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We present evidence for a Bnite-temperature phase transition in the phason elasticity of qua-
sicrystals. A tiling model for energetically stabilized decagonal quasicrystals has been studied in
an extensive series of Monte Carlo simulations. The Hamiltonian (energetics) of the model is given

by nearest-neighbor Penrose-like matching rules between three-dimensional unit cells. A new order
parameter and diagnostics have been introduced. We show that a transition from locked-phason
to un]ocked-phason dynamics occurs at Rnite temperature. In the unlocked phase, phasons can be
thermodynamically excited even though the quasicrystal is energetically stabilized at low tempera-
tures.

I. INTRODUCTION

Quasicrystals exhibit two distinct types of low-
energy elastic (hydrodynamic) excitations phonons and
phasons. In this paper we consider the temperature-
dependent behavior of the phason elasticity in three-
dirnensional quasicrystals with decagonal symmetry: a
solid that can be described as a stack of periodically
spaced planes, which each exhibit tenfold symmetry. We
present evidence for a finite-temperature phase transi-
tion in the phason elasticity, apparently analogous to the
pinning transition found in the one-dimensional Frenkel-
Kontorova (FK) model.

Quasicrystals are new types of solids, which have
a discrete point-group symmetry that is forbidden for
crystals such as fivefold symmetry in two-dimensions
and icosahedral symmetry in three dimensions. These
quasicrystals possess a long-range translational order
known as quasiperiodicity. The recent experiments on
ALCoCu showed the existence of thermodynamically sta-
ble decagonal quasicrystals. What makes the quasicrys-
tals stable'? Two possibilities that have been debated are
energetic stability and entropic stability. In the energet-
ically stabilized quasicrystal model, microscopic interac-
tion energy has its minimum when atoms are arranged in
a quasiperiodic structure. Such interactions ensure that
the low-temperature equilibrium state is quasicrystalline.
In the entropically stabilized quasicrystal model, the en-
tropy that arises from thermodynamically excited atomic
relocations (specifically, phasons) makes the quasicrystal
stable. In this model, quasicrystals are not stable at low
temperature.

In this paper, we consider the phason dynamics of
an energetically stabilized tiling model for the decagonal
phase. The interactions are prescribed so that quasicrys-
tals remain stable as the temperature T approaches zero.
A tile is an idealization of presenting a cluster of atoms in
a real material. The energetics are mimicked by nearest-
neighbor matching rules, which are generalizations of the
Penrose edge-matching rules for two-dimensional tilings.
We assign a finite energy to each mismatch in a given

configuration. This guarantees that the state of lowest
energy is a perfect quasicrystal. This is to be contrasted
with a random tiling model, used to represent the limit-
ing case of entropically stabilized quasicrystals, in which
the same energy is assigned to every configuration and a
quasicrystal symmetry is favored due to the high entropy.

Phonons and phasons are low-energy hydrodynamic
modes associated with quasiperiodic broken translational
symmetry. At long wavelengths, phonons correspond to
uniform translations, and phasons correspond to rear-
rangements of atoms from one perfect quasicrystal lattice
to another. In a tiling picture of quasicrystals, the pha-
son degrees of freedom correspond to the rearrangements
of tiles. Finite-wavelength phasons produce rearrange-
ments, which violate the matching rules and hence cost
finite energy. If w(x) is the phason field, then fixed pha-
son strains produce a number of mismatches proportional
to ~Aw~. Consequently, the elastic energy is I" ~Aw~,
a nonanalytic form. We shall call a finite-temperature
state in which the elastic energy has this form a "locked
phase, " since the phasons cannot be thermodynamically
excited (no phason Debye-Wailer contribution). An al-
ternative type of quasicrystal is described by the contin-
uum density wave picture in which the elastic free en-
ergy grows F (Aw) . This density wave picture cor-
responds to a distinct elastic phase, which we shall refer
to as the "unlocked phase. " In this phase, phasons have
thermal excitations analogous to phonons. Historically,
the locked phase has been assumed to be characteristic of
any energetically stabilized quasicrystal, whereas entrop-
ically stabilized quasicrystals are, by defi.nition, in the un-
locked phase with square-gradient elasticity. Our point
here is to show that this view is not correct in general.
Rather it is possible in energeticaLLy stabilized quasicrys-
tals to have a novel elastic phase transition from a locked
phase at low temperature to unlocked phase at high tem-
perature as had been speculated by Socolar et. al. We
note that this behavior is dift'erent from two-dimensional
(2D) behavior, where both energetic and entropic mod-
els have unlocked elasticity at any fi.nite temperature. '

Hence, the observation of unlocked elastic behavior (the
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phason Debye-Wailer efFect) at finite temperature is not
a proof of entropic stability.

