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Molecular-dynamics simulations are performed to determine dynamic correlations in SiO& glass. The
frequency and eigenvectors of vibrational normal modes are obtained by diagonalizing the dynamical
matrix. Dynamic structure factors, partial and total vibrational density of states (DOS), and participa-
tion ratios are calculated. The neutron-weighted dynamic structure factor, S„(q,co), exhibits all the im-

portant features observed in the inelastic-neutron-scattering experiments on Si02 glass. As a function of
~, S„(q,co) has two regions separated by a gap near 120 meV. The dominant features in S„(q,co) are the
peaks around 10-20 meV, an almost monotonic decrease between 20 and 100 meV, the gap near 120
meV, and a broad peak between 130 and 160 meV. The dynamic structure factor oscillates with varia-
tions in q. The total phonon DOS show two well-delineated bands, a broad band between 5 and 110meV
and a narrow band between 120 and 180 meV. The modes below 100 meV are spatially extended,
whereas the high-frequency modes are localized. Calculations of the generalized neutron-weighted
effective density of states are compared with neutron-scattering experiments.

I. INTRODUCTION

Silica is a very important material in many respects. '

It exists in both crystalline and glassy (amorphous) forms.
Crystalline silica has a variety of polymorphs with widely
varying densities. In particular, cubic P-cristobalite is
the lowest density (2.20 g/cm ) and tetragonal stishovite
is the highest density (4.29 g/cm ) polymorph of silica.
Except stishovite, whose structural units are distorted
Si(O, &3)6 octahedra, all stable phases of crystalline silica
consist of Si(O, &z)4 tetrahedral units.

For the past several decades, silica glass (a-SiOz) has
been the subject of much research effort because of its
scientific, technological, and geophysical importance. '

The structure of a-SiO2 has been extensively studied by
various experimental ' and theoretical' ' methods,
and by computer simulations. ' X-ray (Refs. 8 and 9),
neutron (Refs. 8, 10, and 14), and NMR (Ref. 11) experi-
ments, and computer simulation (Refs. 18-20 and 23)
studies indicate that a-Si02 consists of corner-sharing
Si(O, &z)4 tetrahedral units, similar to those in crystalline
silica.

A variety of experimental techniques —Raman and
Brillouin scattering, ' ' infrared reAectivity, and inelas-
tic neutron scattering have been used to study atom-
ic vibrations in Si02 glass. Inelastic neutron scattering
(INS) is a particularly powerful probe of structural and
dynamical correlations in disordered and amorphous
solids, since it gives an energy and wave-vector-
dependent dynamic structure factor. The intensity of the
coherent INS scattering from a vibrational mode depends
on the relative positions of the atoms involved in such a
mode and correlations between their displacement vector
components. ' Therefore, the measured dynamic

structure factor can be used to infer information about
the short- and intermediate-range order in glasses.

Leadbetter and Stringfellow performed an INS exper-
iment on a-SiOz. They obtained the neutron-weighted
effective phonon density of states using the "incoherent
approximation. " The experimental generalized neutron-
weighted effective density of states (GDOS) revealed
peaks at 45 and 98 meV and a broad peak from 115 to
160 meV. Galeener, Leadbetter, and Stringfellow com-
pared Raman and infrared spectra with the INS spectra
of Si02 glass. They found the splitting of the peaks at
135 and 150 me V, which was observed earlier by
Galeener and Lucovsky from infrared measurements.
Using INS experiments, Buchenau, Niicker, and Di-
anoux have measured the low-energy (1—10 meV) por-
tion of the effective phonon density of states. These re-
sults are interpreted in terms of coupled rotational
motion of Si04 tetrahedra. Graneli and Dahlborg have
studied the temperature dependence of the neutron
inelastic-scattering-structure factor of a-SiO2. Using The
Intense Pulsed Neutron Source at Argonne National
Laboratory, Carpenter and Price performed extensive
neutron-scattering measurements of SiO2 glass. '
From their measurements, the wave-vector and energy-
dependent inelastic dynamic structure factors and the
generalized vibrational density of states are obtained.
Recently, Arai et al. have performed high-resolution
( b,E /E —1.5%) inelastic-neutron-scattering measure-
ments of dynamic structure factors of a-SiQ2. Their gen-
eralized phonon density of states shows a shoulder at 10
meV, a broad peak around 50 meV, and sharp peaks at
100, 133, and 150 meV, in agreement with the measure-
ments of Carpenter and Price. ' Arai et al. also ob-
served a broad hump around 60 meV and weak peaks at
63 and 77 meV. Dynamic structure factors and general-
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ized phonon densities of states of other oxide (GeOz) and
chalcogenide (Cxe, Se, „SiSe, „) glasses have also
been measured by inelastic neutron scattering.

