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Front and domain growth of a binary mixture in the presence of a gravitational field is studied.
The interplay of bulk- and surface-diffusion mechanisms is analyzed. An equation for the evolution
of interfaces is derived from a time-dependent Ginzburg-Landau equation with a concentration-
dependent diffusion coefficient. Scaling arguments on this equation give the exponents of a power-
law growth. Numerical integrations of the Ginzburg-Landau equation corroborate the theoretical

analysis.

I. INTRODUCTION

Phase separation could be considered a prototype pro-
cess in the study of domain growth and pattern forma-
tion in nonequilibrium phenomena.! A simple example
is spinodal decomposition of binary mixtures. The sys-
tem, which is initially in a homogeneous state, is sud-
denly quenched inside the coexistence region. At early
times the presence of small fluctuations moves the sys-
tem from the homogeneous state to a new one composed
of domains of the new equilibrium phases. At late stages
a convoluted interface separating the two new phases is
formed. The main physical aspects of the evolution are
now well understood. At long times the structures man-
ifest spatiotemporal scaling described by a characteristic
length, R(t), which measures the average domain size.
This quantity increases with a power law R(t) ~ t* with
a = 1 in accordance with Lifshitz-Slyozov theory.

The study of this nonequilibrium phenomenon when an
external field is present is under active research.?—8 Here,
we study spinodal decomposition in a two-dimensional
lattice in the presence of a constant gravitational field.
Our model is a generalization?2 of model B of phase sep-
aration dynamics.! This generalized Ginzburg-Landau
equation contains a concentration-dependent diffusion
coefficient. In this way, the gravitational field appears
not only through the closed boundary conditions but also
in the dynamic equation.?® Another situation that re-
quires the hypothesis of a concentration-dependent dif-
fusion coefficient appears in the modeling of deep quench
in spinodal decomposition.®~1%

Typical evolutions of the patterns for critical and off-
critical quenches in the presence of gravity are presented
in Figs. 1 and 2. From the initial uniform distribution to
the final two-phase equilibrium state the evolution pro-
ceeds as follows: In the early stages domains are formed
through the system, and they grow as in the absence
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of the external field. For longer times and large enough
systems, these domains are affected by gravity, becoming
elongated in the direction of the field. This process has
been studied in detail in Refs. 5 and 6 for a system with
periodic boundary conditions. As we observe in Fig. 1,
apart from the domain growth, a different aspect is re-
lated to the presence of closed boundary conditions. In
this situation, the field induces one of the phases (the
more dense) to accumulate at the bottom and the other
phase (the less dense) to accumulate at the top, giving
rise to the growth of one layer at each of the boundaries.
In this paper, we concentrate on the growth properties of
these fronts of accumulated material. However, the do-
main growth in the bulk could be studied using a similar
procedure. To characterize the different mechanisms act-
ing during their evolution, we have studied analytically
the dynamic equation of the fronts. This equation is
derived from the generalized Ginzburg-Landau equation
by using projection operator techniques.'*>~!7 A scaling
analysis of the different terms of this equation determines
the existence of power-law behavior for the thickness,
h(t) ~ t*, with different growth exponents a. Apart from
the characteristic exponent o = % of the Lifshitz-Slyosov
theory related to a bulk diffusion mechanisms and the
exponent o = 3 associated to a surface diffusion mecha-
nisms induced by the concentration-dependent diffusion
coefficient,'* we obtain two other exponents (o = 1 and
a = %) absent without gravity. The exponent a = 1
is related to bulk diffusion as is expected from a sim-
ple linear growth which corresponds to a constant flux
due to the presence of gravity. Furthermore, an expo-
nent a = % is also obtained as the result of the crossed
effects of a concentration-dependent diffusion coefficient
and gravity. This exponent is related to a surface diffu-
sion mechanism. At long times the a = 1 exponent is
dominant. However, for intermediate times a crossover
from a = -21~ to @ = 1 would be expected. The crossover
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appears at a longer time for lower temperatures and at in-
finite time for zero temperature. Numerical integrations
of the Ginzburg-Landau equation have been performed
to corroborate the theoretical predictions for the front
growth with fixed boundary conditions. Furthermore,
we have also performed simulations for both fixed and
periodic boundary conditions to characterize the domain
growth in the bulk. Our results agree with an exponent
a = 1 in the long time behavior for finite temperature
and a = % for zero temperature.

In Sec. II we introduce the theoretical model and the
relevant quantities. In Sec. III the analysis of the inter-
facial equation is presented. The numerical integration
and the corresponding results are discussed in Sec. IV.

