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Critical exponents of the classical three-dimensional Heisenberg model:
A single-cluster Monte Carlo study
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We have simulated the three-dimensional Heisenberg model on simple cubic lattices, using the single-
cluster Monte Carlo update algorithm. The expected pronounced reduction of critical slowing down at
the phase transition is verified. This allows simulations on significantly larger lattices than in previous
studies and consequently a better control over systematic errors. In one set of simulations we employ the
usual finite-size scaling methods to compute the critical exponents v, a,P, y, g from a few measurements
in the vicinity of the critical point, making extensive use of histogram reweighting and optimization
techniques. In another set of simulations we report measurements of improved estimators for the spatial
correlation length and the susceptibility in the high-temperature phase, obtained on lattices with up to
100 spins. This enables us to compute independent estimates of v and y from power-law fits of their
critical divergencies.

I. INTRODUCTION

Critical exponents are the distinguishing parameters
characterizing continuous phase transitions. Most
theoretical estimates of their values have been calculated
along three different routes: erst, with the assumption of
universality, from (resummed) perturbation expansions of
generic Geld-theoretical models; second, from high-
temperature series expansions of lattice models; and
third, from Monte Carlo (MC) simulations of the associ-
ated Boltzmann distributions. A11 these approaches are
based on resummation or extrapolation techniques whose
systematic errors are difficult to control. To gain
confidence in the numerical values of the exponents, it is
therefore quite important to have several independent ap-
proaches for the cross-checks available.

Until a few years ago, the precision of Monte Carlo es-
timates was comparatively poor, since this approach was
plagued not only by systematic but also by statistical er-
rors. The problem is that MC algorithms based on local
update procedures are severely hampered near criticality
by extremely long autocorrelation times (so-called critical
slowing down), which reduce the efFective statistics and
thus increase the statistical errors considerably. ' The re-
cent development of nonlocal update algorithms that
overcome the problem of critical slowing down is a major
step forward. It is this algorithmic improvement com-
bined with the higher speed of modern computers that
makes systematic tests of finite-size scaling (FSS) predic-
tions and a reliable computation of critical exponents
much more feasible than a few years ago.

For spin systems, cluster algorithms ' turned out to be
particularly successful. Recent applications of the multi-
ple and single cluster variants to two-dimensional (2D)
Ising, XY, ' Heisenberg, ' ' and other O(n) mod-

els' have demonstrated that both variants are equally
good tools to simulate these 2D systems. In three dimen-
sions (3D), however, extensive tests for the Ising ' and
XY (Refs. 17 and 18) models clearly showed that the
single-cluster variant is the superior algorithm. In our
study of the 3D Heisenberg model, we have therefore
chosen the single-cluster update algorithm. ' The setup
of our simulations is described in some detail in Sec. II.

There are of course many sources for a comparison
with simulations based on the standard local heat-bath
or Metropolis ' algorithm. In a recent series of papers,
Peczak, Ferrenberg, and Landau ' used the latter algo-
rithm combined with histogram reweighting tech-
niques to estimate the critical coupling and the criti-
cal exponents of the 3D Heisenberg model from a FSS
analysis of simulations on simple cubic lattices and in-
vestigated also its (exponential) autocorrelation time ro.
Their result, ip~L, with dynamical critical exponent
z =1.94(6), shows that ~o is rapidly increasing with the
linear lattice size L and explains why they could not go to
systems larger than 24 . Since, as expected, the auto-
correlation time for the single-cluster algorithm turns out
to be almost independent of L, we could study much
larger lattices of size up to 48 in reasonable computer
time. Our results described in Sec. III provide evidence
that the asymptotic FSS region is indeed reached quite
early or, in other words, that the amplitudes of correction
terms are very small. The present study thus significantly
reduces the danger of systematic errors in the MC esti-
mates of critical exponents from FSS analyses.

In Sec. IV we report another set of high-precision
simulations, done this time in the high-temperature
phase. There we use variance reduced "cluster estima-
tors"' for the spatial correlation length g' and the suscep-
tibility y. By going to very large systems with up to 100
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spins, we have made sure that these data have only negli-
gible finite-size corrections well below the statistical er-
rors of about 0.2%. Least-squares fits of the critical
divergencies of g and y to the well-known power laws
yield independent estimates for the critical coupling and
the critical exponents v and y. Obviously, this is another
useful check on residual systematic errors. Finally, in
Sec. V, we brieAy discuss and summarize our main re-
sults.

II. MODEL AND SIMULATION TECHNIQUES

Let us start with a brief description of the model and
some remarks on the simulation techniques we have used.
The partition function of the Heisenberg model is given
by

dP(x)d cos8(x) ~Ee
4m.

where P—:J/ksT is the (reduced) inverse temperature
and the energy is

E=g [1—s(x)s(x+i)j .
X, I

Here s=(sin8cosg, sin8sing, cos8) are three-
dimensional unit spins at the sites x of a simple cubic lat-
tice of size V =I. and i are unit steps in the three coordi-
nate directions. We always employ periodic boundary
conditions.

moved, depending on temperature and lattice size. More
precisely, our results show that near P, and for all lattice
sizes the average cluster size ( ~

C
~ ) is proportional to the

susceptibility,

(4)

(with roughly the same constant as in two dimensions' ),
where g=y/P= V(m ), m=(1/V)g„s(x). At P„ the
susceptibility behaves like y ~ L ~ '=L " (with very
small ted=0. 04), so that with increasing lattice size the
fraction of moved spins in each update step decreases like
(~C~)/V~L " "', i.e., roughly ~1/L. Since the CPU
time needed for a single-cluster update is approximately
proportional to the number of moved spins, it is con-
venient to use No =—V/( C

~
) ~ L '+" single update steps

as unit of time. This is then directly comparable with
other schemes that attempt moves for all spins in one up-
date step. All our autocorrelation times refer to this unit
of time (Metropolis-equivalent unit), which can always
be achieved by a rescaling of the time variable.

For the susceptibility we typically find ~=1.5 —2.0.
The values of ~ for each simulation are given in Table I.
Already our rough estimate of ~ shows that for large sys-
tem sizes the single-cluster update clearly outperforms
the Metropolis algorithm, for which the exponential au-
tocorrelation time 7 p has recently been determined to be
7p —al ', with amplitude a =3.76 and dynamical criti-
cal exponent z=1.94(6). For our largest lattice size
I, =48, this implies a reduction of the autocorrelation

A. Algorithm

For the closely related 3D Ising and XY models it has
been shown ' ' that the single-cluster update is the
fastest MC algorithm available. We have therefore
chosen this variant for our study of the 3D Heisenberg
model. One update in the single-cluster variant consists
of choosing a random mirror plane and a random site,
which is the starting point for growing a cluster of
rejected spins. The size and shape of the cluster are con-
trolled by a Metropolis-like accept-reject criterion satisfy-
ing detailed balance. ' Compared with the multiple-
cluster algorithm, this variant is technically somewhat
simpler to implement and, more importantly, in three di-
mensions numerically more efficient. The reason is that,
on the average, larger clusters are moved.

