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Small-angle neutron-scattering investigation of short-range correlations
in fractal aerogels: Simulations and experiments
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The center-to-center interparticle-distance distribution function f (r) and its Fourier transform, the
scattering function S(q), are computed for simulated fractal aggregates made of identical spherical parti-
cles using several three-dimensional of-lattice cluster-cluster algorithms. As expected f(r) exhibits a 5
peak at the particle diameter followed by a discontinuity at twice this distance as a consequence of the
nonoverlapping character of the spherical particles. As a result the curve log, oS(q) versus log~oq goes
through a broad minimum followed by damped oscillations at large-q values. These simulations are
compared with experimental small-angle neutron-scattering results on colloidal silica aerogels. The ex-
perimental scattering function S(q) is derived from the ratio between the scattered intensity I (q) and the
form factor P(q) determined from measurements on the diluted colloidal solution. The agreement be-
tween simulations and experiments is qualitatively good and the inhuence of aerogel density is well ac-
counted for. The departure of the experimental curves from the theoretical S(q) curve, which is
stronger for larger particle sizes, is attributed to short-wavelength corrections to the simple scattering
theory.

I. INTRODUCTION

Small-angle neutron scattering (SANS) as well as
small-angle x-ray scattering are now used as a quite com-
mon tool' to determine the fractal dimension' of
scale-invariant fractal aggregates. " The fractal charac-
ter of the internal structure of an aggregate results in a
power-law decay of the correlation function f (r) and, as
a consequence, in a linear dependence of the logarithmic
of the scattered intensity I(q) as a function of the loga-
rithm of the modulus q of the scattering wave vector,
which is given by

4m. 0
q = sin —,

2
'

where 0 is the scattering angle and 2, the wavelength of
the incident beam. The linear regime is bounded by the
Guinier regime' for q values of the order or smaller than

' where g is a typical upper cutoff and the Porod re-
gime for q values of the order or larger than a ' where a
is the size of the subunits. The larger cutoff g relates to
the typical size of the aggregates when one deals with di-
luted solutions of aggregates, such as aggregated sols: In
this case the Guinier regime traduces the scattering by
the aggregates. In the case of a concentrated distribution
of connected aggregates, such as gels, g should be con-
sidered as the typical aggregate size, i.e., the mean con-
nection length, because for distances larger than this
length the medium appears to be homogeneous.

In this paper we focus on the large-q regime which is
related to short interparticle distances within the aggre-
gate. We have studied the crossover between the fractal
and Porod regimes by both computer simulations and
SANS experiments on colloidal aerogels. When the form

factor of the individual particles is well defined, one can
extract the precise form of the scattering function S(q)
from the intensity function I(q). We show that all the
short-range features of the correlation function, such as
that revealed by computer simulations with standard
cluster-cluster algorithms, are necessary to explain the
full shape of the S(q) curve at large-q values. The
present analysis is more complete and more precise than
earlier analyses that considered only part of these
features (namely, the peak at the particle distance) and
were obliged to consider an anomalously large number of
neighbors to explain the experimental results. '

II. CLUSTER-CLUSTER ALGORITHMS

We have built three-dimensional aggregates, contain-
ing up to N =4096 particles, using several off-lattice
hierarchical cluster-cluster computer algorithms. " We
have considered three different aggregation mechanisms,
namely, diffusion-limited, ' ' ballistic, ' and chemically
limited' (also called reaction-limited' ) processes. We
review below the basis of these algorithms to show some
details of the procedures used here which are different
than the original ones. In this section we consider the
case of "monodisperse" aggregates made of identical
spheres of diameter a, conventionally taken as the unit
length.

The hierarchical scheme is an iterative method which
starts with a collection of N =2~ identical spheres at
iteration i =0 and ends with a unique aggregate of Nz
particles at iteration p. At an intermediate iteration i,
one has a collection of N, =2~ ' independent aggregates
containing N=2' particles. To go to the next iteration,
the 2~ ' aggregates are grouped into pairs and with each
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N
R =—QGM, (3)

A. Di8'usi. on-limited case

The center of mass, G(1), of one aggregate of the pair
is placed at the origin of the coordinates and the center of
mass, G(2), of the other is placed on a point chosen at
random on the sphere of radius

