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The Li NMR spin-lattice relaxation and the electrical conductivity in the typical glassy fast-ion con-
ductor (Li2S)p 56(SiS&)p 44 are discussed from models of Li ionic motion with distributions of activation
energies, as well as from stretched-exponential time-correlation functions. The measured correlation
times from the two effects differ by two orders of magnitude, and the derived distributions are shifted
greatly relative to each other. We relate the great differences to percolation around the high barriers in

the distribution. We present a phenomenological theory that yields good quantitative fits to the ob-
served NMR relaxation with a Gaussian distribution, and to the conductivity and related dielectric
properties with the continuous-time random-walk model and the same Gaussian truncated at the per-
colation limit. This correlates the two effects in a simple and effective way; both time-correlation func-
tions can be calculated approximately from the distributions, and even the dc conductivity can be calcu-
lated from the NMR results. The present approach is discussed and compared with previously proposed
models to explain the anomalies in ac electrical-conductivity and NMR relaxation rates in glassy fast-ion
conductors.

I. INTRODUCTION

The electrical conductivity o(co, T) in fast-ion conduc-
tors (FIC) has been studied and discussed extensively, but
no clear picture has emerged of how the conductivity is
related to the thermally activated hopping rates of indivi-
dual ions. Measurements of other properties like the
NMR spin-lattice relaxation (NSLR) rate R &(co, T) which
depends significantly upon the microscopic motion in
different ways are being used to more fully characterize
the ionic conduction process. To our knowledge, no de-
tailed studies of o. and R, on the same materials in wide
or overlapping ranges of frequency co and temperature T
have been made besides the recently reported study of the
glassy FIC (Li2S)0 s6(SiSz)0 44.

' The purpose of this paper
is to point out again' the great differences between the
correlation times (two orders of magnitude) derived from
NMR and from conductivity and to explain these
differences. We will analyze the conductivity, the related
dielectric properties, and NMR relaxation due to Li ion
motion in the FIC glass (LizS)056(SiS2)o «and correlate
the similarities and differences between them. This com-
position shows behavior typical of glassy FIC: (i) The ac
conductivity is strongly T dependent and increases al-

most proportionally to co at high frequencies and (ii) the
NMR relaxation R

&
deviates from the simple

Bloembergen-Purcell-Pound (BPP) (Ref. 2) behavior by
being very asymmetric around the maximum in a plot of
log, o(R, ) vs I/T. There are many models that can ex-
plain separately the anomalous behavior of o.(co) and of
R, (co, T). However, since both of these are related to the
cation dynamics on a microscopic scale, a model that can
explain both the behaviors of o.(co) and of R, (co, T) start-
ing from the same microscopic picture should give en-
lightening information.

The conductivity cr(co, T) is often described using a
stretched exponential, or Kohlrausch-Williams-Watts
(KWW), time-correlation function of the form
exp [

—( t /r ) ] with 0 & 13 I, but there is no general
agreement on how the exponent P or the correlation time
r(T) is related to the individual hopping motions of the
ions. The NSLR R&(co, T) may also be fitted with a
KWW function, and it has often been assumed the two
correlation functions should be approximately equal since
they result from the same basic ionic motion. However,
this is not found in the FIC glass (LipS)p 56(SiS2)o 4g.
From cr(co, T) in the ranges 0 & co/2m. & 4 MHz and
141 (T (281 K we find' the correlation function
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( t/ )0.48

f„„d(t)=exp with ~„„d=0.4X 10 ' exp

with ~NMR=4. 5 X 10 ' expfNMR(t ) =exp

and from the measured R t(co, T) of Li in the ranges 4&co/2rr &40 MHz and 150& T& 550 K we found'

NMR
0.3S

(2)

These functions at T=250 K are plotted in Fig. 1, and
apart from the somewhat different shape due to the
different f3's we see f„„d(t)is shorter than fNMR by
several orders of magnitude. The difference is so large
that ~„„dand ~NMR must result from different aspects of
the ionic motion, and the purpose of this paper is to ex-
plain this difference. We assert a single ion hop attempt
frequency, quite reasonably, should be connected to the
activation energy E„the hop length and the ion mass,
and this relation is far from fulfilled in the prefactor of
r, „qin Eq. (1).

The great difference in correlation times for the two
effects can be seen directly from the temperature shift
with co of the peak in the NMR relaxation R

&
and of the

peak in the imaginary part of the dielectric modulus
M"(ai, T) =Im[iro/cr(co, T)], and is not related to our
choice of stretched exponentials for the fit. These proper-
ties have maxima near corNMit( T)= 1 and cur„„d(T)= 1,
respectively, and the resulting Arrhenius plots are shown
in Fig. 2. Although the two sets of values for ~ do not
overlap in temperature, we see that the extrapolated
correlation times differ by a factor of 100.