The vibrational properties of silica glass have been in-
vestigated by numerical simulations and analytical tech-
niques. Bell and Dean calculated the vibrational
density of states and dynamic structure factor of a hand-
built random-network model' of Si02 glass using a
nearest-neighbor Born potential, which included central-
and noncentral-force constants. ' Bell and Hibbins-
Butler "' have calculated the infrared and Raman spec-
tra of computer generated random-network model of
Si02 glass. Laughlin and Joannopoulos have used a
Bethe-lattice model and Born potential to calculate neu-
tron, infrared, and Raman spectra of SiO~ glasses. Sen
and Thorpe" (ST) have used "infinitely extended
tetrahedral network" model with nearest-neighbor cen-
tral forces to calculate vibrational frequencies of AX2-
type glasses (AX2=Si02, CreSez, etc). In the case of
Si02, Galeener has found a reasonable fit to the peak
positions in the neutron density of states and Raman
spectra. Carpenter and Price ' and Arai et al. have
used the ST model to fit the q variations of their
neutron-scattering dynamic structure factors. Thorpe
and Galeener have extended the ST model to several
other random-network structures. Guttman and Rah-
man have used a different random-network model and
the Keating potential to calculate density of states for
a-Si02. Mitra, ' Garofalini, and Alavi et al. have cal-
culated the power spectra of velocity-velocity autocorre-
lation functions of Si02 glass using molecular-dynamics
(MD) simulations with eff'ective two-body potentials.

In this paper we describe the results of molecular-
dynamics simulations for dynamical correlations in a-
Si02. The simulations are based on effective interatomic
potentials, which consist of two- and three-body in-
teractions. The two-body potentials incorporate the
effects of charge-transfer, steric repulsion, and electronic
polarizability of atoms. The three-body potentials take
into account the covalent interactions. This potential
gives a fairly good description of structural properties of
a-SiOz. From these simulations, we have calculated the
neutron-weighted dynamic structure factor, S„(q,co) as a
function of ~ and q, and the generalized neutron-
weighted effective density of states G„(co). These func-
tions are compared with inelastic neutron-scattering mea-

surements. The calculated S„(q,co) exhibits all the im-
portant features observed in the inelastic neutron-
scattering experiments on SiOz glass. As a function of co,

S„(q,co) has two regions separated by a gap near 120
meV. The dominant features in S„(q,co) are the peaks
around 10—20 meV, an almost monotonic decrease be-
tween 20 and 100 meV, the gap near 120 meV, and the
broad peak between 130 and 160 meV. The dynamic
structure factor oscillates with variations in q.

The outline of this paper is as follows: In Sec. II we
describe the interatomic potentials and the molecular-
dynamics simulations for Si02 glasses. Structural charac-
teristics of computer-generated Si02 glasses are also de-
scribed in Sec. II. Results for the vibrational normal
modes and the dynamic structural factors are described
in Sec. III. The phonon density of states and the phase
relationship between vibrating atoms are discussed in
Sec. IV. Localization properties of the phonon modes
are discussed in Sec. V. Section VI gives a conclusion.

II. MOLECULAR-DYNAMICS SIMULATIONS

The simulations reported here are based on an effective
potential composed of two-body and three-body terms,

I'([r J)= y I'2(rj)+ r I'3(rg rJk rk)
i &j&k

where r; is the position of the ith atom and r, - =r. —r, is
the vector distance between atoms i and j. The two-body
potential is given by

—,'(a;Q +a Q, )

4
7'ij

(2)

where Q, is the effective charge on and a; is the electron-
ic polarizability of the ith atom. In Eq. (2), the first term
is the Coulomb interaction, the second term is the
charge-dipole interaction, and the third term is the steric
repulsion.

The three-body contributions include Si-0-Si and 0-
Si-0 bond-stretching and bond-bending efFects:

a
V3(r;, , r,q, r;q )=&,;&exp +

"o
[cos8 ,&

—cos8.,„j. B(r~ r; )O(r~ r,„), — —. (3)

where 8.;& is the strength of the three-body potential, Oj,.A.

is the angle between r; and r,&, and 0 is the step func-
tion. The parameters in Eqs. (2) and (3) were determined
empirically from the crystal structures, cohesive energy,
and melting temperature of the glass. The effective
charges of Si and 0 are taken to be +4Q and —2Q, re-
spectively, where Q=0.4~e~ is the empirical effective
charge transfer. Extensive descriptions of the potential

parameters can be found in Ref. 23. The range of three-
body interaction is taken to be 2.6 A.