Ro =R (1)+R (2)+a (4)

centered at the origin. Then cluster (1) stays fixed and
cluster (2) undergoes a random motion resulting from
successive displacements of unit length chosen at random
among the six coordinate directions (+1,0,0), (0, +1,0),
(0,0, +1). The first time a particle Cz of (2) overlaps a
particle Ci of (1), the Brownian motion is stopped and
cluster (2) is translated in the opposite direction of the
last displacement by the amount that makes a strict con-
tact between C& and Cz. One should emphasize that,
whereas the Brownian motion takes place on a cubic lat-
tice the clusters themselves are built oA lattice because
the initial coordinates of G(2) have no chance to be in-
tegers. As in the Witten-Sander model, the Brownian
motion is stopped when the distance OG(2) becomes
larger than a typical distance RM =3Ro and cluster (2) is
again released from the sphere of radius Ro at a random
position. This is repeated as often as necessary until an
overlap occurs.

B. Ballistic case

As in the Brownian case, cluster (1) is fixed with G(l)
at the origin of the coordinates. A random straight line
is determined by first choosing a random direction in
space and then choosing a random point P in a plane per-
pendicular to this direction within a square limited by
coordinates (+Ro, +R o ) [Ro being defined as in the
diffusive case by Eq. (4)]. Then the center of mass of clus-
ter (2) is moved along this straight line from an initial po-
sition such that PG (2) =R o toward cluster (1) until a first
contact is made (the contract is determined in a manner
similar to the last step of the Brownian motion in the
diffusive case). If no contact is obtained, another random
direction is chosen and the trials are repeated as often as
necessary until a contact is obtained.

pair we build a new aggregate according to a specific
sticking rule. As soon as it is obtained, the new aggregate
is randomly disoriented (using two successive random ro-
tations about two randomly chosen coordinate axes) and
is stored in the collection for the next iteration. The
sticking rules depend on the chosen aggregation process.
In the following the center of mass of an aggregate is
denoted as G. The maximum radius R is defined as the
maximum distance between the center of mass and the
particle centers M; and is given by

R =max[GM~],

while the radius of gyration R is given by

C. Chemically limited case

A particle of cluster (1) and a particle of cluster (2) are
chosen at random as well as a random direction in space.
The two clusters are disposed such that these two parti-
cles are in contact with their centers aligned along a ran-
dom direction. Then a test of overlap is made for the
other particles. If an overlap is found, the trial is dis-
carded and another choice is made for both the particles
and random direction.

In addition to the above procedures, we have also con-
sidered restructuration schemes, such as that described in
Refs. 21 and 22 for the ballistic case. In this procedure
three restructuring steps (R, = 1,2, 3 ) can be obtained. As
soon as a contact occurs, a rotation is performed around
an axis going through one contacting particle, say, Ci,
and perpendicular to the linear trajectory, until a second
contact is obtained. Among the two possible rotations,
the one which corresponds to the smallest angle of rota-
tion is chosen. This corresponds to one-step restructur-
ing (R, =l). Calling Ki and K2 the centers of the new
contacting particles, a further restructuring (R, =2) is
obtained by rotating around C&E, until a third contact is
obtained (again with smallest angle). Sometimes new
contacts may appear on the same particle so that further
rotations can be performed as explained in Ref. 21. The
three-step restructuring (R, =3) consists in achieving all
the possible rotations.

For all the simulated aggregates, the fractal dimension
D, as deduced from

is reported in Table I.
Moreover, to illustrate this section, we give in Fig. 1

some three-dimensional pictures of aggregates containing
4096 particles. Case (a) corresponds to a ballistic aggre-
gate without restructuring, while case (b) corresponds to
the case of complete restructuring (R, =3). We do not
show di6'usion-limited and chemically limited aggregates,
but they are very close to the one shown in Fig. 1(a).
When comparing Figs. 1(a) and 1(b), one can observe the
drastic compaction of the aggregate due to restructuring.
However, since this compaction stays limited to short
distances, the fractal dimension is not dramatically
changed (see Table I). For comparison, we show in Fig.
1(c) a micrograph of an aerogel sample that we will dis-
cuss in Sec. V.

