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Statistics of waves propagating in a random medium
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The statistics of coherent radiation propagating in a random medium is analyzed in the framework
of diagrammatic techniques. The distribution function for radiation intensity is calculated and it is
shown that only for small values of intensity is the distribution function a simple exponential, as
predicted by Rayleigh statistics. For larger values of intensity, the distribution function differs dras-
tically from a simple exponential, and exhibits the asymptotic behavior of a stretched exponential.
The results obtained are con6rmed by numerical simulations.

The interest in problems of transport through disor-
dered media was revived after the discovery of strong
mesoscopic fluctuations in such systems. It was found, '

that the variance of the dimensionless conductance g for
electrons is much larger than would follow from classi-
cal consideration and has a universal value. This phe-
nomenon is known as UCF (universal conductance fluc-
tuations). Later, it was demonstrated that UCF exist
also for the propagation of classical waves (e.g. , light)
through disordered systems. In contrast to electronic
measurements, which can measure only the conductance
of a system, light experiments have the advantage of be-
ing able to measure the angular transmission coeKcients
for an experimental realization. The angular transmis-
sion coeKcient t b is defined as the ratio of the energy
carried away by the transmitted wave with the transverse
wave vector qb to the energy of the incident wave with
the transverse wave vector q . The total transmission
due to an incoming wave of transverse wave vector q is
t = Pb t b. The conductance, which is the sum of the
total transmission from all incident angles, is given by
g=p tb.ab

Soon after the discovery of conductance fIuctuations
the question of calculating not only the variance but
the whole distribution function of the conductance was
solved (Ref. 4 and references therein). A natural question
that immediately arises is whether one could also calcu-
late the distribution function of the total and angular
transmission coefIj.cient. The latter problem, as we shall
see, is closely connected with the problem of calculating
the radiation intensity statistics in a disordered medium.
It is especially timely, since experiments are now under
way, which probe the statistics of microwave radiation
in disordered media.

In this paper we analyze the problem of statistics in
the framework of diagrammatic techniques. We obtain
an equation, which expresses the distribution function
through the connected diagram contributions only. On
the basis of this equation the "topological" approxima-
tions are formulated. We show that Rayleigh statistics

for the angular transmission coefFicients (intensity) cor-
responds to the first-order approximation (the same ap-
proximation applied to conductance and the total trans-
mission coefficient gives no ffuctuations at all). We ex-
plicitly calculate the statistics of the angular transmis-
sion coefficients (intensity) in the second-order approx-
imation, which gives the Gaussian distribution function
for conductance (as well as for the total transmission co-
efFicient) .

It is well known that Rayleigh statistics for the an-
gular transmission coefBcient t b are represented by the
following distribution function PR(t b):

1 ( tb'i
PR(tab) =

( )
P

l~

which corresponds to the equation for the moments:

This statistic is in fact the manifestation of the central
limit theorem. If we suppose the field of the wave radi-
ated in a given direction to be the sum of large number of
independent random complex terms ("contributions from
different uncorrelated trajectories") than the energy car-
ried by this wave, which is proportional to the square of
the modulus of the field, is distributed according to the
simple exponential law, given by Eq. (1). But it is well
known that if we take into account the wave nature of the
carriers, there will be interference between different tra-
jectories. It is this interference that leads to strong non-
classical "mesoscopic" fluctuations. We want to study
how this interference infIuences the statistics, using the
framework of traditional diagrammatic techniques.

First let us recall how Rayleigh statistics are obtained
in this framework. In the diagrammatic representation,
(t b) is given by the diagrams with a pair of wave propa-
gators G b and G b summed with respect to all possible
interconnections by impurity scattering lines. The nth
moment (t b) is given by the set of diagrams with n prop-
agators G b and n propagators G b (see Fig. 1). For our
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consideration the following property of diagrams are im-
portant: if the diagram consists of several disconnected
parts, then the contribution of that diagram is equal to
the product of the contributions of all disconnected parts.
Therefore, if we consider for (t &) only the diagrams con-
sisting of n disconnected parts, each part being the set
of diagrams with a pair of propagators (advanced and re-
tarded), we immediately obtain Eq. (2). The multiplier
n'. , which appears in the nth moment, is of combinato-
rial origin; it is simply the number of possible pairings
between propagators.