To obtain a better understanding of the physics in-
volved other models will be examined and applied
to the measured R, (co, T ) and tT(co, T) in glassy
(Li2S)o s6(SiS2)o 44; in particular we will consider distribu-
tions of barrier heights E, against the ionic motion. This
approach has been used in the analysis of NMR relaxa-
tion, and a Gaussian distribution has been shown to work
well for R, vs 1/T. It is not immediately clear how
o(co, T) can be calculated from the same distribution of

barriers, so we will first study the co and T dependencies
of o. as derived by Dyre, * Macdonald, and others from
the continuous-time random-walk model with a rectangu-
lar distribution of activation energies. This method
yields a good fit of the complex rr(co, T) when we use the
measured o(co —+O, T) as a parameter. The fitted curves
also show, however, that the distribution of E, for
R, (co, T) and o (co, T) are strikingly difFerent rejecting the
differences of correlation functions Eqs. (1) and (2). We
suggest a quantitative explanation for the differences,
based upon the dc percolation motion through the lattice.
This approach also permits us to calculate approximately
the magnitude of tr'(ni~O, T) and the time correlation
function.

II. NMR RELAXATION WITH A DISTRIBUTION
OF BARRIER HEIGHTS

The NMR spin-lattice relaxation of a given Li nucleus
is determined by the local electric field gradient (EFG)
Auctuations arising from the Li ionic motion. Hops of
the ion will take it to a randomly different local field and
thus contribute in the same way to R „and it does not
matter whether the hopping is locally back and forth
over the same barrier or part of long-range diffusion. The
Auctuating field may be magnetic dipolar from nearby
spins or electric quadrupolar from neighboring ions. The
immobile 8 ion s surrounding the Li+ ions in
{Li2S)o.s6(SiS2)0.44 glass have no magnetic moments,
therefore the Li relaxation is expected to be quadrupolar
in nature arising from the hopping of the ions to other
sites with different EFG magnitudes and principal axes.

10-2
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1O-11 10-8 -5

t (s)

FIG. 1. Stretched exponential time-correlation function for
Li+ tn (LipS)p s6(SiS2)p «at 250 K. (a) f„„p(t)from the conduc-
tivity and Eq. (1). (b) f (NtM) afrom the NMR relaxation and
Eq. (2). (c) FNMR(t) from the distribution of barriers in Eq. (12).
(d) F„„d(t)from the barriers below the percolation limit in Eq.
(14). (e) FD(t) from the rectangular distribution of barriers in

Eq. (15).

F000/T (K ')

FIG. 2. Correlation times ~~ for Li in (Li2S)0 q6(SiS2)044
from cur~ = 1 at the maxima of imaginary dielectric modulus M"
(open circles) and NMR relaxation R, (filled circles), plotted as
functions of inverse temperature. Lines through the points are
drawn with the activation temperatures of Eqs. (1) and (2).
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The potential energy wells in a structurally disordered
glass differ in shape from site to site so the ions see a dis-
tribution of barrier heights E, against hops to the next
energy well. Hence the ions will hop with different rates;

—E /k~T
r =1/~=r0exp (3)

over each of the z barriers to the nearest empty wells, and
we might therefore expect a distribution of NSLR rates.
However, a sample of nuclear spins will still show one
well-defined rate R

&
if the spin-spin relaxation is

sufficiently fast. The spin energy diffuses to those nuclei
which have the optimum hopping rate for fast relaxation
to the lattice, and we expect the measured relaxation rate
will be an average, defined as

l00 =
Rl

(s ')

1O =

R, (co, T)=M J0

7/z
I+co (r/z)

Q.l
0 4

F000/T (K )

47-/z+
2 2 ZNMRdE

I+4co (r/z)
(4)

FIG. 3. Spin-lattice relaxation R
&

of Li in (Li2S)p g6(SiSp)p 44

at 4.0, 12.2, and 40.0 MHz from Ref. 1 fit as described in the
text with calculated R

&
from Eq. (4) with a Gaussian distribu-

tion of barriers.
The coefficient M depends upon the average change in
the local field caused by each hop. We assume a Gauss-
ian distribution of E, ;

1 —(E —E ) /2Eb
ZNMR(E ),g

e"p(2')'~ Eb

with a half-width Eb around the average E . In most
cases, especially for the (LiiS)o 56(SiS2)o 4~ glass, the ob-
served NMR relaxation recovery curves are good ex-
ponentials so the condition of fast spin-spin relaxation
for Eq. (4) is fulfilled.