1.78
1.72
2.0

1.95
1.88
2.0

2.04
1.96
2.0

R, =1

2.13
2.12
3.6

R, =2

2.18
2.14
4.4

R, =3

2.19
2.16
5.1

TABLE I. Fractal dimensions D and coordination numbers z
of the aggregates built with diffusion-limited ( A), ballistic (B),
chemically limited (C) as well as restructured (R, = 1,2, 3) algo-
rithms. D is estimated from the radius of gyration [formula (5)],
and D* is estimated from the slope of the log, P'(q) vs log, oq
curve in the linear regime. In both cases the uncertainties origi-
nating from the fit are estimated to be of order 0.03.
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by 4Nm. r 5r.
One should point out that f (r), which is defined here

for a unique aggregate, divers from the usual correlation
function g (r) for a gel, which is generally considered as a
collection of connected aggregates. The di8'erence occurs
at large distances (r )g) where f (r) tends to zero in our
case while g(r) tends to a constant g proportional to
the gel density, in the other case. Usually, g(r) is nor-
malized such that g =1. It is generally admitted that in
a gel the short-range correlation contributions, due to the
constitutive connected aggregates of typical size g, are
added to a uniform background given by g so that our
f (r) should be proportional to g (r) —l.

The numerical results for f (r) are reported in Figs.
2(a) and 2(b) for aggregates containing N =4096 parti-
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FIG. 1. (a) Three-dimensional aggregate containing 4096
spherical particles built with the ballistic algorithm without res-

tructuring. (b) Same as (a) but with complete restructuring
(R, =3). (c) Micrograph of a 270-A aerogel sample.

III. CALCULATION OF THE
DISTANCE DISTRIBUTION FUNCTION f (r)

An aggregate containing X particles being given by the
set of coordinates for the centers M; of its particles, one
can calculate its distance distribution function f (r),
which is the histogram of center-to-center distances
M-M. . Here we have chosen to calculate the distanceI J'
distribution function per particle so that f (r) is normal-
ized by
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(b)

f f (r)4m. r dr=
0 2

(6)

In practice, after choosing a given path 5r, one calculates
the number of distances M;M lying in the interval
[r ,'5r, r + ,'5r], and to fin—d —f(r), one divi—des the result

FIG. 2. (a) Numerical results for the distance distribution
function f(r) (calculated with 5r =0.03) in the case of aggre-
gates containing N =4096 particles. Curves and C refer
to diffusion-limited, ballistic, and chemically limited algorithms,
respectively. (b) Same as in (a) but with different degrees of res-
tructuring (R, =0, 1,2, 3) included in the ballistic algorithm.
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that is expected from the fractal character of the aggre-
gates. The upper limit of the power-law regime, where
f (r) tends to zero, is outside the limit of the figures since

g is quite large here. From the normalization condition
(7) and if one forgets the small- and large-r contributions
to the integral, the coefficient 2 should be roughly pro-
portional to D —1. This is quite well observed in the
figures where the curves of larger D are above the curves
of smaller D.

The strong peak at r = 1 is due to the nonzero number
of distances r =1 corresponding to bonds between con-
tacting particles. Introducing the coordination number z,
which is the average number of contacts per particle, the
total number of contacts is zX, and since there are two
contacts per bond, the total number of bonds is zX/2.
As a consequence, one gets

(1)=
8~6r '

and since z is nonzero, this quantity tends to infinity
when 6r tends to zero. Thus, in the asymptotic limit
(X~~ ), f (r) contains a 5 peak of weight z/8vr at r = 1.
In the nonrestructured case, since one starts with indivi-
dual particles and one adds one bond per sticking, the re-
sulting cluster has no loop and the total number of bonds
is X —1. In this case one has

1z=2 1 ——=2. (9)

We have calculated z directly, and we have checked this
formula in the case of nonrestructured aggregates. The
values of z in the restructured cases are reported in Table
I. Values of z larger than 2 are due to the formation of
quite compact subunits in the early iterations. For
R, =3, one systematically builds regular tetrahedra at
iteration 2 and then the resulting large aggregates are
made of tetrahedral subunits connected together by at
least three bonds.

Both the nonzero value of f (r) for r =1+ and the
discontinuity at r =2 can be understood if one considers
that f (r) can be written as

(10)

where f, (r) is the contribution of couples of particles

cles, with 5r =0.03. In Fig. 2(a) the three curves A, B,
and C correspond to the difFusion-limited, ballistic, chem-
ically limited cases, respectively. In Fig. 2(b) the curve
for a nonrestructured ballistic aggregate (R, =0) is com-
pared with those corresponding to different steps of res-
tructuring (R, =1,2, 3). A curve similar to the one re-
ported in Fig. 2(a), but computed with a larger or, has al-
ready been obtained by Meakin for a diffusion-limited ag-
gregate as quoted in Ref. 13. However, this curve has not
been used to calculate the scattering function.