The organization of the paper is as follows. In Sec. II,
we define our model for studying decagonal phase qua-
sicrystals. In Sec. III, we present the characteristics of
the system we use for Monte Carlo simulation. The al-
gorithms of Monte Carlo runs are also presented. Sec-
tion IV presents diagnostics for studying the phase tran-
sition in phason elasticity. We introduce the notion of
"lane width" and "trail magnetization" to check if the
system is in the locked phase. The results of the Monte
Carlo simulation are presented here. Section V, the Con-
clusion, summarizes our results and discusses the poten-
tial connection to the experiment.

II. DEFINING MODELS

Our model for 3D quasicrystals with decagonal sym-
metry has two types of unit cells: skinny and fat. Each
cell is the shape of a prism with a rhombic cross section
whose upper and lower faces are the shape of Penrose
rhombuses. In the zero-temperature ground state, each
layer viewed along the tenfold axis resembles a perfect
Penrose tiling. The 2D Penrose edge rules are replaced
by "side face" rules, referring to tile faces that join tiles
in the same layer. Side faces of the unit cells have single
or double arrow marks as shown in Fig. 1 so that the
tiling consistent with matching rules joining side face
to side face according to the same arrow marks, is the
perfect quasiperiodic Penrose tiling.

We assign mismatch energy ei for a violation of sin-
gle arrow marks. Double arrow mismatches are not al-
lowed (mismatch energy for a double arrow mismatch is

I

FIG. 1. (a) Skinny cell: Upper and lower faces are in the
shape of a Penrose skinny rhombus. Side faces have arrow
marks according to the arrow patterns of the Penrose skinny
rhombus. (b) Fat cell: Upper and lower faces are in the shape
of a Penrose fat rhombus. Side faces have arrow marks ac-
cording to the arrow patterns of the Penrose fat rhombus.

E —Eintralayer + Einterlayer

~intralayer +
side faces upper, lower faces

~interlayerr (~)

where

infinity) in order to study purely phason dynamics [see
discussion below Eq. (3)]. The 3D decagonal model is
introduced by considering a stack of these layers. We
fix the interlayer interaction energy to have its minimum
when configurations of two layers are identical (fat tile
directly on fat tile, skinny directly on top of skinny). We
assign stacking direction face mismatch energy e2 when
the vertices of an upper (lower) face of a unit cell do not
coincide with those of a lower (upper) face of an upper
(lower) unit cell. The energy of tiling is defined as the
sum of the intralayer interaction energy (arrow mismatch
energy) and interlayer interaction energy (stacking direc-
tion face mismatch energy):

0 for an arrow matched side face
] y ( 6] for a single arrow mismatched side face

oo for a double arrow mismatched side face,

and

0 for an upper (lower) face that coincides with lower (upper) face of an upper (lower) unit
for an upper (lower) face which does not coincide with the lower (upper) face of an upper

(lower) unit.

Henceforth we will refer to intralayer mismatches as "ar-
row mismatches" and interlayer mismatches as "face mis-
matches. "

In the finite-temperature Monte Carlo (MC), we intro-
duce "Aips" of single hexagonal prisms within a layer.
There are two kinds of hexagonal prisms, which we
shall call D-type hexagonal prisms and Q-type hexago-
nal prisms, respectively. A D (Q) -type hexagonal prism
consists of two fat cells and one skinny cell (one fat cell
and two skinny cells), and its top view is a D (Q) -type
hexagon. Each hexagonal prism can be uniquely identi-
fied by the vertex at the center of the upper hexagon. Fig-
ure 2 shows hexagonal prism before and after Hips. Solid
circles indicate the center vertices of the upper hexagons.

A hexagonal prism Rip from a ground state makes two
arrow mismatches and six face mismatches. Hence, the
net energy cost is 2~q + 6&2.