The final conclusions are given in Sec. V. Appendix A is
devoted to mathematical details of the interfacial equa-
tion, and in Appendix B we give some details about the
numerical integration.

II. THE MODEL

Our starting model is a generalization?® of model B
of phase separation dynamics:!

sF({e})

3E(r,T) =VI(e)-V 56

- (2.1)

where the coarse-grained free-energy functional F'({c})

(a)

(b)

{c}

FIG. 1. Typical temporal evolution of phase separation for a critical quench in the presence of gravity, with g = 0.1 and
a = 0.8. The figures correspond to the times (a) t=100, (b) t=500, and (c) t=2000.
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contains the usual terms of the Ginzburg-Landau model
plus the energy associated with a constant gravitational
field in the Z direction:

ek
2

F{e}) = /dr’ T2 Y 2V - GHe), (22)

4

r, © and k are phenomenological positive constants and
G is the acceleration of gravity. I'(¢) is the concentration-
dependent diffusion coefficient:?3
I(¢) = To(c} - 22), (23)
where T'g is a constant, ég = Cs:(T = 0), and &::(7T) is
the equilibrium concentration value for temperature T'.

(a)
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From Egs. (2.1) and (2.2), a new equilibrium solu-
tion different from the one in the absence of gravity only
appears through the effect of the appropiate boundary
conditions. Regarding the dynamic evolution, the effect
of the gravitational field through the boundary condi-
tions in a finite system becomes less and less important
as the system size increases. Then, the introduction of
the dependence of I'(¢) on ¢ as given by Eq. (2.3), is
required to provide an effect of the gravitational field in
the dynamic evolution given by Eq. (2.1). It is simple
to check that the gravitational contribution in the free
energy, Eq. (2.2), disappears when Eq. (2.2) is inserted
in the dynamical equation (2.1) if a constant diffusion co-
efficient hypothesis is considered. Here we consider the

(b)

(c)

FIG. 2. Typical evolution for an off-critical quench that corresponds to a volume fraction of the minority phase ¢ = 30%, in
the presence of gravity, with g=0.1 and a=0.8. The figures correspond to the times (a) t=500, (b) t=1000, and (c) t=1500.
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effect of gravity both through boundary conditions and
through the dynamic equation.

We assume periodic boundary conditions in the & di-
rection perpendicular to the field and reflecting boundary
conditions in the Z direction parallel to the field. Equa-
tion (2.1) with Eq. (2.3) could be written in dimension-
less form as

1o}
a_i = V(1 —ac®)- V(—c+c® ~ Vic - gz) (2.4)
with
12, I‘orzcg u\1/2
r—(E) l', "‘(T ) C"‘(;) C,
(2.5)

[e IR\

¢1(z) = —V27 tanh (\%) sech (%) _

In what follows, we will check the equilibrium profile
given by Eq. (2.7), by numerical integration of Eq. (2.4).
Furthermore, this profile will be used in our interfacial
analysis.

III. INTERFACIAL THEORETICAL
ANALYSIS

In Appendix A we derive an equation of evolution for
the interface which separates the layer of accumulated
material from the bulk in which spinodal decomposition
takes place. By introducing a system of curvilinear co-
ordinates (u,s) such that s follows the contour of the
interface and u goes along the normal direction of it, we
obtain the equation for the normal velocity v(s, t):

do(s,t) = (1 — a)/ds'W[r(s),r(s')] K (s') + 29Z(s")]

+4aV2K (s) — 4ag cosf(s) K (s), (3.1)
where K (s) is the local curvature, o is the surface ten-
sion, Z(s) is the height of the interface, 6(s) is the angle
between the normal to the interface and the direction of
the gravitational field and W(r,r’) is the inverse of the
Green function solution of Eq. (A9):!3

/ds"G[r(s),r(s")]W[r(s”),r(s')] =46(s—s'). (3.2)

The first and second terms on the right-hand side of Eq.
(3.1) represent the effects of surface tension and grav-
itational energy in the growth of the interface, respec-
tively. The third and fourth terms only appear when a

The parameter a goes from 0 to 1 as temperature is re-
duced, and a=1 for T=0. The equilibrium concentration
profile, c.¢, in the presence of gravity obeys the following
equation:*