To test the performance of the algorithm, we have
recorded autocorrelation functions A ( k) =p( k ) /p(0),
with

p(I )=(o,o, „)—(o, )',
and 0; denoting the ith measurement of an observable.
We have focused on the integrated autocorrelation time

—,'+gk &A (k—), which describes the enhancement of
the statistical error e='t/o /N &2r for the mean value
over a sample of N correlated measurements of variance
o. . The infinite sum was always self-consistently cut off
at k „=6~.max

Recall that for the single-cluster update some care is
necessary in defining the unit of time, since in each up-
date step only a relatively small fraction of the spins is

12
12
12
16
16
16
20
20
20
24
24
24
24
32
32
32
40
40
40
48
48
48
48

0.6783
0.6929
0.7009
0.6872
0.6929
0.6953
0.6862
0.6929
0.6947
0.6872
0.6929
0.6953
0.6972
0.6881
0.6929
0.6965
0.6904
0.6929
0.6953
0.6914
0.6929
0.6941
0.6968

1430249
5222274
931277
242804
217393
206676
270067
332725
284544
709711
472831
350379
355572
356881
351394
360726
255563
216251
232234
131620
138729
126643
174441

0.045
0.071
0.086
0.122
0.157
0.174
0.110
0.208
0.184
0.130
0.207
0.244
0.274
0.126
0.206
0.215
0.106
0.163
0.194
0.145
0.200
0.165
0.178

79
122
149
167
213
241
220
332
369
300
476
563
631
460
842

1174
851

1304
1774
1339
1840
2287
3287

0.8
1.2
1.4
1.4
1.8
1.9
1.1
1.8
1.8
1.0
1.6
1.7
1.7
F 1
1.8
1.9
1.1
1.5
1.8
1.2
1.6
1.6
1.7

TABLE I. Measurement statistics: N is the number of mea-
surements, taken after fXL spins are flipped (on the average),
(

~
C~ ) is the average cluster size that is measured after each up-

date step, and ~ is a rough estimate of the autocorrelation time
in Metropolis-equivalent units.
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time by about three orders of magnitude. A more de-
tailed study of the autocorrelations is in preparation.

To extract the critical exponents, we have performed
two sets of simulations: one in the critical region where
the correlation length of the infinite system is much
larger than the linear system size, g„))L, and the other
in the high-temperature phase, making sure that g„((L
to reduce finite-size corrections as much as possible. The
quantities we have measured are the internal energy,
specific heat, correlation length, average cluster size, sus-
ceptibility, and higher-order moments. In the critical re-
gion this can be done most efficiently by combining the
single-cluster update with multihistogram sampling tech-
niques and in the high-temperature phase by using im-
proved estimators for measurements.

B. Improved estimators

An improved "cluster estimator" for the spin-spin
correlation function in the high-temperature phase,
G(x —x')—:(s(x) s(x') ), is given by'

G(x —x')=3 r s(x)r s(x')6 (x)e (x'),

where r is the normal of the mirror plane used in the con-
struction of the cluster of size ~C~ and Bc(x) is its
characteristic function ( = 1 if xE C and 0 otherwise).
For the Fourier transform C(k)=Q„G(x)exp( —ik x),
this implies the improved estimator

8( )=
i

= 3 g r s(x)cosk x
xEC

+ g r.s(x)sink x
x&C

Note that we follow in the definition of the susceptibility
y in the high-temperature section the standard conven-
tion of omitting the p factor. From the theoretically ex-
pected small-k behavior of the inverse Fourier transform

3

G(k) '=c g 2(1 —cosk, )+(I/g)
i=1

=c[k +(I/g) ], (8)

where c is a constant and k, =(2m/L)n;, n; =1, . . . , L,
one may extract the correlation length g by ineasuring 0
for a few long-wavelength modes and performing least-
squares fits to (8). In our simulations we have measured
G(k) for n=(0, 0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), and
(2, 1,0) (see Sec. IV). It is well known that by means of the
estimators (5)—(7) a significant reduction of variance can
only be expected outside the FSS region where the aver-
age cluster size is small compared with the volume of the
system.

which, for k=O, reduces to an improved estimator for
the susceptibility y in the high-temperature phase,

G(0)=g= g r s(x)=== 3

I CI

C. Histogram techniques

Even though histogram reweighting techniques have
been known for a long time, they have gained increas-
ing popularity as a practical tool only quite recently.
The best performance is achieved near criticality, and in
this sense the histogram reweighting technique is comple-
mentary to the use of improved estimators. It is a quite
general technique of data analysis based on the simple
idea of recording whole distribution functions, and not
only their first few moments (e.g., the average energy and
specific heat), as is usually done. The energy distribution
P& (E) (normalized to unit area) at inverse temperature

0

Pp can be written as

Pp (E)=p(E)e ' /Z(Pp),

where p(E) is the density of states with energy E. It is
then easy to see that an expectation value (f(E) ) can in
principle be calculated for any P from

j dE f(E)Pp (E)e
(f(E) )(P)=

f dEPp(E)e

To keep the notation short, we have suppressed the
lattice-size dependence of P& (E).

0

In practice, the continuous energy has to be discretized
into bins of size AE, and one measures the associated his-
togram P& (E)=P& (E)bE. Since the wings of P& (E)
have large statistical errors, one expects Eq. (10) (or its
obvious discrete modification) to give reliable results only
for p near pp. If pp is near criticality, the distribution is
relatively broad and the method works best. In this case
reliable estimates from (10) can be expected for p values
in an interval around Pp of width ~ L '~, i.e., just in the
FSS region. Figure 1(a) shows three typical energy histo-
grams measured at slightly different temperatures near
the critical point for the lattice size I. =48.

The information stored in P13 (E) is not yet sufficient to
0

calculate also the magnetic moments (m")(p) with
m = ~m~ as function of P from a single simulation at Pp.
Conceptually, the simplest way to do so is to record the
two-dimensional histogram P& (E,M), where M =m V is

the total magnetization (in general, we will denote by
lowercase letters quantities per site and the associated to-
tal quantities by the corresponding capital letters). Since
disk space limitations prevented us from doing that, we
have measured instead the "microcanonical averages"

((m"))(E)=g Pp (E,M)m "/Pg (E),
M

where we have used the trivial relation

GAMP& (E,M)=PP (E). In practice, this can be done
0 0

simply by accumulating the measurements of m in
different slots or bins according to the energy of the
configuration and normalizing at the end by the total
number of hits of each energy bin. Clearly, once
(( m "))(E) is determined, this is a special case off (E) in
Eq. (10), so that
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"»(E»,,(E).
&I "&(p)=

QEPI3 (E)e
(12)

70

Similar to p(E) in (9), theoretically the microcanonical
averages ((m "»(E) do not depend on the temperature at
which the simulation is performed. Because of the limit-
ed statistics in the wings of P& (E), however, there is only

0

a finite range around Eo = (E &(Po) where one can exPect
reasonable results for (( m "»(E). Outside of this range it
simply can happen (and does happen) that there are no
events to be averaged. This is illustrated in Fig. 1(b),

where ((m »(E) is plotted versus energy as obtained
from the three runs which gave the energy histograms in
Fig. 1(a). We see that the function looks smooth only in
the range where the corresponding energy histogram in
Fig. 1(a) has enough statistics.