For most of our MC runs, we impose a "stacking con-
straint": For a given hexagonal prism, Hipping is allowed
only when there is a hexagonal prism in the adjacent up-
per (or lower) layer whose lower (upper) hexagon has a
boundary that coincides (ignoring center vertex) with the
boundary of upper (lower) hexagon of the given hexag-
onal prism. This constraint is necessary for "interlayer
Bips." '

Let us define phason variables in this model. The po-
sition of any vertex of the tiling with fixed origin (by
choosing a vertex as the origin) is expressed as
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+D -D

onal prism and (2) if it satisfies the stacking direc-
tion constraint, flip it according to a probability; p =
exp( —PAE) if AE ) 0, p = 1 otherwise, where AE is
the energy cost for performing the flip. We used an ap-
proximant to a 2D perfect Penrose tiling for a layer that
has the smallest phason strain at a given system size with
periodic boundary conditions. To get a periodic tiling,
we use a periodic uniform dual grid, which is the inter-
section of 4D lattice planes of the 5D hypercubic lattice
with a 2D hypersurface spanned by two vectors,

~i ——(P 0, P, ——Q, Q), cu2 ——(0, P, Q, —Q, P), —

+Q

FIG. 2. Hexagonal prisms: (a) D-type hexagonal prism
before (+D) and after (—D) flip. (b) Q-type hexagonal
prism before (+Q) and after (—Q) Ilip. Solid circles indi-
cate the center vertices of the upper hexagons. The orienta-
tion (+ sign) is given by the convention explained in the text
(Sec. IV C).

where P and Q are integers. A sequence of approximants
are obtained by taking P = Fi, and Q = F@ i, where F&
is kth Fibonacci number (Fp = 0 F] = 1). Then the
basis vectors of the periodic tiling are given by

5

x= ne II (2) 7rL( =r"
~

0, 2sin—
5

(5)

where e~~ = (cos,sin, 0) for n = 0, 1, . . . , 4 and
(0,0,1) for n = 5 and n is the number of steps in direc-

tion e on a continuous path to the vertex at x from the
origin along the edges, counting negatively when going in
the —e . We define a complementary basis e, such that
the vectors e = e e are linearly independent in 6DII

hyperspace. Then, for each vertex x whose position is
given by Eq. (2), we define a perp-space position vector
x~ by

(3)

where e = (cos, sin ",1) for n = 0, 1, . . . , 4 and
(0, 0, 0) for n = 5. These vectors span a 3D space called
"perp-space, " which can be further decomposed as the
product of a 2D "phason space" (which is incommensu-
rately oriented with respect to the hyperspace lattice)
and a 1D "discrete space" (which is commensurately ori-
ented). In our model in which double arrow mismatches
are disallowed, the discrete space component of x is re-
stricted to four consecutive integers. Phason variables
w are to be defined as a smoothed function w(x), con-
structed as an average of the phason space projection x h

of the perp-space position vector x, in some neighbor-
hood of rad. ius ap )) 1.

III. MONTE CARLO SIMULATION

We use a thermal Monte Carlo methods based on
a Metropolis importance sampling scheme. The ba-
sic Monte Carlo move is (1) randomly select a hexag-

and the uniform phason strain E to get the kth periodic
approximant is

E = ( 1)k+i -»
~( 2 Slii

0)
(6)

When we calculate perp-space position vectors, to get rid
of the effects due to the uniform phason strain E, we re-

place e in Eq. (3) by e —Ee~. The number of tiles in
a layer is given by %1, ——F2A, +~ + 2/2k. Since our main
interest is the properties of 3D objects, the number of
layers L of the systems is proportional to the size of a
layer (I = Fi, for the kth approximant). Systems of 228
(Kq x I, = 76 x 3), 995 (199 x 5), 4168 (521 x 8), and
17732 (1364 x 13) tiles are used. We also study the effect
of varying L for fixed L and L . For most of the mod-
els presented here, we have assigned interaction energy
strength ei ——1 and e2 ——I/3 in Eq. (1), corresponding
to equal interlayer and intralayer energy costs for flipping
an isolated hexagon beginning from the ground state.

We start out with an ordered configuration, with the
minimum matching rule violations necessary to construct
the periodic approximants. Data are taken following a
heating sequence. We studied the time evolution of the
data to check whether the system has been equilibrated.
To ensure statistical independence, we measured the tem-
poral correlations, and most case measurements are sep-
arated more than correlation time. Some cooling runs
have been performed from above T to below T to check
the presence of hysteresis efFect. The data so obtained
agree with high accuracy with those from heating stud-
ies. As a test of the algorithm, we assigned e2 ——0 with-
out the stacking direction constraint and got the known
2D Penrose model results.
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IV. DIAGNOSTICS FOR PHASON ELASTICITY
TRANSITION AND RESULTS

OF MONTE CARLO SIMULATION

1

2

In the unlocked phase, where the continuum density
wave picture is applied, the general form of the phason
elastic Bee energy (up to quadratic in Ow) is

where m~ is the jth component of phason variable and
K,~y~ is an elastic constant tensor. For our model, due
to the decagonal symmetry, the free energy of Eq. (7)
reduces to the form

E = — d *Ki[(&''Uioi)'+ (&y~i)'+ (~*i02)'+ (~yiy2) ] + K2[(~ziti) + (ox~2) ]+Ks[oxiylclyi02 ~yiyl~xi02] (8)
2

where K~, K2, and K~ are elastic constants in the un-
locked phase. The integration of the last term in a layer
can be dropped to a line integral along the boundary of
the layer that vanishes in the absence of dislocations.