The generalization of this result is straightforward. An
arbitrary diagram for (t &) is, generally speaking, discon-
nected and consists of several connected parts (see Fig.

l

2), i.e. , it has mt parts with one pair of propagators (ad-
vanced and retarded one), m2 parts with two pairs and so
on up to n pairs (the connected diagrams where the num-
ber of advanced propagators does not coincide with the
number of retarded propagators would give a contribu-
tion of higher order with respect to the small parameter
exp( —L/t'), where 8 is a mean free path and I is a sample
thickness, which may be neglected). So we can classify
all the diagrams according to their topology, which is
given by the numbers (mq, . . . , m ), and the sum of all
diagrams can be written down in the following way:

(t",) = n! M„, (3)

where

my+2m2+ +nm =n
P(mq, m2. . . m„)(t q), '(t z), ' (t"q), "; (4)

the connected diagram contribution (t'&), is the sum of
all connected diagrams with i pairs of propagators and

P(m„m„. . . , m„)

pairs between connected diagrams.
The distribution function P(t b) is connected to its

moments in the usual way:

P(t b) = exp(i(t g) ), (t"s) —.:(—'&)"

n=o

is the number of partitions of n diferent objects into m~
groups of one object, m2 groups of two objects and so
on. The summation in Eq. (4) is with respect to all pos-
sible non-negative integers satisfying the given equation.
A single term in the sum in Eq. (4) gives the contribu-
tion from all the diagrams with the topology given by
the numbers (mq, . . . , m ), and the multipliers n! and
P(mq, m2, . . . , m ) are of purely combinatorical origin
resulting from the number of ways we can couple prop-
agators, and the latter is the number of partitions of n

GA
a

Using the integral representation for n!,

n! = du u exp( —u),

for the distribution function P(t b) we have, changing
the integration variable to ( = (u,

ab

ab

ab

n pairs
7//
8//

Y//

FIG. 1. Feynman diagrams used in the calculation of the
angular transmission coefficient moments. (a) The averaged
angular transmission coeKcient. (b) The nth moment in the
Rayleigh approximation.

FIG. 2. Feynman diagrams used in the calculation of the
angular transmission coefBcients moments where all possible
connected parts are taken in account.
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P(t b) = exp(igt b/u)
=(- 4)" 1 ~Cdu ) M„—exp( —u) —.

! 2'n=p
(8)

From Eq. (5) follows

~- (—&)"M ~- (—&)
' &(t- )-~ ' ~: (—&) ' &(t.')-& ', &:(—()",.

n! m! q 1! ) - m ~ 2! ) - ntn=p m, =p ] ~ ~ m2.

Supposing the absolute continuity of the integrals in Eq.
(8) and changing the integration variable v = t b/u in
Eq. (8), we finally obtain

P(t b) = 1 ( tbi
dvP(v) —exp l—

'U ( V
(10)

where we have introduced an auxiliary function P(v)
given by the equation

P(v) = exp(i(v) exp
l ) (t"b),

l

—. (11)( . (—i()" „)d(
n! ) 27r

The distribution function (10) can be described as the
Rayleigh distribution function but with some effective
averaged value, which in turn fluctuates around the real
averaged value. We can also change the order of integra-
tion in Eq. (10) and perform the integration with respect
to dv. Then Eq. (11) takes the form:

P(t-.) = exP
I ) . „, (t"-b).

I

. (—i()"

xKp 2 i tb d(

where Kp is the modified Bessel function. This equation
is less convenient for application than Eq. (10); we show
it in order to underline the fact that the expansion with
respect to connected diagrams divers from the expansion
with respect to cummlants.

We have obtained an exact equation that expresses the
distribution function in terms of the connected diagrams
contribution only. Of course, that by itself does not solve
the problem of finding the distribution function as the ex-
pression of the one-particle Green's function through the
irreducible diagrams (self-energy), and does not solve the
problem of finding the Green's function. However, the
approximations for the self-energy are simpler than the
approximations for the Green's function itself. There-
fore, we may hope to get simple reasonable approxima-
tions for the auxiliary function P(v). We propose one
such approximation. First we notice that, if we retain in
the sum P i ~ '~l (t b) only the firs term, we imme-
diately get Rayleigh statistics &om Eq. (10). This sug-
gests that in an approximation of the order m one should
take into account only m types of connected diagrams;
that is, one should retain in the sum P i ~ ', l (t b)
only the first m terms. Hence we obtain the distribu-
tion function in terms of ((t b), (t b) . . . (t b), ), which
should be treated in our theory as I, input parameters.
Because we classify the diagrams only according to their