To take full advantage of the histogram reweighting
technique, we have performed for each L typically three
simulations at slightly different inverse temperatures p;.
Using histogram reweighting and jackknife blocking,
we computed the P dependence of the expectation values
for all interesting thermodynamic observables 0;

(p;)—:OI ' (p) plus the associated error 60;. To obtain a sin-
gle expression 0=—OI (p), we then combined the values
0,. numerically according to the formula

60

50

P = 0.6941 P = 0.6929 P = 0.6914 0= 0) 02 03+ +
~ (bO)

(60, ) (b, O~ ) (503 )
(13)

40—
CL

CL

30

20

where 60 is given by

1

(b,O)
1 1 1

(60, ) (bO~) (603)
(14)

1 0 —
(~)

0
1.96

0.25

0.20

LU~ 0.15
A
A
E
v 0.10

0.050

0.0
1.96

1.00

1.98

1.98

2.00

E/V

2.00
E/V

2.02

2.02

2.04

P = 0.6941

29

14

2.04

This expression minimizes the absolute error 60. The re-
weighting range of each simulation, i.e., that range in
which the energy histogram has enough statistics to allow
for (10) to be valid, was determined by the energy values
at which the histogram had decreased to a third of its
maximum value. From the energy range one can then
deduce a corresponding P range. Only the values inside
this p window were used for the optimized combination
(13); the contributions of the other values were
suppressed by giving them zero weights.

We also implemented the optimized histogram com-
bination discussed in Ref. 27 to cross-check the results
obtained by (13) for the specific heat. The Fig. 1(c) shows
the weights for the optimal combination of the primary
energy histograms according to the prescription of Ref.
27, i.e., which gives the optimal combination of the three
estimates for N(E)=p(E)bE. Both methods gave com-
parable results within the statistical errors. We preferred
our optimization procedure over the optimized histogram
addition because it is simpler to apply to quantities in-
volving constant energy averages such as (( m »(E) and,
more importantly, minimizes the error on each observ-
able of interest separately.

0.75

LLl

& o.so—

P = 0.6941
I

1 = 0.6929
I /I

/

0 = 0.6914
III. RESULTS AT CRITICALITY

AND FINITE-SIZE SCALING ANALYSIS

0.25

0.00
1.96 1.98 2.00

E/V

2.02 2.04

FIG. 1. (a) Energy histograms for L =48 at the three simula-
tion temperatures. (b) The constant energy averages ((m ))(E)
as computed from the three simulations yielding the histograms
in (a). (c) The weights for the optimal combination of the histo-
grams according to the procedure in Ref. 27.

We investigated in our MC study simple cubic lattices
of volume V=L, where L =12, 16, 20, 24, 32, 40, and
48. For each L we have made at least three simulations
at three different temperatures compiled in Table I. For
all L we took P=0.6929, because this is the critical in-
verse temperature found in the recent study of Peczak,
Ferrenberg, and Landau. We analyzed this run to lo-
cate a first estimate for the temperatures of the maxima
of the specific heat and the susceptibility for each L, and
used those two temperatures for our other two simula-
tions. This choice has the advantage that both locations
of the maxima scale approximately like L ', which is
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also the region after which the energy distribution P&(E)
has decreased by roughly the same factor for all L. We
can therefore expect to have always enough overlap to
ensure a safe reweighting of our three histograms into the
p region of interest. A further advantage is that the two
maxima approach T, from different sides.

For each configuration we recorded the energy histo-
gram P&(E) using 90000 bins to discretize the continuous
energy range 0 E 3 V. We have checked that this bin-
ning is Ane enough to ensure negligibly small discretiza-
tion errors. In addition, we recorded the microcanonical
averages of (( m ))(E), (( m ))(E), and (( m ))(E).
These histograms provided us with all necessary informa-
tion to calculate all thermodynamic quantities of interest.
Every 10000 measurement steps we recorded a copy of
each histogram, so that we were able to compute errors
by standard jackknife blocking.

A. Binder parameter UI (P)

We have used the histogram reweighting technique to
find the P dependence of the Binder parameter,

(15)

To obtain a single curve UL(P) for each lattice size L
from the three simulations at temperatures compiled in
Table I, we used our optimized combination of Eq. (13).
In (15) we adapt the usual normalization convention, al-
though the factor 3 is only really motivated for the Ising
[O(1)] model. For general O(n) models it is easy to
show that in the high-temperature limit Czaussian Auctua-
tions around m=0 lead to UI ~2(n —1)/3n For .n =1
this gives a zero reference point, but for the Heisenberg
model with n =3 we get the quite arbitrary looking limit
UL ~—,'. In three dimensions we are for low temperatures
always in the magnetized phase and hence have for all n

trivially Ul —+—', .
It is well known that the UI (p) curves for different L

cross around (p„U*) with slopes ~L'~, apart from
conQuent corrections explaining small systematic devia-
tions. This allows an almost unbiased estimate of /3„ the
critical exponent v, and U*. Field-theoretical expansions
in &E=&4 Dpredict"—

xo= —1.7650848012 —+E= —0.768 15456V'E,
2&33

P, =0.6930+0.0001 . (19)

The errors obtained on T were obtained by using the
crossings of UI (P)+ b, UI (P) with UI (/3) b. Ul (P), —
where AU& are the errors on UL obtained via the jack-
knife procedure. Our result (19) is in good agreement
with the value given in Ref. 23, p, =0.6929(l), but
significantly higher than estimates from analyses of high-
temperature series expansions.

and in the last line we have abbreviated
R —= I'( —')/I ( —')=2.95867512. . . . Note also that (15)
can be rewritten as

2~x
U (18)

x
where err

= V P ( ( m ) —( m ) ) is the variance of the
susceptibility. In the T~ ~ limit, we get ~ —+ —,'y and

at criticality, inserting the field-theory prediction (16),
this implies u&=0.21' .

Figure 2 shows the crossings of the Ul (/3) curves on a
large scale, which gives a first estimate of (p„U*).To ex-
tract more precise values of U* and P, from our data, we
used that the locations of the crossing point p —= 1/T
of two different curves UL (p) and UI (p) depend on the
scale factor b =L'/L, as a result of the residual correc-
tions to the FSS. To have enough data points for a
straight-line fit, we used only the crossing points of the
L =12 and 16 curves with all the other ones with higher
L' value, which gave us six and five data points, respec-
tively. The two least-squares extrapolations in the plot of
T vs 1/log&ob shown in Fig. 3 are consistent with each
other and gave us the values p, =0.69297(9) and
0.69298(13), respectively. Combining the two values, we

U =0.S9684. . . .
This follows from the expansion

( 4) 3 I'( —,')
4 I'( —') 3

2

(16)

—4 0.56
0.690 0.692 0.694 0.696

where

12 2 6
1 —xo&6 —R ——

3 R

6
48 R2 (17)

FICi. 2. Binder parameter UL vs P. The values of UL (P) were
obtained by reweighting and optimized combining the results of
our three simulations at difFerent temperatures for each lattice
size L. The simulations were performed at P0=0.6929 [the crit-
ical inverse temperature found by Peczak, Ferrenberg, and Lan-
dau (Ref. 23)] and at the positions of the maxima of the specific
heat C and the susceptibility y', respectively.
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1.446