On the other hand, in a locked phase the phason elastic
free energy is given by

d'*Ki(l&~~il + 1&~~21)
2

+K.(I~.~il + 1~.~21)

A. Phason Huctuations

The phason elastic free energy in the unlocked phase
(8) can be diagonalized by Fourier transforming of pha-
son variable w(x),

w(p) = V '~ d x e *~'"w(x), (1O)

where V is the volume of the system. Then free energy
(8) becomes

where Kq and K2 are elastic constants in the locked
phase, and 9'~ ——e~B + e„O„ is a two-dimensional
derivative in the plane perpendicular to the stacking di-
rection (z axis).

To see whether a system is in a locked phase or in
an unlocked phase, we could, in principle, compare the
free energies of the systems with difFerent uniform pha-
son strain E. To do this we would need to know the
energy and the entropy of the system with low uniform
background phason strain K, as functions of tempera-
ture. We attempted to estimate the entropy, using the
"energy method, " "the variance method, " and "the his-
togram method, " ' but we could not estimate entropy
accurately enough to distinguish the phason elasticity.
Hence, we resorted to several other measures including
phason fluctuations, lane widths, and trail magnetization
(defined below).

[We ignore the third term in Eq. (8), which vanishes in
any configuration in our simulation. ] Since the free en-
ergy (11) is harmonic in iy;(p) for i = 1, 2, it is straight-
forward to calculate (Iw(p)l ),

(lw(p) I') = ) (l~*(p) I')
i=1 2

2

Ki (p' + p„') + K2p,''

where the angular brackets denote an ensemble average.
Elastic constants Kq and K2 are obtained by measuring
(Iw(p) I ) for p = p e + p„e„and for p = p, e, . Let us
define

2
Ki(p) =

(lw(p* py o)I') (p'. + p,') '

2
K2(p) =

(lw(o o p-)I') p! .

If the system is in the unlocked phase, Ki(p) and
K2(p) should be constants, independent of Ipl for
2z'/L & Ipl & A, where L is the system size and A is
the short-wavelength cutoK, which depends on the coarse
graining scheme [A is order of 2m/a for a smooth func-
tion w(x), where a is the size of a unit cell]. A proper
coarse graining scheme is necessary to get elastic con-
stants by measuring (Iw(p)l ) in our simulation. This is
because the perp-space position x [from which a smooth
function w(x) is constructed] fluctuates strongly for near-
neighbor vertices (Ax /Ex 1 for Ax 1).

We construct the phason field w(x) from the perp-
space position w by

w(x) = d'x K(x —x') S~(x'),

)
Ill(~~/«

+ K».' [~i(p)'+ ~2(p)'].

Ki(p'. + p,') [~i (p)'+ ~2(p)')] where K(x) is a smearing kernel satisfying J d x K(x) =
1 and S (x) is the representative surface —piecewise lin-
ear interpolating function of w h. Precisely, we use
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x~„(x) for x at a vertex of the upper face of a cell,

x h(x )di, + x h(xs)d for x in an edge (d from one end x, di, from the other end xi, )

of the upper face,

S~(x„p)

for x. inside the upper face, where xi and xq are the projections

of x to the edges (meet at a vertex) of the upper face,

for x inside the unit cell, where x p is the projection of x to the upper face

1 1
K(x) = — O(2 —r y)8(z),4vrr y

(i5)

where r z —— (x + y ) ~ and O(x) is the step
function. When this coarse graining scheme is ap-
plied to the 2D Penrose model, the known elastic
constants are recovered for ~p~ & A 1.5. Note
that a simple-minded coarse graining scheme to replace
Eq. (]5), w(x) = —P. i x h(x;) h(x —x, ) [w(p)
~1/2 g, x h(x;) e ' '

] would not have worked as well.