The classical attempt rate r0 against one barrier in Eq.
(3) is given by the oscillation frequency f„,of the ion in

the well, ro=f„,(without the 2ir factor). This depends
on the curvature of the potential in the well, and for a
reasonable sinusoidal barrier shape between wells it isf„,=(E, /2m)' Id, where m is the Li mass. The dis-

tance d between the neighboring wells must be estimated
from the structure of the glass.

The phase diagram ' of (Li2S)„(SiS2)i shows that it
is a mixture of Li2SiS3 and Li4SiS4 with some 5 to 10%%uo

additional free volume. In Li2SiS3, the distances from
each Li ion to the three nearest Li neighbors are about
3.5 A and about 4 A to the next three. Li4SiS4 has —,

' of
the Li ions on —,-filled tetrahedral sites, which permits
motion from the filled to the empty sites. Also in this
structure, the distances between the Li neighboring sites
are about 3.5 A. In the mixture (Li2S)o.56(SiS2)o.4& with
more random distances between sites and more and
larger voids than in the separate compositions, we expect
that many empty sites permit motion of the ions. Hence
we assume each ion can, on the average, hop to z=6
neighboring wells about d=3.6 A away. This gives the
rate prefactor ro=6. 75X10' E, ' s ' for Eq. (3), where

E, has the units of K. A good fit of Eq. (4) to the Ri
data' using Eq. (5) with E Iks =4500 K and

Eb/k~ =900 K is shown in Fig. 3. The shape of the dis-
tribution Z~M~(E, ) is shown in Fig. 4 and it appeases

reasonable. We see that the peak E is the same as the
activation energy of r~Ma fit in Eq. (2), and the total at-
tempt rate zr0=2. 7X10' s ' at E is very close to the
prefactor 2. 2 X 10' s ' of (r&M&) '. The magnitude
M=8X 10 s is much greater than that expected from
the magnetic nuclear dipolar interactions and indicates
the relaxation mechanism must be electric quadrupolar in
nature.

We have assumed a distribution of the z rates r, out of
a well and used g, r; =r(E, )z with the same distribution

Z~Ma(E, ) for r as for r;. This is good if all barriers are
nearly equal. It is also permitted on the low-T side of the
relaxation curve where most of the ions have rz «co,
where Eq. (4) simplifies to (2M/co ) f rzZ~MadE, and it

does not matter whether we average r; first or not. The
use of Z&M&(E, ) on the high-T side of the relaxation vs

the 1/T curve may be more doubtful, since z uncorrelat-
ed barriers are unlikely to be all higher than the average

NMR—

cond
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FIG. 4. Distribution of activation energies in the motion of
Li in (Li2S)p 56(SiS2)p «derived as described from NMR relax-

ation (full line) and from electrical conductivity (dashed line).
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E, and the lowest barrier will largely determine the rate
out of a well. However, the fast rates rz &)co simplify Eq.
(4) to 5M j(1/rz) ZNMRdE, which contributes little to
the relaxation and is unimportant for the fit. Anyway, in
so far as the derived distribution ZNMR differs from that
of individual barriers, it rejects the total rate out of a
well, and so it would be relevant also for the conductivi-
ty. We have disregarded the distribution of depths of the
wells (site energy disorder).

frequency conductivity. This model thus avoids the great
problem of calculating the magnitude of the conductivity,
and agreement at both low and high frequencies is en-
sured by the fits of o (co~0, T) and e( oo ).

At moderate frequencies co «y,„,Dyre ' has shown
that Eq. (7) reduces to

l COTD
o.D(co) =o (0)

ln I+ico&D)

III. CONDUCTIVITY FROM A DISTRIBUTION
OF BARRIERS

To calculate the conductivity of Li+ in
(Li2S)p 56(SiSz)p 44 glass from the same distribution ZNMR
of barriers, we also need some information about the spe-
cial correlation of the ionic diffusion. Locally restricted
hopping over low barriers gives only high-frequency con-
ductivity, while the dc conductivity requires continuous
percolation paths for the ions through the disordered lat-
tice. We use the continuous-time random-walk model
discussed by Dyre, ' Macdonald, and earlier workers to
derive the approximate frequency dependence of o(co).
Here the basic equation is the assumption

where &D =1/y;„,and he argues that the limit w,„does
not matter for o' in most cases.