L=16

do timally according to the errors of d UL /
dp)(p ) taken at our estimateIn Fig. 4 we p L

-lo scale. From the in-of, =0.6930, versus L, on a log-log sca e.C

verse slope we read off
P = 0.6930 + 0.00011.444

v =0.704+0.006, (23)

1.442

1.440

log (bj

12

anal sis was used to determine which
.62141(75), respective-1 d

' U*=0.62175(35) and 0.resulted in
ately, from w ic weh' h extract the final estima

r T coming from plotting the T valuesFIG. 3. Estimates for T„coming r
oints of the L = 12 and 16 curves o ef the Binder

'h of t}1 l fvs the inverse logant m o
fleads to an estimate ob =L'/L. The extrapolation ea s o

/3, =0.6930(1).

alit factor =0.61 relying on the linear
-fit ro

' R f 42. For comparison,least-squares-fit ro-fit routine FIT of e .
v=O. 705(3) (resummedfield-theoretical estimates are v=0.

v =0.710(7 ) (resummed E expan-
d d 11). We noted that the valuue of v enve in

h' hit
sion

the temperature at w ic iwas strong y pn 1 de endent on e
t that the systematic errorsextracted. It turned out t a e

a sli htly different value for P, areone gets by choosing a s ig t y i
ron /3 depen-the statistical errors. The strong

e o
' ' ' '

the large system sizese of dU /dp has its origin in e
h th od ttwe used that make

ined v=O. 696(6) with Q =0.76(/3= . ) w o ai
=0.49 (see also Fig. 8 e ow.

1 k h liwould have been to oo a

d e of P . Unfortunately, it turne ou a
e

'
a h h' h-t mperature sidethe maxima occur too aaront e ig -e

and lie outsi e o e'd f th reliable reweighting range.

U =0.6217+0.0008 . (20) B. Magnetization and susceptlbllity

diction (16) based on the I/s expan-
Th dout 4% smaller than this value. e ev

r the XY model where it is aboutis somewhat less than for the
17, 186%.

'
ative dU /dP, we first used aTo determine the derivative

ce a roximation at our estimate o, . u
d d """"'1e observed that the r pesults de ende very

ar a roximation an on epp
derivative used, i.e., ac war,of finite-difference er, ac war,

ard or symmetric derivative. We ave e
hod to calculate the slope of ULchosen another metho o ca

ss sensitive to systematic errors. e o
of U with respect to P, whichthermodynamic derivative o L wi r

can be written as

&m&~L (24)

e slo e of the straight line in the log- g p
~ ~ -lo lot shown in=.6.3.,-..-1-.fFig. 5 of ( m ) vs L at

P/v =0.514+0.001, (25)

1.5

v we usedract the ratio of critical exponents
should scale for sufficientlythat the magnetization at, s ou sc

large L like

dUL

dP
( ')&E)3(m')'

& m'&(m'E & (, )2
2 )

+&m'E& &m4E&
(21)

o

'Z3

CD
O

1.0

0.5

for ( m "E) (P) at temperature PThe expectation values or m
can be calculated from 0.0

1.0 1.2 1.4 1.6 1.8

(m "E&(P)=
—(P—Pp&Eg~E (( m "))(E)Pp (E)e

—(P—
Pp )E

gPp (E)e
E

(22)

'
in E . (10). For each L and P, wewe obtained in

of (dU /dP)(P) that we com-this way three estimates of

log L

ic derivative dUL /dP calculated at

op o i -q
cal exponen ot f the correlation length, v=
ity Q =0.61.
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log L
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FIG. 5. Double-logarithmic plot of the magnetization (m )
at P, =0.6930 vs lattice size L The v. alues of (m ) were ob-
tained by reweighting and optimized combining (see text) of our
three simulations at different temperatures for each lattice size
L. The slope gives an estimate for P/v. From the fit we obtain
P/v=0. 514(1),with quality Q =0.68.

FIG. 6. log&0(y/L ) vs log&0(L) at inverse temperatures
P=0.6925 ( ), P=0.6927 (4), P=0.6929 1()),P=0.6930 ( X ),
P=0.6931 (6), P=0.6933 (A), and P=0.6935 (o). The
straight line corresponds to a linear least-squares fit at
P=0.6930, which gives q=0.0271(17) with Q =0.78.

with a Q value of 0.68 of our linear least-squares fit rou-
tine. We noted again that the systematic error of choos-
ing an incorrect p, was larger than the statistical error
coming from the fit. For example, for fits of (m ) at the
two inverse temperatures P=0.6929 and 0.6931, we ob-
tained P/v=0. 519(1) and 0.509(1) with values Q =0.30
and 0.31, respectively. We take the significant lower Q
values as supporting our estimate of p, (compare also
Fig. 8 and the discussion of the Q values later in this sec-
tion). Using our estimate of v=0. 704(6), we get for the
critical exponent of the magnetization p=0. 362(4).

On finite lattices an estimator for the magnetic suscep-
tibility per spin is given by

y'= Vp(&m ) —&m ) ), (26)

where the superscript c stands for "connected. " In the
high-temperature phase the true magnetization vanishes,
(m) =0, and one may also use

y = VP( m ) for P &P, . (27)

Since both expressions should scale at criticality like
L~ =L ", a straight-line fit in a double-logarithmic
plot of g/L vs L gives an estimate of g. We preferred to
visualize r) as opposed to y/v because r) is the more sen-
sitive parameter. The results for different choices of p,
are shown in Fig. 6. We see that our estimate of p, in
(19) seems to be very reasonable, which is also supported
by the fact that it results in the fit with the highest Q
value. The fact that the curves with p & p, (p &p, ) bend
upwards (downwards) is easily understood by recalling
that in the low-temperature phase y scales with the
volume V=L, while in the high-temperature phase y
eventually saturates at a finite value for any L. Close to
criticality, as long as the scaling variable
x=—(1—p/p, )L' satisfies lxl «1 and L))1,we expect
from FSS that the deviations from —q log, oL +co should

g=0.0271+0.0017 . (28)

This in turn implies y/v=2 —g=1.9729(17) and, using
again our value of v, y = 1.389(14).