In the 2D Penrose model, the known elastic constants
are recovered for only ~p~ & A 0.5, which is nearly
the long-wavelength cutoff (27t;/I) for the systems in our
simulation.

To determine if the system is in the unlocked phase,
we measure whether Ki(p) and Kq(p) as defined in
Eq. (13) are ~p~ independent. In Fig. 3, we show a plot
of Ki(p) and Kq(p) vs ~p~ at T = 1.5 and 2.5 for a se-
quence of lattices of increasing size. These plots show
that Ki (p) and Kq (p) are constants and independent
of system size, indicating that the system is unlocked
at T ) 1.5 . We estimate the elastic constants to be
Ki ——1.72 + 0.02, Kq ——0.56 + 0.02 at T = 1.5 and
Ki ——1.22 + 0.02, Kq ——0.14 + 0.01 at T = 2.5.

In contrast, Fig. 4 illustrates the same calculation for
T = 1.0. Here, Ki(p) and Kq(p) fluctuate wildly with

~p~ and the mean value appears to diverge with increas-
ing system size. Hence, T = 1.0 is clearly below a phase

I

transition (out of the unlocked phase). The wild behav-
ior of Ki(p) and Kq(p) is consistent with the notion
that the phason elastic energy is locked. Hence, pha-
son fluctuation measurements can be used to establish
a transition out of the unlocked phase described by an
elastic energy of the form in Eq. (8). However, we can-
not prove from phason fluctuation measurements that the
low-temperature phase has F ~Vw~ (as expected for a
Penrose-tiling phase). This is because the phason fluc-
tuations appear to become pinned (as indicated by the
divergence of Ki and Kz ). Since w is not thermody-
namically excited, the dependence of I" on ~V'w~ cannot
be measured.

Further evidences of the transition from the unlocked
phase is provided by the measurement of the average pha-
son field within a layer,

1
w(z) = — w(x, y, z) dxdys s

(where S is the area of a layer), and then calculating how
this average fluctuates from layer to layer. The average
phason field within a layer w(z) is related to the Fourier
components of phason field at p~ = py: 0 by

w(z) = V ~ ) w(p = py
—

O, p, )e*"*',
Pz

since
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FIG. 3. The elastic constants Ki(p) (a)
and Kz(p) (b) defined by Eq. (13) vs the
magnitude of the wave vector ~p~ with un-
locked phases (at T = 1.5 and T = 2.5).
Ki(p) and Kq(p) are constant over ~p~ and
independent of the system size. In this and
the following figures, the numbers in the leg-
end represent the numbers of tiles N in the
systems.
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Ki(p) and Kz(p) increase in magnitude with
increasing system size. Points of data for each
system size are connected by lines shown in
the legend. The average of K, over ~p~ for
each system size is indicated by an arrow.
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w(p = pv = Oy) = V ~ jw(vye)e 'v * dv

= ( ) 2 w(z)e '"*'. dz,I (18)

where L is the number of layers. In an unlocked phase
~w(p = p„= 0, p, )I = 2/(Kz p, ) [Eq. (12)t. Hence, the
mean-square Huctuation of w(z) in the unlocked phase,

2

((Aw) ):— ) w(z) — ) w(z)
—2 1 - — 1

z z

1L,.
2 dP.

V 2~,(L K2 P
2

(L, —a),2'ScK2

where c is order of 2vr and c/a is upper wave number
cutoff. Figure 5 shows ((Aw) ) vs L, at T = 1, 1.5,

x10 x10

A

IW 3

V

IW
CI
V

10 0 10

(a) (b)

FIG. 5. Mean-square fluctuation, (Aw), of w(z) is plot-
ted vs stacking direction size L with locked phase (a) and
unlocked phases (b).

and 2.5. The initial configuration within each layer is
a sixth approximant. ((Aw)2) does not show a linear
dependence on I at T = 1.0, while it is linear in L at
T = 1.5 and 2.5 (consistent with the earlier conclusion of
an unlocked phase at T = 1.5 and 2.5). From the slope in
Fig. 5(b) and Eq. (19), we find cK2 ——1.106 0.06 at T =
1.5 and cd ——0.27 + .03 at T = 2.5. Comparing these
values to the elastic constants &om the measurements of
(Iw(p) ~ ), implies cutoff constant c 2 in Eq. (19), while
we have a 1 from Fig. 5.

B. Lane widths

As a mean of analyzing the low-T phase, we have mea-
sured the spacing between two adjacent trails in a layer.