In all cases one observes a strong peak at r =1 and a
discontinuity at r =2. Above these short-range features,
say for distances larger than 2.5, f (r) follows quite well
the power-law behavior

f (r) = /I r

that are tangent to the same third one and where f~(r)
contains all the other contributions. We have observed
that, while f2(r) is continuously varying from r =1,
where fz(1)=0, up to the largest distance, going through
a maximum around r =2, f i(r) exists only between r = 1

and 2 and reaches nonzero values at both limits. An ap-
proximation f, (r) off i(r) can be calculated by assuming
that the oriented bonds M0M& and M&M2 that connect
two particles M, and M2 to a third one M0 make an an-
gle 0 that is randomly distributed between 0 and 2'/3,
with a constant probability distribution p(9)=po. One
can calculate p0 by

2~/3
2~ p0sinO d O= 1,

0

giving

(12)

Then, knowing that

O
I" =2 cos

2 '

one writes

(13)

4nr f, (r)dr = ~2vrposing d 0~

and finds

f, (r)= 1

6ar

(14)

(15)

With this approximation f (1+ ) should be equal to
I/6vr=0. 055. . . and the discontinuity Af =f (2 —

)f (2+ ) should —be equal to ' f ( 1+ ) =0.0—27. . . .
our calculations with nonrestructured aggregates, we find
f (1+ ) ranging from 0.055 to 0.075 and b,f ranging from
0.03 to 0.04, values of the same order of magnitude but
slightly larger than the predicted values. The discrepan-
cies can be attributed to the approximation made: It is
clear that p(8) is not constant for two reasons. First,
there may be other particles in the close neighborhood
affecting the possible configurations of the three particles
Mo, M„and M2 (this occurs in particular if Mo has three
or more contacts). Second, in the diffusion-limited and
ballistic cases, screening effects imply that small values of
O are favored.

When restructuring is introduced, some other short-
range features show up in the f (r) curve. As soon as
R,&0, it appears as a peak at r =+3. This peak is due
to the contribution of particles that are connected with
two bonds to the same dimer of tangent particles, and it
can be accounted for by a similar reasoning as above.
The only difference lies in the fact that the maximum dis-
tance is here obtained in a plane rather than in space, so
that the peak is a weak divergency of the kind
(&3—r) '~ rather than a discontinuity. Moreover, for
R, =3, one observes a peak at 2Q —', , which is twice the
height of the tetrahedral subunit. If one forgets the gen-
eral long-range decrease of f (r) due to the fractal charac-
ter of the aggregates, the overall shape off (r), which ex-
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hibits damped oscillations at r )2, becomes, for large R,
values, qualitatively similar to the shape of the correla-
tion function for random packings of spheres. 23

IV. CALCULATION OF THE
SIMULATED SCATTERING FUNCTION S (q)

where r; =OM;. Assuming that the aggregate is spheri-
cally symmetric, one can average over the directions of q
to find

sinqr, .1S(q)= —g
qr,"

(17)

with

r, =M, M =/r, —r
/

.

The scattering function S(q) of an aggregate corre-
sponds to the scattering intensity of dimensionless points
located at its particle centers M, . With a convenient nor-
malization, S(q) is given by

2

S(q)= —g e ' =—ge1V,. ) iV,

Considering separately the contributions i =j and i',
one gets

sinqr, "
(19)

Then, using the distribution of distances f (r) as defined
above,

S (q) = 1+2f 4~rf (r)dr,
O q

the normalization conditions imply that

S(0)=X and S(~)=1 .

(20)

(21)

In practice, to avoid numerical imprecisions, we have
preferred to calculate S(q) directly by the double sum
(19) rather than by the Fourier transform of f (r) given
by (20).

We give the results of the calculations in Fig. 3. In
Fig. 3(a), we have plotted log, oS(q) as a function of log, oq
in the diffusion-limited case for %=4096, emphasizing
the range of large-q values. In this figure one observes a
large minimum at about q =4 followed by damped oscil-
lations. The oscillations can be attributed to the 6 peak
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FIG. 3. (a) Numerical results for the scattering function S(q). Curve 1 corresponds to a diffusion-limited aggregate with N =4096
particles, and curves 2 and 3 correspond to the analytical formulas (22) and (24), respectively. (b) S(q) curves for diffusion-limited ag-
gregates with different N values. (c) S(q) curves for different aggregation mechanisms. Curves A, 8, and C correspond to diffusion-
limited, ballistic, chemically limited aggregates of %=4096 particles, respectively. (d) S(q) curves for ballistic aggregates of
X =4096 particles with different degrees of restructuring.
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of f (r). If one substitutes, in (20), f (r) by
(z/8m)5(r —1), one gets the following approximate for
S(q):

