbor spins, say, Si and S2, is treated exactly
and the interactions of S, and S2 with their neighboring
spins are replaced by efFective-field terms in exactly the
same way as the MFA. The Oguchi Hamiltonian for a
pair of spins is given by
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2S 1

Ho = J—P, 2
—J(z —1) g g 2 (S, l )[Q("(S,)+Q'"(Sz)—(Q'") ](Q'") .

i=0m = —I

By assuming that all order parameters have the same
temperature dependence q(T) defined by Eq. (3), the
Oguchi Hamiltonian reduces to

Ho JP»—J(z——1 )q [p&( S, ) +p&( Sz) ]

+J(z —1)Eos(q)

H2( J—, q ) +J(z —1)sos(q),

where p&(S; ) is the single-spin density matrix for the spin
S, to be in the pure state

~ P ) and

Z(K, q ) =Tr exp[ H2(—J,q )/kT]
= [exp[K(z —1)q]+2$ j coshK

+ I exp[2K(z —1)q ]+2S j sinhK .

The polarization q (T) defined by Eq. (3) is derived in the
Appendix as

q =( [exp[2K(z —1)q ]

+ (2S—1)exp[K(z —1)q ]—2S j coshK

+ I exp[2K(z —1 )q ]—1 j sinhK ) /Z(K, q )

Eo (q)=(2Sq +2q —1)/(2S+1) . :—G(K, q) . (9)

The last term in the square brackets of Eq. (4) is a con-
stant operator. Similar to the MFA, it is necessary to in-
clude this term to obtain the correct free energy of the
system.

The free energy (in units of J) per pair of spins in the
Oguchi method is

Fos(K, q )/J= —(kT/J)ln Tr exp( H2/kT)—

+(z —l)so (q)

The above equation can also be obtained from
aI', yeq =0.

The solution q( T) can be solved numerically. It
behaves qualitatively the same as the MFA. When
q «1, it can be shown that (dq/dT))0 for S) 1. This
indicates that the phase transition is first order except for
S=

—,'. The phase-transition temperature k T, /J
( = 1/K, ) and the discontinuity of q at T„den toed as q„
are determined simultaneously by Eq. (9) and

K'ln—Z(K, q )+(z —1)so (q),
Fos(K, q)=Fo (K,O), (10)

where K =J/kT As show. n in the Appendix,
Fog (K,0 ) is the free energy of the disorder phase.

We find that q, =(2S—1)/2S and K, is the solution of

TABLE I. Phase-transition temperatures k T, /J and zero-temperature polarization q( T~0) ob-
tained by the constant-coupling approximation (CCA) for some spins S and coordination numbers z. T,
obtained by the mean-field approximation (MFA) and the Oguchi method are included for comparison.
For the MFA and the Oguchi method, q(0) = 1.

Lattice

6
6
6
6
6
6
8

8
8

8
8

8
12

12
12

12
12
12

Spin
S
1

2

1
3
2

2
5
2

3
1

2

1
3
2

2
5
2

3
1

2

1
3
2

2
5
2

3

MFA

3.0000
2.1640
1.8205
1.6230
1.4912
1.3953
4.0000
2.8854
2.4273
2.1640
1.9883
1.8604
6.0000
4.3281
3.6410
3.2461
2.9824
2.7906

kT, /J
Oguchi

2.8597
2.0539
1.7208
1.5288
1.4004
1.3069
3.8910
2.8005
2.3506
2.0916
1.9184
1.7922
5.9244
4.2698
3.5885
3.1965
2.9347
2.7440

CCA

1.8205
1.1467
0.7922
0.4624

q=O
q=O

2.8854
1.9768
1.5690
1.3167
1.1356
0.9931
4.9326
3.4878
2.8692
2.5038
2.2543
2.0693

q(T~O)
CCA

0.95614
0.92415
0.87828
0.79750

for all T
for all T

0.99139
0.98666
0.98159
0.97613
0.97022
0.96378
0.99951
0.99926
0.99901
0.99876
0.99851
0.99825
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III. CONSTANT-COUPI. ING APPROXIMATION

In the CCA the effective fields are not simply propor-
tional to (Q'"). We introduce a dimensionless parame-
ter h (K,q ), which is to be determined later, and assume
that the effective fields in the Oguchi method are changed
by a factor h /q. The last factor (Q'") in Eq. (4), which
produces the effective fields, is multiplied by h/q. (Q'")
in the square brackets of Eq. (4) remains unchanged as it
is the thermal average of Q'". The pair Hamiltonian in
the CCA is