Molecular-dynamics simulations were carried out for
a system of 648 particles (216 Si and 432 0) in a cubic
box of length E, =21.39 A. Periodic boundary conditions
and minimum image convention were imposed. The
long-range Coulomb contribution was calculated with the
Ewald summation technique. Equations of motion were
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FIG. 1. Neutron static structure factors for a-Si02. Solid
dots are the neutron-diffraction experimental results (Ref. 10).
The solid line is the molecular-dynamics results at 300 K.

integrated with Beeman's algorithm using a time step of
At=0. 5X10 ' sec. The total energy of the system was
conserved to at least 1 part in 10 over at least 10000
MD time steps.

Starting from a well-equilibrated liquid state at -3500
K and the experimental glass density (p=2. 20g/cm ),
the system is cooled to another liquid state at 2500 K and
thermalized for 60000 time steps. This liquid state is fur-
ther quenched by reducing the velocity of each particle
by 0.01% at intervals of 10 time steps. Around 1500 K,
where the system undergoes thermal arrest, it is thermal-
ized for 60000 time steps. Subsequently, the system is
further quenched and thermalized to obtain glassy states
at 600, 300, and 1 K. After equilibration at each temper-
ature, structural, and dynamical properties are calculated
with MD trajectories over 60000 time steps (30 psec).
The glass at 1 K was further quenched to zero tempera-
ture by the conjugate-gradient minimization method,
which corresponds to an infinite rapid quench.

Figure 1 shows a comparison between the calculated
and experimental' neutron static structure factor, S„(q)
for a-SiOz. The prominent features in S„(q) are peaks at
1.60, 2.73, 5.11, 7.72, 12.33, and 16.75 A ' and shoulders
around 9.76 and 15.05 A, where the first sharp
diffraction peak (FSDP), the fingerprint of intermediate-
range order, is at 1.6 A '. Recently, Nakano, Kalia, and
Vashishta have calculated S„(q) for a 41 472 particle sys-
tem. The height of the FSDP of this larger MD system
is in excellent agreement with the neutron-di8'raction ex-
periments.

To further characterize the glass structure we have cal-
culated the O-Si-O and Si-O-Si bond-angle distributions.
The results are shown in Fig. 2. For an ideal tetrahed-
ron, the 0-Si-0 angle is cos '( —1/3)=109.47'. The 0-

III. VIBRATIONAL NORMAL MODES
AND DYNAMIC STRUCTURE FACTORS

The vibrational spectra can be calculated by diagonal-
izing the dynamical matrix The zero f.orce configu-ration,
[r, J for the calculation of dynamical matrix is obtained
by applying the conjugate-gradient method to a low-
temperature glass configuration. The dynamical matrix
is given by

—1/2D;„=(m;m )
c)rj pBrj~ o

i,j = [1,2, ,NI, p, v= [x,y, z I, (4)

where m, is the mass of the ith atom. The dynamical ma-
trix has 3N real eigenvalues (oi„) with real eigenvectors.
Many physical quantities of interest, such as the dynamic
structure factor, infrared intensity, and density of states
can be expressed in terms of the vibrational Green's func-
tion, G(co) given by

where u;„(n)=m; '~ A;„(n ) and A;„(n) is the ip com-
ponent of the normalized eigenvector.

The coherent inelastic-neutron-scattering cross section
is proportional to the neutron-weighted dynamic struc-
ture factor, ' ' defined by the Fourier transform of the
density-density correlation function, i.e.,

Si-O distribution in the glass is peaked at 109 with a full
width at half maximum (FWHM) of 10'. Nearest-
neighbor connectivity of tetrahedra is described by the
Si-0-Si bond-angle distributions. In the glass, this distri-
bution is asymmetric and peaked around 144 with a
FWHM of 26', indicating that there are no edge-sharing
tetrahedra. The results of bond-angle distributions are in
good agreement with NMR measurements. "

N N

N(b2) — 2m.
(6)
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where q is the scatterin wave vectorg or, b, is the coherent neutron scattering length of atom
' (b

is the position vector of atom j at time t I.n E . (6) ( . )
o aom&, )=g, b,. /Ã, andr (t)

to collective excitations and their variations th
'

ld d'~ ~ ~

n q. , -
& denotes the thermal average. Peaks in S
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The neutron-weighted dynamic structure factor d fi d
' E . (6)
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Q ~p (9)
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S(q, cu)= gg(c cp)' S p(q, co) .
a P

The other interesting quantity is the charge-charge dynamic structure factor, defined by

S&&(q,co)= e '
(p&(q, t)p&( —q, 0)}=+g (c cp) S p(q, co),

1 dt;, Q Qp

(10)