From the temperature locations T, of the (connect-
+max

ed) susceptibility maxima, one can get another estimate
of P, by using the scaling prediction T,

+max

be simply given by c&x, where co and c& are approximate-
ly constant (apart from small confiuent corrections
~L ). For all data points in Fig. 6, we have lxl &0.18
and the linear scaling with (1—P/P, ) is obviously
satisfied. Moreover, a closer look shows that also the
scaling with L'/ is very well confirmed (using our esti-
mate of v=0. 704 the deviations from the straight-line fit
of the curves at PAP, for L =32, 40, and 48 should be
stronger than those for L =24 by factors of about 1.5,
2.1, and 2.7, respectively). In fact, in a scaling plot all
curves would fall on top of each other. The theoretical
predictions for g are 0.040(3) (resummed E expansion)
and 0.033(4) (resummed perturbation series), and insert-
ing (25) in the scaling relation rl =2P/v —1 gives

g =0.028(2). Our direct estimates of g for
P=0.6930+0.0001 are collected in Table II. It is also in-
teresting to note that g gets closer to the theoretical
values for p & p, for y and for p & p, for y', hence just in
the regions in which both expressions are naturally used.
Another check on g can be obtained from the maxima of
y', which should obey the same scaling law as g' and y at
p, . The results are compiled in Table II. Our three esti-
mates for g barely agree in the 2o. range, but this is main-

ly due to the low estimate of g coming from the y' fit.
This behavior of the y' scaling law is in agreement with
the findings of Refs. 23 and 45, wherein it was also ob-
served that the g' fit results in a noticeably lower g value.
As our final estimate, we take the result from the best fit
of y at p, =0.6930, yielding



48 CRITICAL EXPONENTS OF THE CLASSICAL THREE-. . . 943

TABLE II. Results for g obtained from log-log fits of g/L and y'/L vs the lattice size L at three
temperatures near P, . Included is also the estimate of q coming from a fit of the maximum y',„ofthe
connected susceptibility (see text). Q denotes the quality factor of the least-squares-fit routine FIT of
Ref. 42.

C
Xmax

0.6929
0.6930
0.6931

0.0364(17)
0.0271(17)
0.0178(17)

0.36
0.78
0.43

0.0086(44)
0.0156(44)
0.0237(44)

0.71
0.69
0.48

0.0231(61) 0.30

= T, +aL ' + . . Using our previously determined
value of v=0. 704, we get from the linear fit shown in Fig.
7 the estimate P, =0.6930(3), with Q =1, which is in ex-
cellent agreement with our result (19) for P, obtained
from the UL crossing points. The data for the fit is com-
piled in Table III.

When we did our least-squares fitting of quantities ex-
tracted at a particular P, we noticed that the Q value can
also be used as a very sensitive measure to obtain an esti-
mate of the critical temperature, whose error is compara-
ble to the one obtained from the fits to the UL crossing
points. Obviously, if one extracts data at temperatures
away from P„ the subleading corrections to the scaling
laws become more important and worsen the fit substan-
tially, especially if large lattices are used. In Fig. 8 we
plot the quality factor Q obtained from log-log linear
least-squares fits of the quantities (d UI /dP)(P), ( m )(P),
y(P), and g'(P) versus the lattice size L, extracted at
different inverse temperatures. The most striking results
come from the Q (P) curves of ( m ) and y, which seem to
have the most severe P dependence. Their peak locations
are exactly at P=0.6930 with an estimated error of
+0.0001, whereas the Q(P) curves of (dUI /dP)(P) and
g'(P) do not peak so sharply at some P and are asym-
metric with respect to their peak location, falling off very
slowly on the high-temperature side. The slow variation
of the Q value of the (dUI /dP)(P) fits indicates that

Binder's method to determine v is less sensitive to the
choice of /3, than the FSS method for P/v and y/v, as is
expected on theoretical grounds. This is rejected in
our data for v, where the systematic errors for different
choices of the critical coupling are of the order of the sta-
tistical errors, whereas for P/v they are 5 times as big.

C. Energy and specific heat

Assuming hyperscaling, o; =2—D v, to be valid and in-
serting our estimate v=0. 704(6), we get a negative value
for the critical exponent of the specific heat,
a= —0. 112(18). This implies a cusplike singularity at
T„but no divergence at all. Although at first sight this
sounds numerically very convenient, it turns out that the
specific heat is the hardest observable to analyze. On the
one hand, it is quite easy to get the peak height with good
precision because of the smoothness of the specific heat.
On the other hand, however, the scaling behavior is quite
unclear for a & 0, since one has to deal with large,
nonuniversal background terms. For the peak location
Tc (L), the scaling behavior is of the usual form

max

Tc (L)= Tc+aL ', but now the smoothness of the
max

peaks makes it numerically dificult to determine
Tc (L) with high precision.

max

We calculated the specific heat in two different ways,
once from the energy fiuctuations as

1.48 (29)

1.47

T
1.46

1.45

1.44

1.43

and the other time as a finite-difference derivative ap-
proximating C =de /d T. Both definitions resulted in
similar curves, and this time the choice of the finite-
difference scheme did not affect the results. Because the
curves of definition (29) were smoother in appearance, we
decided to use solely the first definition to extract our
scaling information. The maximum of the specific heat
should scale as

1.42
C,„(L)=C"s aL— (30)

1.41

0.00 0.01
L

—1/0. 704 0.02 0.03

FICs. 7. Variation of the pseudotransition temperatures
T, (L) and T& (L) with L ', where v=0.704(6) is our

+max max

estimate obtained in Fig. 4. The fits yield estimates of
P, =0.6930(3) (Q =1.0) and P, =0.6925(9) (Q =0.80), respec-
tively.

where C",„is a regular background term. Using the rou-
tine MRQMIN of Ref. 42, we obtained from a three-

arameter fit the values C" „s= 41 (79 )7, a=3.98(17),
a/v= —0.33(22), with a Q value of Q =0.69. Using our
estimate of v=0. 704(6), this results in a= —0.23(16).
This estimate is clearly larger than the one obtained
through hyperscaling, but, because of its large error bar,
it is still consistent. By imposing the hyperscaling value
of o.'/v=2/v —3= —0. 159, we also did a linear fit of
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the absolute values of the maxima of the mag-TABLE III. Data for the temperature locations and the a s
'fi h t. The data were extracted from the optimally combined curvenetic susceptibility and the speci c ea . e a

of the three runs for each lattice size (compare text).

12
16
20
24
32
40
48

T ~
+max

1.4747(35)
1.4629(28)
1.4579(13)
1.4550(11)
1.4505(11)
1.4486(08)
1.4474(06)

C
Xmax

5.260(38)
9.242(100)

14.25(10)
20.80(09)
36.53(22)
56.45(39)
81.48(63)

Tc

1.4243(101)
1.4362(45)
1.4393(39)
1.4355(37)
1.4386(35)
1.4430(21)
1.4415(15)

Cmax

2.426(11)
2.579(26)
2.711(20)
2.778(15)
2.936(34)
2.959(46)
3.090(50)

C,„(L) vs L that gave us C"s„=5.79(12) and
a =5.00(19) with Q =0.71. Both curves fit the data al-
most equally good, as can be inspected in Fig. 9.

The fit of Tc (L) vs L '~ is shown in Fig. 7. As-
max

suming v==0.704, our linear-fit routine gave

, =0.6925(9) with Q=0.80. Because of the large error
b T this estimate has the largest statisticalbars on

scatter, but is still in agreement with our previous esti-
mates of p, . The data for the fit can be found in Table
III.

IV. RESULTS
IN THE HIGH-TEMPERATURE PHASE

Let us now turn to the analysis of our second set of
simulations, which were performed in the high-
temperature p ase.t hase. Here we have mainly concentrated
on measurements of the spatial correlation length g and
the susceptibility g using the improved estimators of Sec.
II B. From least-squares fits to the critical divergencies
of g and g as function of T or P, we can get independent
estimates of the critical coupling p, and of the critical ex-
ponents v and y. This of course requires us to keep
finite-size corrections as small as possible. We therefore
have chosen the linear size of the lattices to satisfy the

1.0

11,12condition L ) 8g, which proved in related studies ' to
be a safe condition. In a few cases we have checked this
once again by performing test runs at smaller L = 5 —7g.
As a result, to avoid the most severe finite-size correc-
tions, also for this model it would probably be sufficient
to choose L =6(.