3 dzc"
—Cst(Z) + cst(z) - —d—z = —gz. (26)
z
If the gravitational field is very weak a perturbative
expansion in g gives an approximate solution of Eq. (2.6)
as
cst(2) ~ co(2) + c1(2)g, (2.7)
where co(2) is the unidimensional solution in absence of
gravity

co(z) = tanh (%) (2.8)
and ¢, () is given by’
[1 + 10 tanh® (7%) — 7tanh* (%)] : (2.9)

concentration-dependent diffusion coefficient is included
(a # 0). Scaling analysis is now performed to obtain the
exponents of the power laws associated with each term of
Eq. (3.1), and the interpretation of the different mech-
anism associated with them. By rescaling the spatial
variables with R and the time variables with RY/* we
see that

v — RI7Vey (3.3)
and then the characteristic growth exponents of the four
terms in Eq. (3.1) are

/ds’WaK — R‘Z/ds'chK =>a= % , (3.4)
V2K — R3V?K =>a = %, (3.5)
/ds’WZ — R"/ds'WZ =>a=1, (3.6)
cosK — R 'cos0K => a = —;— . (3.7)

These exponents characterize the power-law growth of
the layer of accumulated material in the top and bottom
of Fig. 1. The exponents o = % and a = 1 are obtained
from the term on the right-hand side of Eq. (Al) and
they are related to fluxes across the bulk with an effective
(1 — a) diffusion coefficient. Furthermore, the exponents

_ 1 _ 1 :

o = ; and a = ; are obtained from the second term

on the left-hand side of Eq. (A1), and they are related
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to fluxes along the interface, as indicated by the fact
that the term in Eq. (A1) is only appreciably different

from zero near the interface. The exponent a = % is the
one obtained by Lifshitz-Slyosov theory. The exponent
a = 41 was studied in detail in Ref. 14, and appears due
to the presence of a concentration-dependent diffusion

coefficient. The last two exponents, « = 1 and o =

% are generated by the presence of a gravitational field

and are the ones on which we concentrate in the present

study. The exponent @ = 1 corresponds to a simple
linear growth as expected in a constant field. The most
interesting exponent is o = % It takes into account the

growth of a curved front due to the different gravitational
energies associated with the different points on the front.
For long enough times, we expect that only the a =1
and o = % exponents would be important, so we propose

the following equation for the characteristic height h(t):

dh(t) _

C
7t (l—a)Cl+a—2—.

h) (3.8)

We can define a critical height h. as that for which the
two contributions on Eq. (3.8) are equal. The fact that
h. is proportional to a/(1 — a) tells us that the linear
growth will be dominant at longer times by increasing
a. The crossover would occur at ¢ = 0 for a=0 and at
infinite time for a=1.

IV. NUMERICAL RESULTS

We have numerically integrated Eq. (2.4) in a two-
dimensional lattice of size L? = 120% using Euler’s
method with mesh-size Az = 1 and time step At = 0.025.
We have considered rigid walls in the direction of the ex-
ternal field (2) and periodic boundary conditions in the
other direction (£). The rigid walls are obtained by im-
posing zero flux at the points in positions z = 1 and
z = L (see Appendix B for details). The system is ini-
tially prepared by assigning to each point a uniformly
random concentration in the interval (—0.05,0.05). The
results have been averaged over 10 runs corresponding to
different initial configurations. In Fig. 3 we present the
final equilibrium profiles obtained by numerical integra-
tion of Eq. (2.4) for different values of the field g. It
corresponds to the very long time evolution of the inter-
face that appears at late stages in the evolution of Fig.
1. Furthermore, we also present the theoretical results
given by Eq. (2.7) (Ref. 4) for the same values of g. The
agreement is good for small values of g, as expected.

In Fig. 4 we present the results for the density-profile
function, C(z,t), which is defined by

(4.1)

[l

C(z,t) = ! Zc[r = (4,2),t].

Since the process of accumulation is symmetric at the
two walls we have averaged the results of both sides. For
the same value of gravity g but decreasing the tempera-
ture (increasing a), we observe a slower evolution of the
system to the same final configuration.

As a measure of the thickness of the front that is cre-
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z
FIG. 3. Equilibrium profiles for gravitational fields

g=0.001 and 0.005. The dashed lines show the theoretical
approximation given by Egs. (2.7)—(2.9) and the solid lines
are the profiles obtained by numerical integration of Eq. (2.4)
with a=0.

ated by the accumulation of material at the walls, we
introduce the length h(t) defined as the first value of z
that satisfies

| C[h(t),t] |= 0.5 (4.2)
at each one of the walls. In Fig. 5, we show the evolution
of h(t) in a log-log plot for g=0.005 and four different
values of the parameter a. We observe that the slope

1.2
C(z,t)
0.8 -
0.4 +
0.0 1
—-0.4 T T T T T 1
0 10 20 30 40 50 60
y4

FIG. 4. Density-profile function [Eq. (4.1)] for ¢g=0.005
and a=0 at times ¢=8000, 10000, 12 000, 14 000, 16 000, and
18 000. The functions have been averaged at both layers.
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h(t)

? T T T T T T T T T 1
4 5 8 7 8 9 2 3 4

.10

.I.