H'CC' = JP,2
—J—(z —1)h [p~(S, )+p~(S2) ]

+J(z —1)Ecc(h,q )

=H2(J, h )+J(z —1)sec(h, q ), (12)

S(2S+1)+S(2S—1)exp( —2K )

=exp[K(z —1)(2S—1)/2S] . (11)

When S=—,', Eq. (11) reduces to the known result for the
spin- —,

' Heisenberg model: 3+2 exp( —2K ) =2K(z —1).
Phase-transition temperatures obtained by the Oguchi

method are a few percent smaller than those determined
by the MFA. T, for some values of S and z are shown in
Table I.

Apart from the constant operators, the only difference
between Eqs. (12) and (5) is the field parameter in H2. It
is straightforward to see that the polarization q in the
CCA is

q =G(K, h ), (14)

where G(x,y ) is defined in Eq. (9).
The field parameter h is determined by requiring that

both the pair Hamiltonian and the single-particle Hamil-
tonian predict the same polarization q(T). The single-
particle Hamiltonian which has the same effective fields
as in Eq. (12) is

H CC
= —Jzhp~(S) +Jz Ecc(h, q )/2 . (15)

From the MFA, the polarization for the Hamiltonian
Hcc is(&)

q = [exp(Kzh )
—I ]/[exp(Kzh )+2S] . (16)

For a given temperature (or K), the polarization q and the
field parameter h are determined by solving Eqs. (14) and
(16) simultaneously. Figure 1 shows q(T) for some values
of S for the body-centered-cubic lattice (z=8). From
q(T) the field parameter h can be obtained easily since
Eq. (16) can be rewritten as

where

Ecc(h, q )
= (2Shq +2h —1)/(2S+ 1) . (13)

h =(Kz) 'ln[(1+2Sq)/(1 —q)] .

Substituting Eq. (17) into Eq. (14), we obtain

(17)

2Sq(2X+2S —1)—(2S—1)(X—1)
exp 2K =

2X +(2S—1)X—(2S+1)—2q[X +2SX+S(2S+1)] (18)

where

X(q ) = [(1+2Sq ) /( 1 —
q )]' (19) l. 0 =

Some results can be obtained from Eq. (18).
(a) For q ((1we expand the right-hand side of Eq. (18)

in a power series of q. The zeroth-order term gives

kT/J=2/ln[(z+2S —1)/(z —2S —3)] .

0.8—
S=7

This is the temperature, called To, at which q( T) inter-
sects the T axis in Fig. 1. We note that To exists only for
z) 2S+3. The first-order term in the expansion gives
the slope of q(T) at To. We find that the slope is positive
for S~1. The solution q &&1 is unstable near To, and
the system will not have a second-order phase transition
at T, forS~1.

(b) It is known that the effective fields in the CCA are
much smaller than those in the MFA. The fields are
overcorrected at low temperatures such that the polariza-
tion q(T) does not reach its saturation value q=l as T
approaches zero. This is the main drawback of the CCA.
The value q(T~O) is a positive root of B(q) in Eq. (18).
For a given value of z, B(q) has one positive root when
2S ~ z —3. And there exists a spin S „. When
(z —3)/2(S ~S,„, B(q) has two positive roots which
are the intersections of q(T) with the q axis in Fig. 1.

0.4 ———

000.0 0 6

/

I ~

l. 2

I

ls I

l. 8
I

2.4
I

3.0

FIG. 1. Polarization q(T) of the EI model obtained by the
constant-coupling approximation for a body-centered-cubic lat-
tice (z =8) for several spins. The dashed lines are metastable or
unstable solutions.
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and

+zecc(h q)/2 (21)

Fcc(K,q, h )/J= —K 'lnZ(K, h )+(z —1)scc(h,q),
(22)

where Z(x, y) and scc are given by Eqs. (8) and (13), re-
spectively.