N

pg(q, t)=g g Q e
a jCa

(12)

Figure 5 displays Si-Si, Si-0 and O-O partial dynamic
structure factors and S&&(q, co) for q=2. 59, 5.59, and

where Q is the effective charge on an atom of type a,
( Q ) =g c Q, and p&(q, t ) is the spatial Fourier com-
ponents of the time-dependent microscopic charge-
density,

15.60 A '. Both Ss;s;(q, co) and Soo(q, ro) have max-
imurn near cu-10 meV, approach zero around 120 meV,
and develop broad peak between 115 and 165 meV. In
contrast, Ss; o(q, cu) is small compared to Ss; s;(q, co) and
Soo(q, co) over the entire range of co. Thus, the major
contributions to the neutron dynamic structure factor
arise from Si-Si and O-O partial dynamic correlations.

Figure 6 displays the wave vector dependence of
S p(q, co)/q and S&&(q,co)/q at 80 and 150 meV. All
partial dynamic structure factors show q-oscillations. At
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80 meV, amplitudes of these oscillations for Si-Si and Si-
0 are larger than the amplitude for the O-0 oscillation.
However, this behavior changes completely at 150 meV
[Fig. 6(b)] where the dominant contribution to the
neutron-weighted dynamic structure factor arise from 0-
0 dynamic correlations.
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charge-charge dynamic structure factor for a-Si02 as functions
of q at (a) 80 and (b) 150 meV.
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IV. VIBRATIONAL DENSITY OF STATES

A. Density of states

The partial phonon density of states can be written in
terms of the mass-weighted Green's function,

N

F (co)= — g g m, Im[G„„(i,i;cg)] .2'
i Ca p

(13)

Each term in the sum of Eq. (13) is referred to as local
density of states (LDOS). The total DOS is given by
F(co)=g F (co). At low temperature, in the case of har-
monic motion, the density of states can be calculated
from the time Fourier transform of the velocity auto-
correlation function. Both these methods yield the same
values of the DOS.

Figure 7 displays the partial and total vibrational DOS.
Similar to the dynamic structure factor, the total DOS
also displays a gap around 115 meV, separating the spec-
tra into a broad lower band between 5 and 110meV and a
higher band between 125 and 170 meV. The latter has
three peaks at 139.5, 149.8, and 155.7 meV. The lower
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band has broad peaks at 20, 48, and 66 meV. There is a
narrow peak at 93.8 meV. In addition to these main
peaks, there are weaker peaks around 34, 72, 99, 124,
129, and 172 meV.

Figure 7 also shows that both Si and 0 contribute
significantly to the total DOS below 120 meV. The nar-
row peak near 93.8 meV is mainly due to Si, whereas the
three peaks at 139.5, 149.8, and 155.7 meV are due to O.

Let us compare the calculated and experimental pho-
non spectra. Vibrational DOS of Si02 glass have been in-
vestigated by neutron, infrared, ' ' ' and Ra-
man' ' scattering experiments. Inelastic neutron
scattering measurements ' of the GDOS reveal
broad peaks centered around 50, 98, 133, and 150 meV.

FIG. 7. Partial (Si and 0) and total vibrational density of
states for a-Si02.

Infrared spectra ' reveal peaks at 50 and 130 meV, and
the Raman spectrum' has strong features at 133 and 150
meV. The calculated DOS display most of the features
observed experimentally, and the calculated peak posi-
tions differ less than 10%%uo from the experimental results.

In a neutron-scattering experiment, it is often con-
venient to define a modified neutron-scattering function
G„(q,co) by

G„(q,co) —coS„(q,co)/q

and introduce a generalized neutron-weighted effective
density of states, G„(co), from the average of G„(q,co)
over an extended range of q. Usually G„(co) is an approx
imation to the true vibrational density of states F(co).

Using S„(q,co), we calculate the CREDOS and the results
along with the experimental GDOS from INS experi-
ments are shown in Fig. 8. The peak positions in the cal-
culated GDOS are in reasonably good agreement with ex-
perimental results, although the shape of the experimen-
tal GDOS is quite different from the MD results.

B. Phase relations

Unlike crystals, phonons in glasses are not simply
acoustic and optic. Vibrational modes in a glass can be
classified as largely acoustic or optical depending on
whether the atomic motions over the entire glass sample
is in phase or out of phase. The eigenvectors contain all
the information about the phase relationship between
neighboring atoms. Bell and Hibbins-Butler ' ' have
proposed a scheme for assessing the phase relationship
between neighboring atoms throughout the glass using
the phase quotient

0
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where A, (n ) is the normalized eigenvector of eigenmode
n projected on atom i, and the summations are over
nearest-neighbor atomic pairs (bonds). The function qz
is +1 for acoustic modes and —1 for optical modes. A
similar phase quotient, q (co) for Si-0 bond can be
defined by Eq. (15) except the summation on ij is only
over Si—O bonds.