Our final data set consists of 18 points between
p=0. 650 and 0.686 (corresponding to correlation lengths
/=3, . . . , 12; see below) using lattices of sizes between
32 and 100 . The simulation parameters together with
the statistics and the results are compiled in Ta ele IV.
The statistics is given in terms of N, the number of mea-
surements of the standard estimators which, on the aver-
age were taken after fX Vspins are fiipped. The numberage, were a ena

'm 1 XN.of Metropolis equivalent sweeps is then simp y N.
The average cluster size (

~
C

~ ) is given in terms of the ra-
tio (

~

C
~
) /g; ~, which is only very slowly varying over a

wide temperature range. The column labeled with C
shows the specific heat calculated from the energy Auc-
tuations. For comparison we give for the susceptibi ity
the averages over standard as well as over improved esti-
mators. We see that the errors on g; are smaller by

errors on g could be somewhat reduced by doing mea-
surements more frequently (i.e., by choosing smaller

3.5

Q

dU I dP

3.0

0.5
2.5

2.0

0.0
0.6924 0.6930 0.6936

1.5
16 32

L

48 64

FICx. 8. Q value (quality factor) of linear least-squares log-log
fits of the quantities pip), y'(p), (m )lp), and (dUL /dp)(p) vs
the lattice size L, extracted at different p values in intervals of
b,P=0.000 02.

FIG. 9. Lattice-size dependence of the maxima of the specific
heat C,„. The solid curve is a nonlinear three-parameter fit,
whereas the dashed curve comes from a linear fit with fixed
a/v= 2/v —D = —0. 159, employing hyperscaling arguments
and our estimate of v=0. 704(6).
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TABLE IV. Results in the high-temperature phase. N is the number of measurements of the
nonimproved observables, taken after fXL' spins are fiipped (on the average). C denotes the specific
heat, and ( ~ C~ ) is the average cluster size. The cluster size and the improved observables are measured
after each cluster-update step.

P L L/g; p
N/10' f (~C)/g; p XlmP imp

0 650 32
0.655 32
0.660 32
0.665 40
0.670 40
0 673 50
0 675 50
0.676 60
0.677 60
0.678 60
0.679 60
0.680 60
0.681 70
0.682 70
0 683 80
0.684 80
0 685 90
0.686 100

9.9
9.0
8.1

9.0
7.8
8.8
8.2
9.4
9.0
8.6
8.2
7.8
8.5
8.0
8.6
7.9
8.2
8.3

79.5
263.6
93.0

40O.O

138.8
89.5

114.4
132.3
68.5

170.5
156.3
95.3

295.5
154.9
73.4

138.4
174.0
77.4

0.270
0.134
0.271
0.133
0.134
0.133
0.132
0.133
0.133
0.133
0.133
0.162
0.133
0.133
0.157
0.133
0.133
0.133

0.7556
0.7547
0.7539
0.7531
0.7523
0.7519
0.7517
0.7515
0.7515
0.7513
0.7512
0.7511
0.7510
0.7508
0.7508
0.7506
0.7505
0.7504

1.O74(13)
1.137(11)
1.222(13)
1.310(11)
1.382(19)
1.453(23)
1.470(24)
1.539(21)
1 ~ 560(29)
1.562(20)
1.619(21)
1.700(28)
1.710(17)
1.776(23)
1.765(31)
1.778(25)
1.903(24)
1.860(36)

46.00(15)
54.43(12)
65.95(21)
83.07(14)

109.32(33)
132.77(47)
153.92(48)
167.07(47)
181.71(72)
198.52(49)
218.82(58)
242.04(79)
270.68(51)
304.38(79)
348.5(1.3)
405.9( 1.2)
477.9(1.2)
s75.0(2.o)

45.697(50)
54.280(53)
66.095(89)
83.155(65)

109.59(18)
132.76(22)
153.99(26)
166.69(21)
181.16(34)
198.74(25)
218.46(32)
242. 17(44)
270.96(27)
305.91(46)
349.26(63)
405.92(62)
478.60(64)
576.9(1.1)

3.2345(26)
3.5412(24)
3.9336(34)
4.4343(24)
5.1260(53)
5.6676(62)
6.1197(64)
6.3740(55)
6.6584(83)
6.9869(58)
7.3333(68)
7.7359(87)
8.2013(52)
8.7244(81)
9.346(11)

10.0988(94)
10.9857(92)
12.093(15)

values of f). The reason is that the (integrated) auto-
correlation time for y is still very small on the time scale
at which the measurements are taken ( =0.8, translating
in Metropolis equivalent units to 0.8f =0.1). On the
other hand, it should be kept in mind that each standard
measurement takes 8( V) operations, so that too small a
factor f would slow down the simulation considerably.
The correlation length in the last column was extracted
from fits to the inverse Fourier transform of the spatial
correlation function as described in Sec. II B. We always
used the lattice momentum squared, +3=,2(1 —cosk;),
k; =(2~/L)n;, as an independent variable. In Fig. 10 this
procedure is illustrated for our largest lattice of size 100 .
We have checked that within error bars the estimates for

x10

7.0

6.0 — V= 1

5.0

&Q 40—

3.0

do not depend on how many Fourier coefficients we
use in the fits. This observation is also supported by the
very reasonable values of the goodness-of-fit parameter
for all fits. Note that even the simplest expression

= [C(0)/C(1) —I]' /2 sin(~/L)

(involving no fit at all) can be used. Our final results for
g; z in Table IV are from fits using all six possible k
values up to k=(2'/L)(2, 1,0), since the error estimates
trivially decrease with the number of points taken into
account.

In what follows we describe the least-squares-fit tech-
niques employed to determine the critical coupling and
the exponents v and y from the raw data in Table IV.
Although we are quite confident in the accuracy of the
correlation length results, we shall first consider the sus-
ceptibility data which, a priori, is more reliable since no
intermediate analyses are involved.