The phase-transition temperature T, and the discon-
tinuity of the polarization q, are determined by Eq. (18),
together with Fcc(K,q, h ) =Fcc(K,O, O) or with
Fcc(K,q, h )=Fcc(K,O, O). It is ambiguous whether

Fcc or Fcc should be used. It turns out that the same re-
sults are obtained whether we use Fcc or Fcc. We find
that q, =(2S—1)/2S, which is the same result as the
MFA and the Oguchi method, and

kT, /J=2/[ln[S(2S —1)]—in[(2$)& —S(2S+1)]],
(23)

where g =2(z —1)/z. At T„ the field parameter is
h, =2 ln(2S ) /K, z. It can be shown that
Fcc'(K„q„h, ) =Fcc(K„O,O) and Fcc(K„q„h,)

=Fcc(K„O,O). We note that the free energy per spin in
the cluster variation method' is F2 = (z /2)Fc~z
—(z —1)Fcc for considering clusters up to two spins.
Exactly the same results are obtained if we use F2 instead
of Fcc or Fcc to determine the critical properties.

For S=
—,', Eq. (23) reduces to the spin- —,

' Heisenberg re-
sult kT, /J=2/ln[z/(z —4)]. This temperature is a spe-
cial case (S=—,') of TD given by Eq. (20). In the CCA, T,
exists only when z )21n(2S )/ln[4$ /(2S+ 1 ) ]. Phase
transitions occur for S ~2, —", , and —", when z =6, 8, and
12, respectively. As shown in Fig. 1, the solution q(T)
exists for S=7, but T, does not exist because this solu-
tion is either unstable or metastable at all temperatures.

IV. SUMMARY AND DISCUSSION

We have studied the ferromagnetic EI model for gen-
eral spins by using the Oguchi method and the CCA. By
assuming that all order parameters ( Q' ') have the same
temperature dependence (Q' ~) =q(T)(plQ~ ~lP), the

When S)S,„, B(q) has no real roots. In this case a
nontrivial solution for q(T) does not exist. When z=4,
q(T) does not exist for any spin. For z=6, 8, and 12, we
find numerically that S „=2, —", , and 79, respectively.
Some values of q ( T~0) are shown in Table I.

(c) As the phase transition is first order for S ) 1, the
phase-transition temperature should be determined by
comparing the free energies of the order and disorder
phases. There are two free energies involved in the CCA:
the free energy of the single-particle Hamiltonian Fcc
and that of the pair Hamiltonian FCC. From
F~cz = kT ln—Tr exp( —H~cz /k T ), we obtain

Fzz(K, q, h )/J= —K 'in[exp(Kzh )+2S]

polarizations q( T) for various lattices have been calculat-
ed. When S=—,

' the present work reproduces the results
for the spin- —,

' Heisenberg model" [q(T)=2(S, )]. For
S & 1 both the Oguchi method and the CCA predict that
the system undergoes a first-order phase transition. The
discontinuity of the polarization at T, is q, =(2S
—1)/2S, which is exactly the same as the MFA result. It
was unexpected that the MFA, Oguchi method, and
CCA would predict the same q, . Probably, this value
will be correct in more exact theories.

In the MFA the EI model has a phase transition for
any lattice. In the CCA a phase transition exists only
when z )2ln(2S)/ln[4S/(2S+1)], and all transitions
are first order (except for S=—,'} with the transition tem-
peratures given by Eq. (23). There are no phase transi-
tions for all spins when z=4 and for S &2 when z=6.
Although the CCA is a considerable improvement over
the MFA, it is the disadvantage of the CCA (and the
Oguchi method) that thermodynamic properties of the
system depend only on the coordination number z, but
not on other details of the lattice. Both the two-
dimensional (2D) square lattice and the 3D diamond lat-
tice have z =4; the 2D triangular lattice and the 3D sim-
ple cubic lattice have z=6. As the EI model has spin-
rotational symmetry, the Mermin-Wagner- Thorpe
theorem'" is valid, and there cannot be a finite T, in two
dimensions, while it is generally believed that a 3D spin
model with ferromagnetic nearest-neighbor interactions
has a phase transition. ' Therefore the CCA and the
Oguchi method are not expected to give good results for
z=4 and 6. For the body-centered-cubic lattice (z=8)
and the face-centered-cubic lattice (z =12},the CCA re-
sults shown in Table I should be quite reasonable. For
the linear chain (z=2), the CCA (but not the Oguchi
method) predicts the correct result that long-range order
does not exist at finite temperatures. It is also expected
that the CCA gives good results in high dimensions (or
larger values of z).

As mentioned in Sec. I, a CCA study of the spin-1 EI
model by Brown reported that the phase transition of
the system is second order. This result disagrees with
what we have obtained. Brown assumed that the system
has two order parameters (S, ) (=(Q0') in our nota-
tion) and (S, ) [=2((QD ')+1)/3 in our notation; S, is
not traceless]. He obtained a second-order phase transi-
tion at the temperature k T/J =2/ln[(z + 1)/(z —5 ) ],
which is the S=1 result of our TQ [Eq. (20)]. But we
have shown in Sec. III that T0 is not a phase-transition
temperature for S & —,

' and long-range order exists for cer-
tain temperatures higher than TQ.