FIG. 5. log-log plot of the thickness of the front of accu-
mulated material, h(t), for g=0.005 and four different values
of a: 0, 0.2, 0.4, and 0.6. The slower dynamics correspond to
higher values of a. Solid lines represent a = 1 and o = 1/2
growth exponents.

decreases as a is increased. In order to quantify this, we
present in Table I the results for an effective exponent
n obtained from a nonlinear fit of the form h(t) = 4 +
Bt™.'* The numerical results for the evolution of h(t)
are in good qualitative agreement with the theoretical
analysis of the previous section. We observe a smaller
exponent for larger values of a. But the final evolution
is characterized by an exponent @ = 1. However, in
this model it is difficult to observe the presence of the
a = % exponent and the predicted crossover. In fact, an
estimation of the critical heights h. (Table I) tell us that
for all values in Fig. 5, h(t) > h., and the crossover has
already occurred. The value of h. can be obtained from
the numerical data by a linear fit of Eq. (3.8). However,
the errors involved in the numerical calculation of the
derivative of h(t) are very large, so we have estimated h,
by solving the differential equation (3.8) and fitted the
data by minimizing the x? function.

To determine the a = % growth in a more transparent
way, we integrate numerically Eq. (2.4) for zero tem-
perature (a = 1). To avoid the problem of a negative
diffusion coefficient near the walls we take zero flux for
¢ > 1. In Fig. 6 we show a log-log plot of the numerical

TABLE I. Effective exponents n obtained for a fit of
h(t) = A + Bt™ and critical heights h., for g=0.005 and the
same four values of a shown in Fig. 5.

a n he
0.0 0.95 + 0.01 0
0.2 0.94 + 0.01 2.3+04
0.4 0.93 £+ 0.01 3.7+ 0.5
0.6 0.86 + 0.01 5.5+ 0.7

9423

h(t)

T T T T T T T T T T T T T

10° 4 10*

FIG. 6. log-log plot of the thickness of the front of accumu-
lated material, for g = 0.05 and @ = 1. See the text for details
about the procedure of integration for this particular value.
The solid line corresponds to the a = % growth exponent.

results obtained for h(t). We obtain a good quantitative
agreement with the theory.

We have also performed simulations of Eq. (2.4) for
both fixed and periodic boundary conditions to charac-
terize the domain growth in the bulk. Our results are in
agreement with a growth of the characteristic length of
the domain in the direction of the gravitational field in
the form R ~ t* with o = 1 in the long time behavior
for a # 0 in accordance with Refs. 5 and 6. Furthermore,
we also obtain & = } for a = 1. These results give an
indication that the mechanism involved in the domain
growth is similar to that of the front growth.

As the final remark of this section, we wish to point
out that the approach presented here could be applied to
a very general type of potential. In particular, the results
of the numerical simulations presented in Ref. 8 in which
the % exponent is dominant could be understood by con-
sidering a similar theoretical analysis. In those cases, our
scaling analysis predicts that the growth exponents are

1

a = 3 or smaller.

V. CONCLUSIONS AND COMMENTS

We have studied a model of spinodal decomposition in
a gravitational field. The presence of a concentration-
dependent diffusion coefficient is required for a proper
treatment of gravity at the level of the dynamic equation.
We have derived the corresponding interfacial equation
by means of Green function techniques. By scaling ar-
guments, we have derived the exponents of the different
power-law behavior associated with the different mech-
anisms present in the front growth. Gravity induces a
front of accumulation of material from the walls. This
growth could be described by a power law which in-
cludes both bulk and interfacial diffusion mechanisms.
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A crossover from interfacial to bulk exponents appears
at later times for lower temperature and at infinite time
for zero temperature. We have also studied this problem
numerically with fixed and periodic boundary conditions
to analyze both front and domain growth. The results
are in good agreement with the theoretical predictions
and indicate a similar growth mechanism for both. Our
results could help in the explanation of the experimental
results and we consider that the analysis in terms of in-
terfacial equations is a powerful tool in the study of front
and domain growth.
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APPENDIX A: INTERFACIAL EQUATION

In order to derive an equation for the evolution of the
front associated with the accumulation of material on the
walls induced by the gravitational field, we introduce a
system of curvilinear coordinates (u,s) such that s fol-
lows the contour of the interface and u goes along the
normal direction of it, 7i(s), taking the value u=0 at the
center of the interface. We write Eq. (2.4) as

dc 5f(c)
5 aV(l-¢c%). Vv (~v2 + T)

= (1-a)V? (—Vzc + 5’;9) (A1)

with

% = —c+c® +g[Z(s) + ucosf(s)],
where Z(s) is the position of the front in the 2z direction
and 6(s) is the angle between 7(s) and the direction of
the external field 2.