Information about atomic motions paraHel and perpen-
dicular to Si—Q bonds can also be obtained from

ij =si—0
A;(n ) (r; r;J ). A~(n )

ij =si—0q(~ )=..
~ A, (n) (r,,r, ) A (n)~

50 100 150
Energy (meV)

ij =Si—0
A;(n ) (1—r; r; ) A~(n )

FIG. 8. generalized neutron-weighted vibrational density of
states G„(co) for a-SiO2. Solid dots in (a) are inelastic neutron
scattering experimental results (Refs. 31, 32).

l,Jq~(co„)= ..
~
A;(n). (1 rjrj). AJ(n)~—
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ing Si and 0 atoms move in the direction opposite to
each other along the Si—0 bond.

Figure 9 displays the calculated phase quotients qz,
q, q~~, and q~ in a-Si02. Evidently, qz decreases from
0.9 to -0.5 as the energy increases from 5 to 90 meV. At
higher energies, it first rises to —0. 1 and then decreases
to —0.75 around 160 meV. Clearly, the acoustic charac-
ter of atomic vibration changes with the increases in the
energy of phonon modes.

Figure 9 also shows that the phase factor q drops
smoothly from +1 to —1 around 110 meV. Below 30
meV, the Si-0 motion is largely in phase. It gradually
changes to out-of-phase motion between 50 and 110 meV.
The phase factor

q~~
is + 1 below 50 meV, drops to —1 at

110 meV, and then increases to —0.8 at 160 meV. The
phase factor q~ drops from +1 to —1 between 90 and
110 meV. Above 110 meV, q~ increases again to -0.5.
At higher energies there are 1arge Auctuations in the q~
data, possibly due to small size of the simulation system.

where r, is the unit vector along the bond joining the
equilibrium positions of atoms i and j. When all the
neighboring Si and 0 atoms move along the Si—0 bond,

q~~
is + 1. On the other hand,

q~~
is —1 if all the neighbor-
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V. LOCALIZATION OF PHONON MODES

(b) Phonon localization can be inferred from a quantity
called participation ratio,
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FIG. 11. Radius of gyration, A„/L for a-SiO~.

For extended modes, p is of order unity, whereas for lo-
calized modes, it scales inversely with X .

Figure 10 shows the partial participation ratios for Si
and O. In both cases, the participation ratios are -0.35
at low energies. They decrease sharply to zero near 115
meV. The low-energy modes (5(co(100meV) are ex-
tended and the high-energy modes are localized.

Following Yonezawa, we define an effective "radius
of gyration, "R„,of an eigenmode n by

Figure 11 displays the results for R&/L. Below 100
meV, R„/L -0.16 and around 110 meV, it declines rap-
idly to a value of 0.05. However, it increase again to 0.15
around 150 meV and drops to 0.01 near 170 meV.

VI. CONCLUSIONS

We have reported MD results for dynamic correlations
in SiO2 glass. The neutron-weighted dynamic structure
factor, S„(q,ro), partial and total vibrational density of
states, and participation ratio are calculated. The dy-
namic structure factor shows the same features as ob-
served in inelastic-neutron-scattering experiments. The
calculated total phonon DOS has two well-delineated
bands, a broad lower band between 5 and 110 meV and a
narrow higher band between 120 and 180 meV. The
higher band has three narrow peaks at 139.5, 149.8, and
155.7 meV. The lower-energy broad has peaks at 20.0,
48.0, and 66.0 meV, and a narrow peak at 93.8 meV. The
low-frequency modes are spatially extended, whereas the
high-frequency modes are spatially localized. We have
also investigated the phase relationship between neigh-
boring atoms to distinguish between the acoustic and op-
tical character of phonon modes. The calculated dynam-
ic structure factor and peak positions in the density of
states are in satisfactory agreement with experimental re-
sults. However, the calculated GDOS is quite different in
shape from the one obtained by INS experiments.

R„'=—,
' y [(&„( )') —(&„( ) )'), (19a) ACKNOWLEDGMENTS

N

(X„(n )') = g A, „(n)~'(r,„rM„)', — (19b)

and

(19c)

where M is the index of the atom that has the largest am-
plitude of eigenvector in the nth normal mode. If a mode
is localized on a single atom, R„=0. For an extended
mode, R„ is the average root-mean-square distance.
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