topological properties, it is natural to refer to such an ap-
proximation as a "topological" one. Here an important
point should be mentioned. To procure the convergence
of the integration with respect to d( in Eq. (10) for the
approximation of the order m, there should be a "cor-
rect" sign before the highest even power of ( (minus) in
the truncated exponent. As long as the sign is negative,
we can proceed with our treatment. On the other hand,
if the sign is positive, we should rewrite Eqs. (10) and
(11) using a more general transformation than Eq. (7).
In the Appendix we describe this more general proce-
dure. The results in the appendix [Eqs. (A3) and (A4)I
contain Eqs. (10) and (11) as a particular case but can
also be applied for the case in which a "wrong" sign ap-
pears before the highest even power of ( in the truncated
exponent.

Prom a mathematical point of view we expressed the
broad distribution function P(t b) through an auxiliary
function P(v) for which the second cumrnulant is much
smaller than the erst cummulant (see discussion latter).
Hence, P(v) describes a narrow distribution. In the tra-
ditional approach only the first cummulant is considered,
i.e. , P(v) = 8(v). In taking into account additional cum-
mulants, we take into account the finite width of the
auxiliary distribution. As can be seen in Eq. (10), when
t b/(t b) is not too large, the main contribution to the
integral comes from the maximum of P(v), which can be
well described from the knowledge of a few cummulants.
Once t~b/(t b) ~ oo the main contribution is from the
tails of P(v) and any truncation approximation is dubi-
ous (in particular the tail behavior will depend on the
dimensionality, which does not appear explicitly in our
approximation) .

We shall present explicit results for the second-order
approximation. In this approximation the distribution
function is determined by (t b), and (t b)„which can
be easily calculated; the first is determined mainly by
ladder diagrams, the second by Hikami box diagrams;
the latter were calculated in Ref. 3 (and we also have
the "correct" sign of (t2b) ). Equation (10), however,
can be viewed from another point of view. The system
of equations (3) should be understood as expressing the
connected diagram contributions through the moments.
For example, the first two equations give

(t-b)- = (t-b)
(13)

(".b). = (t.'b)/2 —(t-b)'.
Roughly speaking, we make an expansion of the distri-
bution function near Rayleigh statistics and restore the
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distribution function on the basis of only two known mo-

ments,

P(t b) dv exp
(v —(t b))2 1 ( t bl—exp /—

( :.).
(14)

and Eq. (3) in this approximation can be written in the
form

of realizations, discrepancies for high moments are to be
expected.

The functional dependence of the distribution function
given by Eq. (14) is determined in fact by a single param-
eter A. The term (t b), being known, we get 4 go,
where go is the classical conductance. We are considering
the "metallic phase, " i.e. , go )) 1. That means that in
the exponent in the Eq. (14) there is a large parameter,
and the integral can be calculated by the steepest descent
method. We consider explicitly the following particular
cases.

(1) t b/(t b) « A, where we get

(15)
P(t b) = PR(t b). (16)

where 4 = (t b) /2(t b) and II is the Hermite polyno-
mial. (In the general case, we can express the distribution
function through the m known moments. )

To check the validity of the theory proposed. , we have
performed numerical simulations based on a widely used
model by Edrei et al. ~ A wide (W )) L) two-dimensional
sample was used. The sample length was I = 66 and
width W = 1006, where 6 is the averaged distance be-
tween the point scatterers. Since in our particular real-
ization the scatterers were chosen to be relatively strong,
the mean free path l b. The wave length of the in-
coming wave is A = 0.012346, therefore, kl 500. The
intensity and its erst 15 moments on. the outgoing face
were averaged over 864 diferent realizations and over the
difFerent 100 outgoing bonds in each realization. The re-
sults are represented in Fig. 3. The full line corresponds
to Eq. {15),the dotted line to Rayleigh statistics and the
(+) symbols to the results of the numerical simulation.
A good fit is obtained up to the eighth moment, where
only two fitting parameters {(t b), and (t b)) were used.
The simulation results for higher moments fall even below
what is expected from Rayleigh statistics. This is due to
the fact that high-order moments are strongly inHuenced
by rare realizations in which the averaged transmission
is very high. Since we have used only a limited number

t b t t
InP(t b) = — 1 + +. . .