S„(q)=1+z (22)

In the range of q values depicted in Fig. 3(a), the precise
value of g has no influence and here we have considered
the limit g —+ ~ given by

D2 I (D —1) . (D —1)vrS q =1+ sinD 2
(24)

We have taken D =1.75 as in the diffusion-limited case.
Since formula (24) does not take into account any short-
range hard-core effects, it cannot account for the oscilla-
tions observed in S(q). In practice, as seen in Fig. 3(a),
our $(q) curve (curve 1) crosses over from curve 3 in the
fractal regime (q (1) to curve 2 in the large-q regime
(q ) 10).

In Fig. 3(b) we show several S(q) curves for different
values of N in the diffusion-limited case. As expected, the
range of the fractal region is reduced for smaller aggre-
gates, but the large minimum and the damped oscillations
are independent of size up to very small sizes, showing
that the short-distance correlations are fixed by the early
stages of the aggregation process. In Fig. 3(c) we have
plotted logioS(q) as a function of logioq for N =4096 in
the three different cases: difFusion-limited, ballistic, and
chemically limited. In this figure one can see the change
of slope in the fractal regime due to the inhuence of the
fractal dimension, but after this regime, one sees that the
overall shape of S(q) is quite independent of the aggrega-
tion process. This means that the mean shapes of the
small clusters built in the early stages are very close from
one aggregation process to another. In particular, their
coordination number is the same (z =2). In Fig. 3(d) we
give the same plot, but in the ballistic case only, for
different steps of restructuring. One sees that, in pres-
ence of restructuring, the minimum is deeper and nar-
rower. This clearly shows the inAuence of the coordina-
tion number z, which is now increasing with R, . The
fractal dimensions D* estimated from the slope of the
S(q) curves of Figs. 3(c) and 3(d) have been reported in
Figs. 1 and 2. Although D* is systematically smaller than
D, the difference is not significative since it remains of the
order of the error bar.

which is represented, for z =2, by curve 2 in Fig. 3(a).
As expected, this approximation corresponds to the
asymptotic large-q limit of S(q). However, the large
minimum at q=4 is not accounted for by this contribu-
tion only. Both the 6 peak at r =1 and the discontinuity
at r =2 influence the shape of the first minimum of S(q).
It is interesting to compare our results with an analytical
formula which has been widely used in the literature: ' '

D2 I (D —1) sinI(D —1)tan '(qg/a)]Sq=l+
[I+(a /qg)2)(D

—i ) /2

(23)

V. COMPARISON WITH SANS EXPERIMENTS
ON SILICA AEROGELS

I (Q) =NS (Q)P (Q),

where S(Q) is the scattering function introduced above
and where P (Q) is the form factor, i.e. , the scattering in-
tensity for a spherical particle alone. For an hornogene-
ous sphere of diameter a, P (Q) is given by

2
2 sin(ga/2) —(Qa/2) cos(Qa/2)P =v

(Qa /2)' (26)

where U is the volume of the sphere:

v= —a 3

6
(27)

To account for the finite values of the minima of I(Q),
one must consider a small polydispersity of the particle
diameters. Consequently, we have replaced P(Q) by an
average P(Q) over the diameters,

P(g)= I P(Q)g(a)da, (28)
0

according to a Gaussian probability distribution:
2

a —a,g(a)- exp
2 0

(29)

which has been truncated for a &0 and normalized ac-
cordingly.