A "trail" in our model is a contiguous strip of tiles,
which share a common side-face direction (the side-face
direction q of a side face parallel to the plane spanned

by e and es is q = e xes, n = 0, . . . , 4). We shall callII II
~ II II

a trail, which has a side-face direction q, an o,-direction
trail. An o.-direction trail runs along the q direction on
average. As shown in Fig. 6, each layer consists of sets
of parallel trails (Fig. 6 shows a layer in a fifth approxi-
mant system viewed from the tenfold axis). The regions
between the trails will be referred to as "lanes. " In a per-
fect Penrose tiling, two diferent widths of lanes exist: a
thick lane and a thin lane. These lanes repeat quasiperi-
odically (Fibonacci sequence) in the direction normal to
the trail direction. Hence, in a locked phase, where this
quasiperiodicity is believed not to be destroyed, the dis-
tribution of the lane widths is bimodal. The distribution
under the one mode (corresponding thick lanes) is 7 times
bigger than that under the other mode, where v is golden
mean. In the unlocked phase, the distribution of the lane
widths may have merged into one peak (as the distribu-
tion of the distances between nearest balls in a unlocked
phase of Frenkel-Kontorova models). With this in mind,
we have measured the number of lanes Ni "'P(W)dW
whose average width i.s in between R' and TV + dR',
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phase) as L -+ oo. We have checked reversality by doing
some cooling runs from above T . The distribution of the
lane widths merged into one peak at high T, come back
to original bimodal mode with peaks at Penrose-tiling
lane widths. This measurement of the distributions of
the lane widths, suggests that the system is in locked.
phase at low temperature.

To estimate the transition temperature T we have
measured the number of lanes whose widths are around
the lane widths of a Penrose tiling and lanes with widths
near Wun ock. Let us de6ne Plock and Punlock as the rel-
ative number of these lanes:

W2l W2

FIG. 6. Trails and lanes in a layer (above) and average
widths of lanes (below). The sequences of the shaded tiles
are trails. The region between neighboring trails is a lane.
Average lane width is defined as the average of the spacing
between two trails contiguous with that lane.

where N "' is the total number of lanes in the system
(average width of a lane is defined as the average of the
spacing between two trails contiguous with the lane (see
Fig. 6). At low T(at T =-1.0), as shown in Fig. 7(a),
P(W) has two peaks near the values corresponding the
lane widths (Wz~

'" and Wz~ '") of a Penrose tiling. As
the system size diverges, lane widths converge the val-
ues of Penrose-tiling lane widths. In contrast, P(W) at
high-T [at T=1.5, Fig. 7(c)] shows a distribution with
one peak at W"" '" = L/N~ "' as L ~ oo, where L is
the system size and N " is the number of o.-direction
lanes in a plane (N~ "' = fk for a kth approximant).
P(W) near the transition temperature (at T = 1.3) is
shown in Fig. 7(b). From this figure, it is hard to tell
whether the curve P(W) at T = 1.3 will be bimodal (as
in a locked phase) or be monomodal (as in a unlocked

P' '" —= P(W) dW + P(W) dW,
R1 Rg

punlock p(W)dW
R3

p plock punlock

(20)

C. Trail magnetization

As a new order parameter to analyze the low-T phase
and the transition from the low-T phase, we have devised
a novel measure that we have termed trail magnetiza-
tion. Trail-magnetization traces the ordering of "hexag-

where B (Wlock $ Wlock + $ ) Z —(Wlock
Wlock + g ) and p —(Wunlock g Wunlock + g )

Here, hi and 82 are small numbers ((( 1) with b2 ——2hi.
Then P should be 1 at T = 0 and should be negative
at T = oo (the precise value at T = oo depends on the
choice of bi and b2 but greater than —1 always).

Figure 8 shows P vs temperature for a sequence of
lattices of increasing size. We have chosen bq

——0.05 and
b2 ——0.1. P converges to 1 at low T and has negative
values at high T. We roughly estimate the transition
temperature T, 1.3 from Fig. 8 as the value around
which the graphs of diferent sizes cross each other.
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FIG. 7. Lane width distributions with locked phase (a) and

unlocked phase (c). Lane width distributions near the transi-
tion temperature are shown in (b).
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FIG. 8. System size dependence of P defined in Eq. (20)
vs temperature.
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onal prisms" along worms and trails that run through
each layer.