Brown's study is equivalent to choosing lP) =
l
1 ), l0),

or
l

—1 ) in our method and allows ( QD
' ) and ( QQ

' ) to
have different thermal variations. For lP) =l+1), the
no nzero moments of the spin-1 system are
(QIQD" IP) =+1 and (4IQ0 'IP) =

—,', and for lP) = l0)
the only nonzero moment is (PlQQ 'lP) = —1. We have
repeated Brown's calculations. In general, we find that
there are six sets of nontrivial solutions. Consider the
body-centered-cubic lattice (z =8) for illustration.
Brown did not find any solution of kT/J & 1.82048, but
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we find six solutions for each temperature kT/J
& kT /J= 1.997 07. For example, at kT/J
=1.97679. . . , which is our T, given by Eq. (23), the six
sets of solutions in Brown's notations ((S,), (S, ) )

The six sets of solutions, when expressed in ( Qz~
~ ), are

simply (Qo") =q(T)((()lgo" IW& (I=1,2) f« lg&=11 &

IO), and
I

—1), respectively. For each temperature
T & T, q(T) has two values which are the solutions of
Eq. (18). When T) To both solutions are positive, and
for T ( Tp one solution becomes negative. The negative
solution of q(T) is unstable and is not shown in Fig. l.
This calculation shows that the spin-1 EI model under-
goes a first-order phase transition; it also provides a nu-
merical verification of our assumption that all order pa-
rameters have the same thermal behavior.

APPENDIX: DERIVATION OF THE
PARTITION FUNCTION AND THE POLARIZATION

Consider a two-particle Hamiltonian H2 of the form

H—
2 IkT=KP, 2+L [p~(S, )+p~(S~)], (A 1)

where K=J/kT and L=J(z —l)q/kT for the Oguchi
method or L =J(z —1)h/kT for the constant-coupling
approximation. p& is the single-spin density matrix for a
pure state

I p ):
2S 1

p&(S;)= g g A(S, l)&y g'"ly&g'"(S, ) . (A2)
1=pm= —I

Since P, z commutes with p&(S, )+p&(Sz) and p&(S, ) com-
mutes with p&(S2), the partition function can be ex-
pressed as

Z =Tr exp( H2/k—T)

ACKNOWLEDGMENTS =Tr exp(KP, 2)exp[Lp&(S, ) ]exp[Lp&(S2)] . (A3)

This work was supported by the National Science
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NSC 82-0208-M007-016.

By expanding the exponential functions in a power series,
applying the relations P&z =1,p&+'=p&, and rearranging
terms, the partition function becomes

Z =Tr(coshK+P&2sinhK )[1+(e —1 )p&(S&) ][1+(e —1)p&(S2) ] .

Trace calculations involved in the above equation are

Tr 1 = (2S+ 1 ), TrP, 2
=2S+ 1, Trp&(S, ) =Trp&(Sz ) =2S+ 1,

TrP»p&(S, ) =TrP»p&(S, ) =1, Trp&(S, )p&(S, ) =TrP»p&(S, )p&(S, )=1 .

We obtain

Z = (e +2S ) coshK + (e +2S )sinhK .

The order parameters are thermal averages of Q'"(S, ) [or Q'"(S2)] for l %0. That is,

(g~'~) =Z —'Trg~'1(S&)exp( —H2/kT)

=Z 'Trg'"(S, )(coshK+P, 2sinhK)[1+(e —1)p&(S,)][1+(e —1)p&(Sz)] .

(A4)

(A5)

(A6)

(A7)

With the aid of the relations

Trg'"(S, ) =TrQ'"(S, )P,2
=Trg'"(S, )p&(S2)=0,

TrQ (Si)pq(S&)=(2S+1)&pig'"ly&,

Trg'"(S, )P,2p~(S, ) =Trg'"(S, )P,2p&(S2) =
& pig'"ly),

Trg'"(S, )p&(S, )p&(Sz) =Trg'"(S, )P,&p&(S, )p&(S2) = ( PI Q'"
I P ),

(A8)

we find that

q =(g.'")I(y g.'"ly&

=Z '[(e + (2S—1)e —2S )coshK+ (e —1)sinhK ] . (A9)
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