In Fig. 4(a) the solid line represents P(Q) for ao =270
A and o. =32 A. The parameters ao and o. have been ad-
justed in order to get the best fit between P(Q) and the
intensity scattered from the diluted sol in which the silica
particles can be assumed to scatter neutrons independent-
ly. The discrepancy at very-small-Q values can be attri-
buted to some long-range organization of the colloidal
particles in the sol. One can check that the same solid
line fits the large-Q part of the corresponding I(Q) curve
up to the largest available Q values. The value of ao is
mainly determined by the location of the minima and cr

by their absolute values. The absolute error on the values
of both ao and a. is estimated to be of order 5 A. The
same analysis has been done for all our experimental

The aerogels have been prepared using the process de-
scribed in Ref. 14. They have densities ranging from
0.070 to 0.380 g/cm . They are made of small colloidal
spherical particles with a quite low diameter polydispersi-
ty as has been checked on electron micrographs such as
Fig. 1(c). The particle diameter a ranges from 96 to 270
A. Hereafter, samples will be referred to by their particle
diameters. Figure 4(a) shows a typical intensity curve ob-
tained with one 270-A aerogel. In this figure logiol(Q)
has been plotted as a function of logioQ. Here we use a
different notation for the experimental wave vector Q
(measured in A ) and for the dimensionless one q = Qa
that we have used above. One clearly see in this figure
the characteristic Q Porod behavior with strong oscil-
lations. As usual, we analyze the intensity in terms of
two factors:
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FIG. 4. (a) SANS intensity for one 270-A aerogel (upper curve) and for the corresponding diluted sol (lower curve). The solid line

is a fit of the lower curve to Eq. (28) as explained in text. The different symbols refer to distinct configurations of the spectrometer.
0

(b) Experimental S(q) curves (obtained as explained in text) for the 96-A aerogel family. Samples are labeled by their densities. (c)
0

Experimental S(q) curves for the 160-A family. (d) Experimental S(q) curves for samples of various particle diameters but with the
same density p =0.10 g/cm' and the simulated S(q) curve in the diffusion-limited case. (e) Same as (d) for p =0.18 g/cm'.
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data, and in the following we give the results for the
scattering function as being the ratio of I(Q) by P(Q) as
a function of the reduced wave vector q =Qao. All the
experimental S(q) curves, determined this way, have
been normalized such that S(q)~1 for q~ ~.
Justifications for the use of formula (25) in presence of
polydispersity are given in the Appendix.

In Fig. 4(b) we give logioS(q) versus logioq for different
aerogels made of particles of the same size (ao =96 A)
but with densities ranging from 0.070 to 0.250 g/cm . In
this figure one observes the same characteristic broad
minimum followed by damped oscillations that we have
observed in the simulated curves. The fact that all the
curves are superimposed in the fractal regime as well as
in the large-q region gives good confidence that the aggre-
gates forming the gel have been grown with the same ag-
gregation process. The fractal dimension is here
D =1.80. Moreover, one clearly sees in this figure that
the density fixes the size g of the aggregates constituting
the gel. However, no further quantitative comparison be-
tween simulation and experiment can be done here. In
particular, an estimation of the number of particles N
based on the use of Fig. 4(b) would have no meaning, be-
cause the simulation has been done with one single aggre-
gate containing a given number lV of particles, while the
gel is made of a collection of connected blobs of various
sizes. In Fig. 4(c) the same kinds of plots have been de-
picted for larger particles (a0=160 A). Here also the
curves are nicely superimposed for large-q values and ex-
hibit the predicted overall shape.

In Fig. 4(d) we compare two experimental S(q) curves
for the same aerogel density (p=0. 10 g/cm ) with the
simulated curve in the diff'usion-limited case (with
N =4096). The same has been done in Fig. 4(e), but for a
different density (p=0. 18 g/cm ). It is clear in these two
figures that the agreement between theory and experi-
ments is only qualitative. Even if the data are very noisy
for large-q values, it seems that the large-q oscillations of
the experimental curves are more damped. This may be
accounted for by taking into account indirectly the diam-
eter polydispersity into S(q) as is demonstrated in the
Appendix (see Fig. 5). But we would like to focus on the
larger discrepancy, which is that the minimum is wider
and deeper in the experimental curves. This discrepancy
is systematically more important for bigger particles.
When comparing with Fig. 3(d), it is clear that this can-
not be attributed to the kind of restructuring that we
have considered at the end of Sec. II, since for such re-
structuring the minimum is deeper but not wider. Since
it is difficult to imagine some other realistic restructuring
mechanisms able to fully account for the observed
discrepancies, we do not trust the earlier interpretations
which considered quite large coordination num-
bers. ' One might invoke other possible explana-
tions for the discrepancies such as small-q modifications
of the form factor or corrections to the scattered intensity
due to some shape deformation of the particles near their
contact zone. This last effect might be approximately
taken into account by considering a different length for
the particle diameter and for the center-to-center dis-
tance between contacting particles. However, all these

considerations, if they might sometimes give a better fit,
appear to be too ad hoc to really improve comprehension
of the problem.