A hexagonal prism, as shown in Fig. 2, consists of three
tiles. The type (D or Q) of a hexagonal prism is identified
with the type of the center vertex on the upper hexagon
of the hexagonal prism. By convention, the orientation
of a hexagonal prism is "+" ("—") if the center vertex has

an edge leading away &om it along direction e~~ (—e ).
A worm in a layer is an unbroken sequence of hexag-
onal prisms and the length of a worm is de6ned to be
the number of consecutive, connected hexagonal prisms.
Flipping one hexagonal prism in a perfect worm creates
a mismatch along either side face adjoining the worm
(Hipping the hexagonal prism again annihilates the mis-
matches). If we restrict Hipping to only one worm, the 2D
Penrose model is analogous to the one-dimensional Ising
model, assigning "spin up" for one orientation hexagon
and "spin down" for the Hipped hexagon in a worm. If
the 2D Penrose tiling were an aggregation of uncoupled
worms (i.e. , uncoupled one-dimensional Ising models),
we would expect an order-disorder transition at T = 0,
which coincides with the result that the transition to the
unlocked phase in 2D Penrose tiling is at T = 0.

Along a trail, many worms (chains of hexagonal
prisms) may be found. Along any trail in a perfect Pen-
rose tiling, all worms longer than one hexagonal prism
have the same orientation. Di8'erent trails may have op-
posite hexagonal prism orientation. Also, some worms of
length one point in the opposite direction to the other
hexagons in a trail. All together, about 97% of hexago-
nal prisms in a trail have same orientation in a perfect
Penrose tiling, while the hexagonal prisms along a trail
in a maximally random tiling have orientations which av-
erage to zero. Hence, we define the trail magnetization
in o. orientation

(tr ) means all trails (fi, x L, trails for a kth approxi-
mant) in the a-direction, and tr means the ith trail in n
direction (i = 1, . . . , fI, x I,). Here, spin variable S~ is as-
signed to the jth hexagonal prism and takes +1 depend-
ing on the orientation of the hexagonal prism. Without
loss of generality, we will discuss results for o. = 0 (eo-II

direction trails).
Figure 9 shows the trail magnetization and "trail sus-

ceptibility"

X = ~h-- T (((m")') —(m")') (22)

and illustrates how m ' can serve as a useful diagnostic
measure. At T = 0, the trail magnetization converges to
a fixed value as the system diverges, a value consistent
with the expectation value for a locked, Penrose-tiling
phase. At T & 1.5, the trail magnetization approaches
zero as L + oo, consistent with an unlocked phase. The
magnitude of susceptibility maximum seems to diverge
near the transition temperature. To obtain the transition
temperature and critical exponents, we attempt to 6t the
trail magnetization and susceptibility according to

m"(T, L) = L ~~"ft(T —T,)L ~ j,.-(T, L) = L"l(T —T.)L'.j,
(23)

(24)

m" - (T —T,)~ for (T ( T ),- /T —T,
/

where L is the system size, T is transition temperature of
the infinite system and critical exponents P, p, v are de-
fined from the temperature dependence of order param-
eter m ', susceptibility y, and the correlation length (
near the transition temperature:

(21)trm'= S. ,+hexa
'e(tr }~etr

where N" " is number of hexagons in o.-direction trails,
In Fig. 10(a), we plot m '(T, L) L~~ vs (T —T,)Li~ and
in Fig. 10(b), y (T, L) I ~~" vs (T —T,)Li~, for values
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FIG. 9. System size dependence of the trail
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FIG. 10. Finite-size scaling plots of the
data for trail Inagnetization, shown in
Fig. 9(a), and for susceptibility, shown in
Fig. 9(b). Here, mL~ " (a) and g L ~ " (b)
are plotted versus (T —T,)L ~ with the fol-
lowing choice of exponents: P = 0.2, p = 1.6,
and v = 1.6 and the transition temperature
T = 1.24.

T = 1.24,

p= 1.6,
P = 0.2,

v = 1.6.

The m ' and y~ curves for various system size super-
impose clearly. We have checked the possibility of a se-
quence of transitions rather than a single transition by
considering

Itrmn
1

iq(tr ) j)gtr'
(25)

C„- iT —T.
i

The results of trail magnetization and specific-heat
measurements seem very consistent with a single con-
tinuous transition from a locked phase (m ' = 1) to an
unlocked phase.