(t b) 4 4

(3) t/ (t) » A2, where we get an asymptotic expansion
for ln P(t b) in inverse powers of t:

(t ba'i 3 (4b
»P(t-b) = —

I( '-b ) 4'~ «j
1
2/3(t

We see that we get Rayleigh statistics only for t/ (t)
Vg; outside this region the distribution function greatly
exceeds PIt. In particular for t b/ (t b) )& g, the distri-
bution function has the form of a stretched exponential:

P(t b) exp ab

2(t2 )
l

It is interesting that our distribution function has a weak
singularity: when t b goes to zero, P(t b) —Int b, we
cannot say whether this is a real eKect or an artifact due
to the approximations made. In any event this singular-
ity manifests itself only for extremely low values of the
argument t b/ (t b) & exp( —exp A ).

(2) A & t b/(t b) « A, where we can get an ex-
pansion for lnP(t b) in powers of the parameter t
t-b/(~-b) &'

V

V

10

10

10

The angular transmission coefBcient gives us the inten-
sity of radiation in a given direction. Exactly the same
line of reasoning that led to Eq. (14) can be applied if we
are interested in the statistics of the intensity at a given
point. (Statistics obtained depends only on the topology
of the diagrams that are taken into account. Hence, it
is not important whether the loose ends of the diagrams
are marked by momentum or coordinate. ) Therefore, the
distribution function of the intensity P(I) is analogous
to Eq. (14):

10
0 20

P(I)- dv exp
(v —(I))' 1 ( »

2(I2) v ( v) ' (20)

FIG. 3. Moments of the angular transmission coef6cient.
The full line corresponds to Eq. (15), the dotted line to
Rayleigh statistics, and the (+) symbols to the results of the
numerical simulation.

where (I ) = (I )/2 —(I) and Al — (I) /(I ),;
for tube geometry Ll go, while for slab geometry

LEk2, where k is the radiation wave vector (the
intensity is measured on the output face). In Fig. 4 the
intensity distribution function on the output face of the
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FIG. 4. Intensity distribution function in a semilogarith-
mic scale. The full line corresponds to Eq. (20), the dotted
line to Rayleigh statistics, and the (+) symbols to the results
of the numerical simulation.

FIG. 5. Moments of the intensity in a given point in a
semilogarithmic scale. The full line corresponds to Eq. (22),
the line coinciding mith the abscissa corresponds to Rayleigh
statistics, and the (+) symbols to the results of the numerical
simulation.

sample is plotted. The full line corresponds to Eq. (20),
while the dotted line corresponds to Rayleigh statistics
and the (+) symbols to the results of the numerical sim-
ulation. Strong deviations of the simulation results from
the Rayleigh distribution can be seen, especially in the
tail region. On the other hand, an excellent fit with Eq.
(20) is obtained.

For I/ (I) )) Al we get

P (I) exp
3 12/3

2(I').' (21)

This tail is close to what was obtained experimentally in
Ref. 7.

For the intensity moments we have

(I") = n!
~

.
~ H„(zeal),,

( (I) l "
(2zal ) (22)

From Eq. (22) in the linear approximation with respect
to Al, we obtain

(I") = n!(I)"[1+n(n —1)/2Alj.

This dependence with respect to n was obtained by many
difFerent ways. ' In Ref. 10 there a simple qualitative ex-
planation of the overshooting of fluctuations with respect
to Rayleigh statistics based on the interference between
intersecting trajectories was given.

In Fig. 5 are plotted the moments of the intensity at
a given point. The full line corresponds to Eq. (22), the
line coinciding with the abscissa corresponds to Rayleigh
statistics and the (+) symbols to the results of the nu-
merical simulation. Good agreement is obtained up to
the 12th moment. It is interesting to note that the fallofF
of the high moments for the intensity at a given point
occurs for higher moments than for the angular trans-
mission coeKcients.