The measured conductivity o' of (LipS)p56(SiS2)p 44

(Ref. 1) is shown in Fig. 5 and the dc limit plotted in Fig.
6 can be described with

cr'(0, T)=6.25 X 10 exp( —4000/T)

=2.5X10 ' /r„„~(T)(Qcm)

if we use ~„„zfrom Eq. (1). The calculated o. ' from Eq.
(7) and o D from Eq. (9) are almost identical, as discussed
by Dyre, ' and fit our measurements in Fig. 5 fairly well
in the whole ~ and T range when we set

1

o'(co, T)+Et'
1

r(E. , T)+ice l ' (6)
rD = 1/y;„=2r„„~=0.8 X 10 ' exp(4000/k~ T) .

where the average over the relaxation times should be
taken over the distribution of activation energies E, for
the current decay rate y. The complex conductivity
o.=o.'+io." has the same units as y, and the units are
taken care of by fitting the calculated o.(co—+0, T) to the
measured value.

The connections between the rates ~ and the Gaussian
distribution are not immediately clear, so we follow the
literature ' where Eq. (6) has been averaged analytically
over a rectangular distribution with limits E „andE;„
corresponding to y;„andy „,respectively, to give

This associates I/r„„~from the KWW fit, Eq. (1), with
the slowest decay rate y;„in the model, and the derived
y;„differs clearly from any individual hopping rate zr
from Eq. (3). We note co~D=1 marks the bend in the
graphs in the curves in Fig. 5 where o'(co) fiattens out to
constant dc conductivity. The factor 2 between ~D and
~„„~may come from the definitions, since there is a simi-
lar factor between the theories of Dyre and Bryksin. "

1Q
3

T =281 K

o (co) =Kiev
ln(y, „/y;„)

1+ico/y
ln 1+ico/y

(7)

CT

(Qcm)
221 K

201 K

We will try to fit this approximation first, and although
a strictly rectangular distribution is clearly unphysical,
this will help us to calculate the magnitude of the current
decay rates and the relations to the Gaussian distribution.
In the next section we will average Eq. (6) numerically
over the tail of the Gaussian below the percolation limit.

The imaginary part of 0. is related to the complex
dielectric constant

181 K
~t

10
-7

161K

141 K

10-10 I

1P2

I

104
f IHz)

o "(co,T) =coepRe[e(co, T) e( ~ )], —

where the real e( oo ) is the electronic contribution which
dominates at high frequencies. The complex coefficient K
in Eq. (7) must be chosen to fit the measured low-

FIG. 5. Real conductivity o. in (Li2S)0,6(SiS2)0 44 from Ref. 1

as a function of frequency at several temperatures, and fit as de-
scribed from Eq. (6) with a numerical average over the distribu-
tion ZNMR truncated at E,„(full lines) and from Eqs. (7) and
(9).
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FIG. 6. Measured dc conductivity o.'(0, T} in

(Li~S)p 56(SiS~)p 44 from Ref. 1 as a function of inverse tempera-

ture (crosses), the fit o'(0, T)=6.25 X 10 exp( —4000/T)
(Qcm) ' (solid line), calculated o.'(O, T) from Eq. {11)(dashed

line) and from the assumption that all barriers are equal to
E =4500 K (dashed-dot line).

FIG. 8. Real dielectric modulus M'( f, T) in

(LipS )p 56( SiS2 )p 44 glass measured as a function of frequency at
several temperatures, and fit as described from Eq. (6) with a nu-

merical average over ZNM& truncated at E „(fullcurves), and

from the approximations Eq. (7) (dashed curves) and Eq. (9)
(dash-dot curves).

The calculated imaginary parts of Eqs. (7) and (9) are
also quite similar when we 6t different electronic contri-
butions e( oo ) in the two approximations. In Fig. 7 we
use the constant ratio rr" (1 Hz, T)/o'(rp +O, T)=—0.02
for both fits, y,„=l.25 X 10' exp( —2200/k~ T) and
e*(~ )=14 for o" from Eq. (7), and eD(~ )=9 for oD
from Eq. (9).

The dielectric properties of FIC are often displayed as
the complex modulus M*=1/e', which more clearly
shows the effects of the motion in the middle frequency
range. The calculated modulus compared to the mea-
sured data is shown in Figs. 8 and 9 for several tempera-
tures. The frequency dependence calculated from Eqs. (7)

and (9) does not fit perfectly but fits much better than one

might expect in view of the simplicity of the models.
The crude rectangular distribution Z,*,„d(E,) used in

Eq. (7) for the (Li2S)p 56(S1Sp)p 44 glass must have

Em»/k~ =4000 K from y;„,a much smaller E;„/k~of
about 2200 K, and the normalized shape shown in Fig. 4.
It is obvious Z„„dis shifted relative to ZNMI, so the two
distributions must represent different aspects of the ionic
motion and be manifestations of the same differences
which give rise to the different KWW functions Eqs. (1)
and (2).