A. Susceptibility

Starting with the simplest ansatz

X(P)=Xo(1 P/P, ) ', —

we obtained from a nonlinear three-parameter least-
squares fit to all 18 data points (using g; z),

2.0

1.0

0.0 5.0 1.0 1.5 2.0 2.5 10

P, =0.692 94+0.00003,

y = 1.391+0.003,

yo =0.955+0.006,

(32)

(33)

(34)

FKJ. 10. Fit of C(k) ' to c[g, &2(1 —cosk;)+(1/g) ] on a
100' lattice used to compute the correlation length g.

with a chi squared of y =7.83, corresponding to a
goodness-of-fit parameter Q =0.93,which clearly justifies
a posteriori the ansatz (31). The very precise estimate for
P, is only little lower than our previous value (19),
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0.6936

0.6932

x~P& -~ xn)

0.6928

P, =0.6930(1), derived from FSS analyses of the UL
crossing points. The exponent y agrees very well with
the field-theoretical estimates y = l. 386(4) (resummed
perturbation series ), y = 1.390(10) (resummed E expan-
sion ). The amplitude xo is close to the mean-field value

y o
"=1 and agrees surprisingly well with old analyses of

nine-term high-temperature series (HTS) expansions by
Ritchie and Fisher (RF), which gave xo"=0.96647(5)
[using P, "=0.6916(2) and y "=1.38(2) as input]. We
could not trace any more recent published number to
compare with. From the HTS analyses in Ref. 40, how-
ever, it is straightforward to derive another comparative
value for yo. Expanding the ansatz for the dominant
singularity (31) into a power series in P, inserting the esti-
mates for the critical parameters given in Table 4 of Ref.
40, P, =0.6924(2), y=1.387(4) (Pade approximants) and

P, =0.6925(1), y =1.395(5) (ratio method), and compar-
ing with the coefficients of the HTS expansion, ' we ob-
tain a sequence of amplitude values that stabilize with in-
creasing order of the expansion at y~ =0.9508 and

=0.9326, respectively. Moreover, using our values
(32) and (33) for P, and y, we obtain by the same pro-
cedure a very smooth sequence for y 0, yielding asymptot-
ically po=0. 9501 ~ The smoothness indicates that the
simplest ansatz (31), together with our estimates
(32)—(34), represents an excellent extrapolation of the
HTS expansion, whose quality is comparable (if not
better) with the results given in Ref. 40.

As a further self-consistency check of the range of va-
lidity of the ansatz (31), we tested for the asymptotic scal-
ing region by successively discarding more and more data
points with small correlation length. As is demonstrated
in Fig. 11 for P„only a weak downward trend is observ-
able, which, compared to the error bars, is hardly
significant. We can thus conclude that the ansatz (31)

passes all usual self-consistency checks and that the esti-
mates (32)—(34) should thus be reliable.

It is of course surprising that the simplest ansatz (31)
works even for data points with correlation lengths as
small as /=3. Theoretically, we would have expected
to see conPuent correction terms of the type

X„„f(1—PIP, ) ', where b, i =cov=0. 55 (Refs. 43, 44,
and 47) is the confluent correction exponent and analyt
ic correction terms of the Darboux type,
X,„,&(1

—P/P, ) ~+', leading to the more general ansatz

x(P) =xo(1 P/P, ) +x..f(1 —P/P, )

+x...,(1—P/P, )-'+' (35)

Including both correction terms as free parameters into
the fit routine is a hopeless enterprise. Instead, we first
tried fits with P, held axed at values around 0.69290 in
steps of 0.00001, and y, yo, g„„f,and y,„,& as free param-
eters. The quality of the fits remained high for a large
range of P values. The best fit with Q=0.97 was ob-
tained for P, =0.692 81 and gave y = 1.365(25),
=1.06(17), X, „f=—0. 11(79), and X,„,&= —0.25(1.18).
We see that the correction terms come out to be con-
sistent with zero, but that the error bars are fairly large
as a result of the increased number of free parameters, so
that no definite conclusion can be drawn from these fits.

We therefore decided to perform two further types of
fits. First, we added to the leading term in (35) only the
analytic correction term (i.e. , we enforced the amplitude
of the confluent correction term to be zero), and second,
we tried to use only the conAuent correction term with
fixed b, , =0.55 (i.e. , we put the amplitude of the analytic
correction equal to zero). Fitting thus all 18 data points
to the ansatz (35) with either x„„ror x,„,i held fixed at
zero, we get for the other amplitude x,„,~= —0.40(27) or
X„„&=—0.35(26), respectively. The Q value improves
only marginally, and the amplitudes are still almost con-
sistent with zero. The other parameters change slightly,
but, because of the much larger error bars than for the
simple fit (31), they are still compatible.

The latter fits are nonlinear four-parameter fits which
are usually quite dificult to stabilize. To cope with this
problem, we followed Ref. 11 and used the following
method. For any pair of values P„y, we first minimized
in the linear parameters Xo and X,„,i (or X„„&),which can
be done exactly (up to round-off errors). This yields a
chi-squared function

0.6924
11 13 15

Number of data
19

FICx. 11. Critical coupling P, as estimated from nonlinear
three-parameter fits to g and X assuming the leading power-law
singularity only, written as function of P or T. The x axis shows
how many data points are taken into account in these fits (i.e.,
from right to left more and more points with small correlation
length are discarded). In order to disentangle the error bars,
two curves are slightly displaced in x.

x'(P, )' xo(P, x»x.,i(P, 1'»=x'(P, r»
which depends on two nonlinear parameters only and can
be minimized reliably by standard subroutines. Finally,
we used the so-determined estimates of P„y,Xo,X,„„(or
x„„r) as initialization of the nonlinear-fit routine
MRQMIN of Ref. 42, which yields then slightly improved
parameter values and standard error estimates. The fits
with y, yo, g„„f, and y,„,& as free parameters were per-
formed similarly.

One can also rewrite Eq. (35) as a function of T,
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g( T)=f ()( T/T, —1) +g,',„(T/T, —1)

+g,'„,(( T/T, —1) (36)

B. Correlation length

We have repeated the same type of analysis for the
correlation-length data. Starting again with the simplest
possible ansatz, taking into account only the leading
singularity, we find this time that the temperature-
dependent ansatz

with go=go, g,',„&=g„„&,and y,'„,&=y,„,&+yyo. This
form is obtained from (35) by a simple change of variable
P~I/T, expanding around T„and keeping the same
correction terms. We believe that (36) with

f=g,'„„=0is, a priori, as justified as the simplest @-
dependent ansatz (31). Since HTS analyses are based on
expansions in P, there is definitely a bias to prefer the an-
satz (31). We are not aware, however, of a mathematical-
ly sound justification for this choice. For what we think
is a counterexample, see our correlation-length analysis
below.

Because the simplest P-dependent ansatz (31) works so
good, it is thus clear that for the temperature-dependent-
fit ansatz we have to take into account the analytic
correction term. As anticipated, trying to fit the simplest
ansatz (36) with g,'o„&=g,'„,(=0 to all 18 data points re-
sults in a fit with a comparatively poor chi squared of
y =21.66, corresponding to Q=0. 12. By again succes-
sively discarding the data points with small correlation
length, the quality of the fit improves rapidly, and in Fig.
11 we see a weak trend that the values of ((3, from the two
types of fits may approach each other asymptotically.

The fit to all 18 data points with g,'„,
&

as a free parame-
ter agrees perfectly with the corresponding P-dependent
ansatz (also with g,„,i as a free parameter), yielding the
expected correction amplitude g,'„„=1.03(26). The fit
with g,',„& as a free parameter is only slightly worse. The
value of g,',„&=0.90 (instead of the expected result

f g~ f 0) indicates, however, that in this case the
conAuent correction term tries to account for the
suppressed analytic correction term and that it can
indeed mimic the analytic behavior very well.

The main result of all our e8'orts is that on the basis of
standard statistical tests the simple ansatz (31) turns out
to be justified. We emphasize this point because a priori
it is not at all clear that the conAuent correction is ex-
trernely small and that also the analytic correction is
negligible if the proper variable (P in the case of g) is
chosen. Although we feel that the corrections cannot
completely be ignored, one would need more accurate
data to account for these corrections in a reliable way.