It is interesting to see what topological perturbation
theory means when applied to the conductance distribu-
tion function. This time, as follows from the definition
of t, we would have to tackle the diagrams with n re-

tarded propagators G b, G,b„.. . , G &„&b&„& and, respec-R R R

tively, n advanced propagators G b, G, b, , . . . , G &„&b&„&.
We can again make the topological classification of di-
agrams. This time the situation is more complicated
than previously because the propagators difFer from each
other, but we shall impose an additional selection prin-
ciple. We shall consider as blocks for the connected dia-
grams only the pairs with coinciding propagators. That
is, if the propagator G &, &b&i& enters in some diagram,
there should also enter the propagator G &i&b&, &, other
diagrams, which do not fulfill this requirement, give for
(g") a correction of higher order with respect to the pa-
rameter 1/N, where N = W k2 is the number of trans-
verse channels (W2 is the area of the sample) due to the
necessity of satisfying momentum conservation. Thus,
we obtain the analog of Eq. (3):

(g") = P(mi, m2, . . . , m )

x(g). '(g'). ' " (g"). (24)

where the connected diagram contribution (g') is the
sum of all connected diagrams with i pairs of propaga-
tors. Therefore, we can immediately write down

P(g) = exp(i(g) exp
~ ), (g")
( . (—i()" „)d(

(25)

Hence we have the very simple relation (g ) = ((g )),
where ((g )) is the cummulant of the conductance distri-
bution function. We see that for the conductance, the
topological expansion is rather trivial; it simply coin-
cides with the cummulant expansion (of course, this is
definitely not the case for the angular transmission coef-
ficient). In the first-order approximation, we would get
no fluctuations at all; in the second-order approximation,
we would get a Gaussian distribution function:
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P(g) ~ exp (g —(g))'
2((~g)')

50.0

40.0

It was shown that

((g")) - go ".
Thus, at least for conductance we can claim that the
topological expansion is simply an expansion with respect
to 1/go. This can also serve as a hint of what the param-
eter of expansion is when the topological perturbation
theory is applied to the angular transmission coeKcient
(intensity) distribution function.

Since the diagrams for total transmission coefFicient
topologically equivalent to the diagrams for conductance,
we can immediately deduce that

30.0—

V

20.0
V

10.0

0.0
0 20

P( -)(( -) (.') "(™).) = P( )(( ) ( ') " ( )-}.
(28)

FIG. 6. Moments of the total transmission. The full line
represents the Gaussian distribution given by Eq. (30), and
the (+) symbols are the results of our simulation.

One should understand Eq. (28) in the functional sense,
i.e., the left-hand side is the same function of its argu-
ments as the right-hand side. Therefore for the total
transmission coefBcient in the First-order approximation,
we would get no fluctuations at all, and in the second-
order approximation, we would get the Gaussian distri-
bution function,

APPENDIX

du u exp( —ku), Rek ) 0, (Al)

Instead of the integral representation of Eq. (7), we

may use a more general integral representation for n!:

P(t ) exp
(t —(t ))
2((~t-)') (29)

where k will be determined later. Then for the distri-
bution function P(t b) we have, changing the integration
variable to ( = (u:

or equivalently for the moments

(30)
P(t b) = exp(i(t b/u)

(—ikg)" 1

In Fig. 6 we plot the moments of the total transmission.
The full line represents the Gaussian distribution given
by Eq. (30), while the (+) symbols are the results of our
simulation. A good Bt up to the eighth moment can be
seen.

In conclusion, general topological approximations were
formulated for the angular transmission coeKcient and
intensity distribution functions. We show that Rayleigh
statistics for the angular transmission coefficients (inten-
sity) correspond to the first-order approximation and we

calculate explicitly the statistics in the second-order ap-
proximation. It is shown that only for small values of the
argument are the distribution functions for intensity ra-
diated in a given direction or in a given point in a random
medium [P(t b) and P(I)j given by simple exponentials,
as predicted by Rayleigh statistics. For larger values the
distribution functions differ drastically from simple ex-
ponentials, and the asymptotic behavior is a stretched
exponential. The results obtained were con6rmed by nu-
merical simulations.

d
x exp( —ku) k —.2~'

Instead of Eqs. (10) and (ll) we finally obtain:

(A2)

and

P(t b) = 1 ( ktbl
dv P(k, v) —exp l-

v q v )

P(k, v) = exp(i(v)

f'). (—ik()" „l„d(
)

(A4)

Choosing k = 1, we obtain Eqs. (10) and (11). For a
given approximation, A: should be chosen in such a way
to procure a correct sign before the highest power of ( in
the reduced exponent and hence the convergence of the
integration with respect to d( in Eq. (A4).
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