10Q 2Q

x1Q

M

30—

lp—
1

& (Hz)

1Q2 1Q4
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1Q6

Flax. 7. Real dielectric constant E'(f, T) in (LipS)o g6(SlS&)0 44

measured as a function of frequency at several temperatures,

and fit as described from Eq. (6) with a numerical average over

ZNMR truncated at E,„(fullcurves), and from the approxima-
tions Eq. (7) (dashed curves) and Eq. (9}(dash-dot curves).

FIG. 9. Imaginary dielectric modulus M" (f, T) in

(Li~S)p &6(SiS2)p 44 glass measured as a function of frequency at
several temperatures, and fit as described from Eq. (6) with a nu-

merical average over ZNMR truncated at E,„(fullcurves), and
from the approximations Eq. (7) (dashed curves) and Eq. (9)
{dashed-dot curves).
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IV. CONDUCTIVITY FROM PERCOLATION

The dc conductivity is quite likely associated with the
percolation motion of the ions through the low-energy
pathways in the lattice. The limit E „associated with
cr(co~0, T) is taken as approximately the bottleneck bar-
rier E against hopping in the percolation limit where a
sufficient fraction of the barriers is lower than E and
thus easy to pass. This fraction is 0.247 in the case of a
simple cubic lattice with z =6 and a random distribution
of high and low barriers. ' This fraction increases to
0.388 for the diamond lattice with z =4. If we set in the
NMR derived Gaussian distribution the condition that
the fraction of barriers below E~ should be 0.247 (corre-
sponding to z =6 as it should be in our case) we find
E =E —0.68Eb =3900 K which is indeed almost equal
to E „.The real distribution Z„„dfor the Li+ conduc-
tivity is certainly not rectangular, but it is reasonable to
associate Z„„dwith the wing of the Gaussian ZNMR
below the percolation limit E,„.There are of course oc-
casional hops over higher barriers, which are important
for the NMR relaxation, but these hops are unimportant
for the dc conductivity since the ionic current can per-
colate around these barriers. The fit is insensitive to the
other limit E;„andthe shape of the tail of ZNMR with
the fastest hop rates and is not important for the conduc-
tivity, since the rapid hops take little time in the random
walk.

With this interpretation we can average Eq. (6)
numerically over the distribution ZNMz truncated
at the percolation limit E „=4000K and renormalized.
We still use @=1.25 X 10' exp( F., /kii T), o'"(—1 Hz, T)
/o'(O, T)=0.02, and e(~)=14. The results are shown
in Figs. 5 and 7—9 and the overall fit is better than from
the approximations of Eqs. (7) and (9). The rather high
value of e( ~ ) = 14 could be checked with measurements
at higher co or lower T.

This approach to the random walk diffusion appears to
be new and it is very important because it also allows us
to estimate the correlation time for the conductivity and
even the magnitude of o (0, T). In the next section an ap-
proximate KWW time-correlation function for the con-
ductivity is derived.

We assume the fraction

J ZNM~d+a
0

of the ions are in wells with barriers below the percola-
tion limit E „and we assume these ions essentially
determine o (co—+0, T). Their average time between
jumps is

E Z
(10)

with E, /k~ =4000 K. This time is very close to
~D =2~„„dso it must also be interpreted as the correla-
tion time for the ions determining the dc current. The
decay rates y in Eq. (6) corresponding to lower values of
E, must likewise be given by the inverse analogs of Eq.
(10) with E',„=E,and the corresponding P', and this is
important for the ac conductivity.

We may argue that the percolation limit in' this ran-
dom glass is unlikely to be completely sharp and that the
cutoff at E „should be somewhat gradual due to local
variations. A gradual cutoff could easily be included in
Eq. (10), but this would mean the fitting of an additional
parameter whose significance is doubtful.

The average hop length of the ions is about
d/&3=2. 08 A along the field, and perhaps a little less
for the lower barriers. The dc conductivity from random
diffusion should therefore be approximately

V. CORRELATION FUNCTIONS FROM DISTRIBUTION
OF BARRIERS

The time-correlation function for the local field in the
spin system which leads to the NMR relaxation must be
the weighted average of the correlations for the individu-
al spins

FNMR(r& T)= J e "'ZNMRd+a (12)

This function has been calculated numerically with the fit
parameters in Fig. 1 for T=250 K, and we see it is close
to, but not exactly equal to fNMR from Eq. (2).