P, =0.692 81+0.00004,

v =0.698+0.002,

g()
=0.484+0.002,

(38)

(40)

P, =0.692 88+0.00004, (41)

which is slightly smaller than our crossing value of
0.6930(1), but in agreement with the MC estimate by Pec-
zak, Ferrenberg, and Landau.

with a chi squared of g =8.14, corresponding to a
goodness-of-fit parameter Q=0.92, which may again be
taken as a posteriori justification of the simple ansatz (37).
The estimate for P, is somewhat smaller than the previ-
ous estimates and also the exponent v is only barely com-
patible with our FSS value v=0. 704(6) and with the
field-theoretical estimates v=0. 705(3) (resummed pertur-
bation series ), v=0. 710(7) (resummed s expansion ),
but it still lies within the 2o. error interval of these esti-
mates. If we extract g from fits through the four lowest k
values only, we obtain the same central values as in
(38)—(40) with about 1.5 times bigger error bars and a Q
value of 0.99. In Fig. 11 we see that fits with the ansatz
(37) are very stable against discarding more and more
data points with small correlation length.

Correspondingly, if we include into the T-dependent
ansatz one correction term at a time, as described in the
susceptibility analysis, we obtain amplitudes that are fully
consistent with zero, g,',„&=—0.048(65) and
= —0.065(76). For the corresponding P-dependent fit,
we thus expect $„„r=0 and g,„„=g,'„„—vgo= —0.267. The latter value is extremely well reproduced
by the P-dependent fit with analytic correction term
g,„,i= —0.272(76)]. Similar to the susceptibility, the
conAuent amplitude, however, comes out much too large
in an attempt to mimic the analytic correction term. We
can thus conclude that also for the correlation length
conAuent corrections are negligible. Analytic correction
terms are important in the P-dependent ansatz but negli-
gible in the T-dependent ansatz, just opposite to the situ-
ation for the susceptibility.

It is noteworthy that, using correction terms, the value
of v slightly increases, just opposite to the case of the sus-
ceptibility data, where the value of y decreases when
corrections are included. It is impossible to find an objec-
tive criterion for the systematic errors but with what we
experienced, we feel that they are at least of the order of
the statistical errors, in particular for the susceptibility,
where the correction terms seem to be somewhat more
important than for the correlation length.

Combining the estimates for P, from the susceptibility
and correlation length data in the high-temperature
phase, we obtain a final estimate of

g( T)=
g()( T / T, —1 ) (37)

C. Exponent g

is well behaved. It should be emphasized that, as far as
the role of p and T is concerned, this is just opposite to
the situation for the susceptibility. The fit to all 18 data
points in Table IV yields In(g/g2) =c —iI in/, (42)

Finally, we have combined the scaling behavior of g
and y to get a direct estimate of the exponent g =2 —y/v
from the relation g ~ P~ or
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where c is a constant. By plotting g/g vs g on a log-log
scale as in Fig. 12(a), we thus expect asymptotically for
large g a straight line with slope —rl. We see that up to
/=12 our data still give a curved line, indicating that
corrections to asymptotic scaling cannot yet be neglected.
Taking a linear envelope to the last few points as rough
estimate, we obtain g =0.05. Alternatively, we can define
an effective exponent

rI','a'= —ln(X, +,g', /y, g', + i ) /ln(k+ i /g, )

as the local slope between two points in Fig. 12(a). Since
this gives quite noisy results, we have actually computed
the local slopes from linear fits through three and four
points, denoted by g',z and q', z, respectively. These
effective exponents are plotted versus g on a logarithmic
scale in Fig. 12(b). Again, we see that up to correlation
lengths of the order of /=12 the effective exponents have
clearly not yet reached the asymptotic value ( = rj ). How-
ever, assuming a monotonic behavior as g~ «n, we get at
1east an upper bound g(0.05. Recall the field-theory
values, which are r1=0.033(4) (resummed perturbation
series ), g=0.040(3) (resummed e expansion ' ). Esti-
mates for the other critical exponents can be derived us-
ing (hyper) scaling laws. We obtain P=—', v ——'y
=0.352(4) and a =2—3v= —0.094(6) (compare also
Table V).

V. CONCLUDING REMARKS

0.00
3

(b)

10 14

FICx. 12. (a) Log-log plot of g/g'' vs g. The slope of the linear
envelope for large g gives g=0.05. (b) The effective critical ex-
ponent g,s vs g on a logarithmic scale, using two different
discretization schemes. The asymptotic value of g,s as g~ oo is
an estimate for the critical exponent q =2—y/v.

In conclusion, we have shown that the single-cluster
update eliminates critical slowing down for the three-
dimensional Heisenberg model almost completely. As for
the 3D Ising and XY models, we expect that it is more
efficient than the multiple-cluster algorithm, but this has
not yet been explicitly verified because of the lack of data
for the multiple-cluster algorithm. Combined with histo-
gram reweighting and optimization techniques, finite-size
scaling analyses allow a precise Monte Carlo determina-
tion of the critical exponents of the 3D Heisenberg mod-
el, whose accuracy is comparable with the best estimates
coming from field-theoretical methods. Direct analyses
of thermodynamic measurements based on improved esti-
mators in the high-temperature phase yield compatible

TABLE V. Various sources for estimates of the critical parameters for the classical 3D Heisenberg
model. For the MC simulations scaling relations were used to obtain estimates for a (all) and p (only
HT), and the FSS values of the exponents y and p were calculated from the measured ratios, using the
estimate for v. The field-theory estimates of ratios with v are calculated from the values and errors of
the critical exponents.

Critical
parameter

Field theory
g expansion c expansion

Ref. 43 Refs. 38 and 44

MC simulations
Metropolis MC This study

Ref. 23 FSS HT

0!
a/v

p/v

rl

0.705(3)
—0.115(9)
—0.163(12)
0.3645(25)
0.517(6)
1.386(4)
0.033(4)

0.59684
0.710(7)

—0.130(21)
—0.183(28)

0.368(4)
0.518(11)
1 ~ 390(10)
0.040(3)

0.6929(1)
0.622(1)
0.706(9)

—0.118(27)
—0.167(36)

0.364(7)
0.516(3)
1.390(23)
0.031(7)

0.6930(1)
0.6217(8)
0.704(6)

—0.112(18)
—0.159(24)

0.362(4)
0.514(1)
1 ~ 389(14)
0.027(2)

0.69288(4)

0.698(2)
—0.094(6)
—0.135(9)
0.352(4)
0.504(5)
1.391(3)
(0.05
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results. For the reader's convenience we have compiled
some relevant sources on the critical parameters of the
classical 3D Heisenberg model in Table V. Overall, our
results are in good agreement with the Monte Carlo
values reported recently by Peczak, Ferrenberg, and Lan-
dau. In particular we confirm that the value for P, on a
simple cubic lattice is significantly higher than previous
estimates coming from analyses of high-temperature
series expansions. We would like to remark, however,
that a very recent analysis of extended series expan-
sions (up to 14th order), using more refined Pade-
approximant techniques, is consistent with the MC esti-
mates.
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