To check the robustness of the result, we have repeated
the analysis for other related models. First we changed
the interaction strength ratio ei/e2. Recall that the net
energy cost of a hexagonal prism Oip is 2eq + 6e2. We
have tested ei/e2 ——1 and ei/e2 ——9 and found that the

where tr' traces over the ith trails in all layers along
direction n. (To see the ordering in stacking direction
also, we took a sum of spin valuables in ith trails of
all L layers before taking the absolute values instead of
summing the spin values in each individual trail as in
m '.) We have been able to make m' ' and y i curves
for various system size superimpose. The transition tem-
perature from the measurement of m' ' is consistent with
the result from m '

~

We also measured energy per tile (s) = (E/K) and
specific heat C„= (&)2((s ) —(e') )K, where E is the
system energy given by Eq. (1) and K is number of tiles.
Specific heat has its maximum near the transition tem-
perature T and the magnitude of its maximum seems to
be independent of the system size (Fig. 11) implying that
the specific-heat exponent o. = 0, where o, is defined by

0.5

U~ 0.4

0.3
0
~~ 0.2
CL

CO

I

288—
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4168
- 17732-

r lj,

&''iI

0.0 '

0.5 1.0 1.5
Temperature T

2.0

FIG. 11. System size dependence of specific heat plotted
against temperature.

systems show a locked-phason to unlocked-phason phase
transition at finite temperature.

We have also considered models, where we have re-
laxed the interlayer "stacking constraint" (that a hexago-
nal prism can be Qipped only if a hexagonal prism lies just
above or below with sharing a same hexagon boundary in
between; see Sec. II). The low-temperature phase of this
model appears to be the same as that of the model with
the stacking constraint. At high temperature (T ) T,),
free energy shows a quadratic dependence on spatial vari-
ation in phason variable in a layer (i0 wi2+ iB„wi ). For
the stacking direction, free energy shows a quadratic be-
havior in (B,w) up to some temperature T,' (T,' ) T,),
which depends on the system size. Above the T', layers
become decoupled so that the averaged phason field w(z)
of zth layer [Eq. (16)] is not correlated with w(z+ 1) [cor-
relation length of w(z) is zero for T ) T,']. However, T,'
increases as the system size is getting bigger and we spec-
ulate that T may diverge in the thermodynamic limits.
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V. CONCLUSIONS

Our paper presents systems that show a finite-
temperature locked-phason —to—unlocked-phason phase
transition in quasicrystals. All models for 3D decagonal
quasicrystals we have studied show a single continuous
phase transition at finite temperature from low-T locked
phase to high-T unlocked phase.

Phason fluctuations of the system show strong evi-
dences that the system is in unlocked phase at T & T
in which free energy is described as square gradient of
phason variables. At T ( T, from the measurements of
lane width and trail magnetization, we conclude that the
system is in locked phase. The finite specific-heat peak
and the critical exponents we obtained from the scaling
behaviors of the m ' show that the transition is continu-
ous.

Recently Hiraga et al. have noted that the periodi-
cally spaced layers in A1PbMn decagonal quasicrystals
strongly correlated atomic order. Our simulations show
that there is a single transition in which both intralayer
and interlayer phason Quctuations transform from locked
to unlocked. Hence; the observation of correlated order
(locking) between layers would imply that that AlPbMn
quasicrystals are in the locked phase and not in the ran-
dom tiling in spite of some apparent disorder within the
layer. (The disorder is likely to be due to decapod defects
or unusual local isomorphism class. )

To predict the transition temperature T, in real qua-
sicrystals, we need to know how big the mismatch ener-
gies (eq and ez) are. Note that T, is of order the geometric

1
mean mismatch energy e = (eqe2) 2 for our model. T, will

approach zero if either eq or e2 approaches zero.
The unlocking transition could be preempted by the

melting transition. If the transition temperature T is
higher than the melting temperature T, quasicrystals
remain in the locked phase for temperatures ranging all
the way up to melting point. For these systems, one
would expect more quenched phasons than for a system,
which has unlocked phase between the melt phase and the
locked phase, since unlocking implies rapid relaxation of
phason fluctuations. Hence, the relation between T and
T may partially account for the reason why some sys-
tems form near-perfect quasicrystals and others do not.
For the system that has an unlocked phase (T, ( T ), the
transition from the unlocked phase to the locked phase
could be observed in experiments. An observational ef-
fect could be Debye-Wailer suppression of the difFraction
peak intensities. In the unlocked phase, phasons can be
thermodynamically excited. As we can see in Fig. 3, the
phason elastic constants increase with decreasing temper-
ature in the unlocked phase. Consequently, the Debye-
Waller suppression decreases as T decreases toward T .
Then, after the transition to the locked phase, thermal
phason fluctuations are frozen and the the Debye-Wailer
suppression disappears.
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