It would be interesting to have an exact analytical rela-
tion between FNMR from a Gaussian distribution of bar-
riers and a stretched exponential function with fixed
parameters, but it is easy to show this is impossible.
We write Eq. (12) with x =F. F., and r ( T)—
= (r0/z )exp(E /k' T), use the approximation
exp(x /k' T) =1+x Iks T+(x Ikz T) /2 which is per-
mitted in the integral if the distribution ZNMR is narrow
with Eb /kz T=a « 1, and integrate to find

—(tlr )[1—0.5/(1+~ /to. )]
e

FNMR(t& T)=
1+0.2

+m

1/2 (13)

The form of Eq. (13) shows that the correlation function
FNMR(t, T) derived from a Gaussian Z(E, ) can never be
exactly equal to a KWW function exp[ —

(tlat

)~]. mWe

see that attempts to fit stretched exponentials to

eo'(0, T)=CP
6k~ Tz,y

The concentration C of Li ions in (LizS)0~~(SiSz)0«
must lie between the density 1.7X10 m reported '
for Li2SiS3 and 2.4X10 m reported for Li4SiS4, and
we assume C=1.9X10 m . With e=1.6X10 ' C
and king=1. 38X10 J/K we then indeed find Eq. (11)
fits the measured o. '(0, T) in Fig. 6 quite well. The fit may
have been even better with shorter hops for the lower
barriers. If we use the whole distribution ZNMR or just
the mean F. in Eq. (10) we find conductivities that are
far too small. It is quite remarkable that the dc conduc-
tivity in this fast-ion conductor can thus be calculated
essentially from the NMR relaxation data and the per-
colation limit for the maximum barrier probed by the
long-range ionic diffusion. The fit may have been better
with shorter hops for the lower barrier and a distribution
of percolation limits.
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FNMtt(t, T) must always give 13NMR~1 for t~0, so the
resulting parameters will depend upon the time range
fitted. We also see the fit will depend upon the ratio
a, =E„lk~T,so if a fitted PNME depends upon the width
of the distribution Eb, it will also depend upon the tem-
perature T. This conclusion can easily be checked by
comparing Eq. (2) and Eq. (12) numerically.

We have associated the fraction of barriers below the
percolation limit E /k~ =4000 K with the distribution
of activation energies for the conductivity. This permits
us to approximate the time correlation function for the
fraction P of the ions contributing most to the conduc-
tivity with

~cond

coAd

0.4

0
10-1 j )0-8 )0-5

F s(t, T)=I e "r' dE,
0

(14)

FIG. 11. Time-correlation function f„„d(t,T) from Eq. (2)
(solid curves) compared to F„„d(t,Tj calculated from Eq. (14)
(dashed curves) at several temperatures.

max
dEa

FD(t, T)= '"E

J '"dE.
(15)

with E;„/k~=2200 K is quite different from f„„das
seen in Fig. 1, and the approximation E;„~0corre-
sponding to Eq. (9) is very unreasonable in the time-
correlation Eq. (15).

We have demonstrated the relations between the distri-
bution of barriers for the hopping ions and the time-
correlation function of the motion for NMR relaxation
and conductivity, and in Figs. 10 and 11 we compare the
correlation function at various temperatures. The agree-
ment varies somewhat with T and it is best in the rniddle
ranges 250—400 K for fNMR and around 200 K for f„„d,
which are most important in the fits of the experimental
data.

on the condition that each hop destroys the memory of
the local polarization. Equation (14) has been plotted in
Fig. 1 for T=250 K, and it is indeed close to the
stretched exponential f„„d(t)from Eq. (1). The correla-
tion function calculated from the rectangular distribution
behind Eq. (7)

VI. DISCUSSION AND COMPARISON
WITH OTHER MODELS

The salient feature of the present work in the paper
gives clear evidence for the difference in the correlation
function for ionic motion as derived for NMR relaxation
and from ac conductivity. Formally, the difference
comes from the fact o.(co) is the q =0 component of the
generalized conductivity o(q, ro) which is related to the
qth Fourier component of the local current density fluc-
tuations J(r, co), while R, (co) is given by the local ionic
motion and thus probes all q components of o(q, co). To
illustrate this point more specifically we can consider the
case in which the time-dependent part of the electric field
gradient tensor V„(t),responsible for the NMR relaxa-
tion, can be expanded in terms of the atomic displace-
ments ui(t) of mobile cations: Vj(t)=g&aluI(t) Thus.
introducing collective variables a one can express the
spectra density as'