We assume that at the normal direction, the profile is
approximately the equilibrium profile for a flat interface,

|

(A2)

4/ds'G[r(s),r(s')] [v(s',t) —aV2K(s') + ag

where o is the surface tension

o= /°° du [dm(“)r ~ B2 o

du 3 (A11)

— 00

Now, using the inverse W(r,r’) of the Green function,
we recover Eq. (3.1). In order to derive Eq. (A10) we
have discarded the contribution which comes from the
last term in Eq. (A8) when it operates over dc. We
have considered that this term is very small due to the

cosf(s")K(s')] = (1 — a) [0 K (s) + 29Z(s)],
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so that we separate c(r,t) in two terms:

c(r,t) = cot(u) + de(r, t), (A3)

where cg(u) is the unidimensional equilibrium solution
given by Eqgs. (2.7)—(2.9), and dc is the deviation with
respect to this solution. If we keep terms only to first
order in §c and first order in the curvature K, defined as

_db(s)
ds ’

K(s) = (A4)

we can write

2
Vet S k(G v ozt + (5F - 9 b

du dc?,
(A5)

Assuming that dc does not depend on time (quasistatic
approximation) and introducing the normal velocity

_ Ou(r,t)
ot

v(r,t) = (A6)

Eq. (A1) can be written as

acst
ou

—v

- (1-a)V? (—Kd;;t +gZ)

dcst
du

=aV(1-¢c2%) -V (—K + gZ) + Léc (AT)

with the operator

62

2
dc2,

L=V(1-ac) -V ( - V2> - 2agcstsin9(s)§;.
(A8)

By multiplying Eq. (A7) by the Green function defined
by
V2G(r,r') = 6(r — 1) (A9)

and by dcst/du, and integrating over u, v/, and s/, we
obtain in the limit of thin interface that

(A10)

presence of dc, g, and sinf(s), which are small quantities
in our approach.

APPENDIX B: NUMERICAL DETAILS OF
THE BOUNDARY CONDITIONS

Here we present the numerical details used in our in-
tegration of Eq. (2.4), in order to implement the correct
boundary conditions at the top and bottom of the sys-
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tem. Equation (2.4) can be written as

7]

c
O =v.30), (B1)
where the flux J(c) is given by
J(c) = (1—ac®)V(—c+c® - Vi —g2). (B2)
Equation (B1) is discretized as
0 = VIR + VI (), (B3)

where VL and VE are the left and right gradient
operators.'® JL and JF are given by Eq. (B2) where
V are VI and V%, respectively.

Due to the fact that c(r,t) is a conserved field we must
impose the condition that the normal component of J at
the boundaries (top and bottom) should be

J.[c(1)] = J;[e(L)] = 0. (B4)

For the sake of simplicity we will present the explicit
formulas for a one-dimensional model with reflecting
boundaries in the cells ¢ = 1 and ¢ = L. The discrete
version of Eq. (B3) is

8Ci _ 1
ot = 20X

[JF() = I3 = 1) + TZ (i + 1) = T2 (0)].
(B5)

In order to impose zero flux across the barrier at the
bottom (¢ = 1) we must define that
JH0) = —JF(1) (B6)

and reciprocally at the top (¢ = L) we can write that

JEL+1)=-JE1L). (B7)
So the equation of motion for the cell i =1 is
801 _ At R L
1 = SR + IR )] (B8)
and for the cell i = L
dc At
- [~IE(L - 1) - JHD)]. (BY)

Bt 2Az

Equation (B5) for ¢ = 2,...,L — 1 and Egs. (B8) and
(B9) solve the numerical integration of Eq. (B1) with
reflecting boundaries at ¢ =1 and 7 = L.
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FIG. 1. Typical temporal evolution of phase separation for a critical quench in the presence of gravity, with ¢ = 0.1 and
a = 0.8. The figures correspond to the times (a) =100, (b) t=500, and (c) t=2000.
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FIG. 2. Typical evolution for an off-critical quench that corresponds to a volume fraction of the minority phase ¢ = 30%, in
the presence of gravity, with g=0.1 and a=0.8. The figures correspond to the times (a) t=500, (b) t=1000, and (c) t=1500.