Here we would like to propose another tentative inter-
pretation. In general, a complete theory of scattering (in-
cluding multiple scattering, shadowing, refraction, etc. )

should consider two dimensionless parameters Qa and
ka =2wa/A, . The fact that the theoretical S(q) curve
considered above does not depend on the extra parameter
ka comes from all the considered approximations. How-
ever, the simple scattering theory should be recovered in
the limit ka~0. Some corrections might appear for
large-ka values. The fact that in Figs. 4(d) and 4(e) the
theoretical curve can be considered as the limit of the ex-
perimental ones when a —~0 supports this analysis. More-
over, the parameter ka is quite large in our case. We
used a combination of two incident neutron wavelengths

0
of 6 and 18 A in the experimental setup. Thus our ka
values are in the range 30—300, close to the values in-
volved in the geometrical optics approximation. It is
reasonable to admit that corrections to the simple
scattering theory, such as shadowing, refraction, and
multiple scattering effects, cannot be neglected for such
large values. Theoretical calculations are under progress
to try to give more validity to this reasoning.

VI. t"QNCLUSIQN

In this paper we have shown that the shape of the ex-
perimental scattering curve for large wavelength values
in colloidal aerogels is qualitatively well reproduced by
direct calculations on simulated aggregates built with
cluster-cluster algorithms. In a log-log plot, the scatter-
ing curve exhibits a broad minimum followed by damped
oscillations at large-q values. We have shown that it is
not necessary to consider anomalously large coordination
numbers to explain the experimental curves as was previ-
ously done. The discrepancies that we obtain between ex-
periments and theory are here attributed to corrections to
the simple scattering theory in the limit of small wave-
lengths. The present investigation will be soon completed
in the small-q regime by a study of the long-range corre-
lations by means of both simulation calculations and ex-
periments. In this limit the calculations are more compli-
cated since one must consider scattering by a set of con-
nected aggregates disposed in a manner which should be
sufficiently realistic to correctly model the structure of
aerogels.

APPENDIX

To justify the analysis of the experimental results done
in Sec. V, we have built polydisperse diffusion-limited ag-
gregates. This calculation has been done by extending
straightforwardly the hierarchical procedure described in
Sec. II. Now we start the simulation with a collection of
spherical particles whose diameters a are given by

1/2
3 11

a =ao+2cr (Al)
n k i 2

where n is an integer and the g&'s are independent ran-
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A(g)=pe 'f e 'd p, ,
l t

(A2)

where the integral is performed over the volume U; of the
ith particle. Using

b(g, a;)= I e 'd p,
t

dom variables uniformly distributed between 0 and 1 as
given by our computer random generator. It is known
that this distribution tends to the Gaussian distribution
of mean ao and standard deviation o. in the limit n ~~.
In practice, it is not necessary to consider a very large
value of n to have a good approximation of the Gaussian
distribution, and here we have taken n =5. At the end of
the procedure, we have stored the coordinates of the par-
ticle positions r; as well as their diameters a;.

Then, given the aggregate, the scattered amplitude
2 (Q) can be calculated by

cr/a

0.00

Qa

I

10

FIG. 5. Numerical results for the scattering function S(Q) of
a monodisperse aggregate compared with the approximate func-
tion S(Q) obtained by dividing I(Q) calculated for a po-
lydisperse aggregate by an averaged form factor P(Q). The po-
lydisperse aggregate contains N =4096 particles. The standard
deviations of the diameters are cr =0.03ao and 0.06ao.

sinQa; /2 —Q(a; /2) cosQa; /2
=4ma;

(Qa, )' (A3)

and making the average over the direction of Q, the
scattering intensity is

ed as in (26) —(28) but with the distribution of diameters
defined by (Al). This procedure gives a pseudoscattering

function S(g):
sin gr,"

I(Q) =
i 2 (Q)~ = g b (Q, a, )b (Q, ai ) . (A4)

Q;, S( )= I(g)
NP (Q)

(A5)

It can be checked that this formula reduces to (25) and
(26) in the monodisperse case. However, in general, one
cannot write I ( Q) under the form of a product as in (25).

We have calculated I(g) with formula (A4), and we
have divided it by an averaged form factor P(g) calculat-

which we compare with the monodisperse S(g) curve in
Fig. 5.

One can see that the agreement is quite good. The
differences occur for large-Q values where the oscillations
become more and more damped when o. increases.
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