J(col )=—f gga&a ( V (0)V (t))e ' e L dt
q l, m

=g AqS(q, coL )

q

and the NSLR as

NMR

NMR

x"(q I )
R, = g 3 S(q, coL ) ~ k~ T g Aq (17)

0.4

-11
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-8
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FIG. 10. Time-correlation function f iNt, MTa) from Eq. (2)
(solid curves) compared to FNMR(t, T) calculated from Eq. (12)
(dashed curves) at several temperatures.

R, ~k~TQ A
q

e"(q,~, ) cr'(q, roL )
~k~TQ A, (18)

q COL

where we have used the relation cr'(q, co) ~toe"(q, co) be-
tween the real part of the conductivity and the imaginary

where we used the fluctuation-dissipation theorem to re-
late R

&
to the imaginary part of the generalized suscepti-

bility g(q, col ) at the Larmor frequency co~. Since the
ionic displacements al (t ) give rise to the dielectric
response and thus the conductivity of the system, it is
justified to relate y(q, coL) to the generalized dielectric
constant e(q, co) and write
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part of the dielectric constant. If, and only if, the ionic
motions are uncorrelated we can expect no q dependence
and Eq. (18) reduces to

R, ~ cr„(co,T) .
T

COL

(19)

The simplified Eq. (19) has been considered previously'
and has been applied to analyze R i and cr„data in f3
alumina' at temperatures below T=50 K.

The diffusion-controlled relaxation model' and the
jump relaxation model' are microscopic models which
incorporate ionic correlations and lead to non-Debye-like
relaxation behavior in both conductivity and NMR relax-
ation. However, the above models fail to predict different
correlation functions for R

&
and o.„asfound instead ex-

perimentally. ' Furthermore, the correlation function
proposed by Elliott and Owens' can be approximated
only by a stretched exponential with /3~ 0.5 while we find

P =0.35 [see Eq. (2)j.
The dramatic difference between NMR and conductivi-

ty correlation times has been noted' from the compar-
ison of conductivity data with Li NSLR data' in Li-
chloroborate glassy FIC. The difference between ~NMz
and ~„„dis attributed either to correlation effects or to
site distribution effects. ' Actually both effects should be
considered. In the case of a distribution of barriers, as as-
sumed here, the generalized conductivity should be q
dependent affecting ~NMz and r„„din different ways. By
looking at the problem from another point of view, ~NM~
is an average of the correlation times between hops of
each ion, while z„„dis the correlation time of the electric
current driven by the remaining polarization after the ap-
plied electric field E is switched off. The average polar-
ization is small, only Ee d /2k~ T for an ion hopping be-
tween two wells separated by d in the field direction or
possibly 10 of the polarization change ed in one hop.
Thus just a few hops in a large group of ions are enough
to cancel most of the polarization in the group, and ~„„d
will be much shorter than ~NM~. We have used this argu-
ment to write the correlation function Eq. (14).

A distribution of barriers would also be able to de-
scribe the gradual progression from long-range cationic
migration along preferential paths at high temperature to
essentially localized ionic displacements within clusters
with local barriers at low temperature.

A homogeneous correlation function (CF) displaying
the stretched-exponential functional behavior was de-
rived in the framework of a general semiphenomenologi-
cal coupling model. ' However, the CF obtained from
the coupling model is q independent and thus, in its origi-
nal formulation, it does not account for the difference in

P exponents found for R i and cr„data.' It was original-
ly suggested Er =PE ', where EL is the activa-
tion energy obtained from the R

&
vs T data on the low-

temperature side of the maximum (see Fig. 3) and E ' is
from dc conductivity whereby EL =E, is the true mi-

croscopic barrier to ionic motion. After we reported' the
difference observed between the P values obtained from
NMR and conductivity it has been argued that the cou-
pling model leads to the prediction PNME(P and that

the microscopic barrier E, should be identified as
E, =P E*=Pz ENMa. Our experimental values for the P
coefficients and for the effective activation energies [see
Eqs. (1) and (2)j are only in qualitative agreement with
the prediction of the coupling theory. Thus, although the
coupling theory may indeed include effects of interactions
and correlations among mobile ions, one should also in-
corporate into the model a distribution of microscopic
barriers which we believe to be the main source for the
difference in NMR and conductivity correlation func-
tions. As was pointed out by Dyre a distribution of bar-
riers with only site energy disorder is not a sufFicient con-
dition to ensure a frequency-dependent conductivity.
The same conclusion was reached for the asymmetry of
the NSLR curve vs temperature by using Monte Carlo
simulations. In both cases one finds a distribution of
barriers with the same saddle-point energy leads to an
average correlation time with a single average activation
energy, i.e., Debye-like relaxation. On the other hand for
a distribution of barriers with the same site energies, the
average correlation time deviates from a simple activated
law. ' In the second case, the ionic hopping motion is
strongly correlated because of the asymmetry of the bar-
riers at the different local sites. Both correlations in
space and in time should be included in a general theory
for 0 '(q, co) which then would explain the differences be-
tween R i(co) and cr„

VII. SUMMARY AND CONCLUSIONS

We have fit the non-BPP NMR relaxation vs 1/T
curves in the glassy structure by assuming independent
ionic hops over a distribution of barriers E, . A Gaussian
distribution is the natural first choice and we have shown
this indeed gives a good fit to the NMR relaxation in this
glassy fast-ion conductor. We have also used the fact
that the attempt rate for the hops cannot be fit arbitrari-
ly, but, being the oscillation frequency in the well, it must
be related to E„the hopping distance d and the ion mass
m.

The local barriers change somewhat with a hop of a
neighboring ion, and clearly there must be some ion-ion
correlations that keep the average ionic density and the
number z of available neighboring wells approximately
constant. There have been many attempts in the litera-
ture to include a "memory effect" from previous hops in
the probability for the next hop. ' However, the sur-
rounding lattice readjusts rapidly after a hop and in a
time short compared to the hop rate in the local cluster.
Even if the local conditions change after each hop, we ar-
gue the distribution ZNMa(E, ) over the whole sample is
constant, and the average hopping rates and the resulting
spin relaxation and conductivity are of course indepen-
dent of the time.

We have shown the relative cu and T dependencies of
the conductivity are described surprisingly well with Eq.
(7) from the rectangular distribution of activation ener-
gies in the continuous-time random-walk model, al-
though the way of fitting cr(co~0, T) and e*( ~ ) ensures
at least a partial agreement and the distribution of low
barriers is not significant in the model. However, the de-
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rived rectangular distribution Z„„dis shifted compared
to the Gaussian ZNMR. Aided with the derived rates, we
concluded Z,*,„d must be a crude approximation for
ZNMR truncated at the percolation limit E, , and we
have shown it gives an even better fit to use the truncated
ZNMR directly in the numerical average in Eq. (6). The
bottlenecks for the dc conductivity are the barrier heights
E,„which define a sufhcient fraction P=0.25 of easy
barriers for percolation when z=6. The hopping be-
tween the bottlenecks is fast and contributes little to the
total diffusion time. Therefore the precise distribution of
low barriers is unimportant. The ac conductivity has
similar bottlenecks at lower E' „which determine the y
rates in the model Eq. (6).

Hence, the correlation time ~„„dof the current from
Eq. (1) can be approximated with the average Eq. (10)
where the ions in the bottlenecks determine the decay
rate for most of the polarization. Likewise, the KWW
function Eq. (1) can be approximated with the average
Eq. (14) over the time-correlation functions of the indivi-
dual ions. And most important, the magnitude of the dc
conductivity can be simply estimated from Eq. (11) and
the average hopping rate of the fraction of ions P. In
most discussions of conductivity, o.(0, T) is a necessary fit
parameter and it is remarkable we can calculate it rather
well from the distribution of barriers derived from the
NMR spin-lattice relaxation and the assumption of per-
colation.

We have established quantitative connections between
rates of motion derived from NMR relaxation and from
conductivity and dielectric properties of the glass starting

from a microscopic description of the ionic motion. We
And the differences in correlation functions derived from
NMR vs conductivity is intimately related to the local vs
macroscopic character of the two CF's which becomes a
relevant factor in the presence of disorder. The good fit
for this particular glassy fast-ion conductor may of
course be in part fortuitous, but the overall quantitative
consistency of our analysis indicates the conclusions
should be generally valid for glassy FIC.

We recognize that the differences between the time-
correlation functions and the effective distributions are
related to the average number z of neighboring wells to
which an ion can hop. We therefore predict that more
ordered samples with fewer z and thus greater difhculty
for percolation, must have effective distributions Z„„d
and ZNMR which are more equal. More ordered samples
are also likely to have distributions ZNMR that are nar-
rower and thus fit stretched exponents /3 which are closer
to 1.
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