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Metastability of atomic phases of nitrogen
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The metastability of a recently proposed candidate for a polymeric structure for nitrogen is
examined using linear response theory to calculate the phonon dispersion throughout the Brillouin
zone. It is found that the structure is mechanically stable at pressures beloved 360 GPa. In con-
trast, nitrogen in the simple cubic structure is found to be unstable over the same pressure range.
Calculations of Raman- and infrared-active phonon frequencies are presented for the metastable
phase.

INTRODUCTION

At ambient pressure and low temperature, nitrogen
freezes into a diatomic solid where strongly covalent
(N=N) N2 molecules are weakly (van der Waals) bonded
to each other. At high pressures, theory predicts dis-
sociation of the molecule and formation of monatomic
phases similar to those observed in other group-V ele-
ments, i.e. , phosphorus and arsenic. At extremely high
pressures, nitrogen is predicted to occur in the simple cu-
bic structure. Two calculations ' of the transition pres-
sure for the dissociation of the N2 molecule yielded results
below 100 GPa (1 Mbar). However, diamond anvil cell
experiments at pressures up to 180 GPa found only mod-
est changes in the frequency of the intramolecular bond-
stretch mode (vibron), indicating that room-temperature
nitrogen remains diatomic to these pressures. ' However,
an anomaly observed in a shock compression experiment
on Quid nitrogen above 30 GPa has been interpreted
as evidence for a transition to a denser atomic phase.
These two observations can be reconciled by assuming
that a large barrier between the molecular and the atomic
phases results in high-pressure metastability of the di-
atomic phase in the room-temperature diamond anvil ex-
periments.

Recently, an extensive theoretical study of polymeric
phases of nitrogen was performed. This study consid-
ered structures in which extended networks of singly or
doubly bonded nitrogen atoms were formed. A structure
with all gauche dihedral angles [the "cubic gauche" (cg)
structurej was found to have the lowest total energy of
all the polymeric structures considered, but was higher
in energy than the molecular structure by approximately
1 eV/atom. The possibility of metastability of cg nitro-
gen was raised by the discovery that a substantial en-

ergy barrier existed for the transformation of cg nitrogen
into molecular nitrogen at ambient pressure along a path
suggested by symmetry considerations. Since only one
possible transition path out of many was considered, this
result suggests, but does not prove, that cg nitrogen is
metastable under ambient conditions.

A stronger requirement for metastability is mechani-
cal stability, i.e. , the existence of positive restoring forces

for all small motions of the atoms of a crystal about
their equilibrium positions. However, mechanical stabil-
ity provides no information about barrier heights and
thus cannot predict the lifetime of the metastable state.
An equivalent condition to mechanical stability is the
statement that the phonon frequencies uzi for wave vec-
tor q and polarization A satisfy w & ) 0 throughout the
Brillouin zone (BZ), except for the acoustic modes at the
zone center.

In this paper, we present ab initio calculations of
phonon spectra uzi for nitrogen in two atomic structures
at low (0—12 GPa) and high (240—360 GPa) pressures us-
ing the linear response formalism described below and
discuss the consequences for metastability. The linear re-
sponse method is particularly well suited to calculations
of complete phonon dispersion relations throughout the
Brillouin zone. We Gnd that nitrogen in the cubic gauche
structure is mechanically stable at both low and high
pressures, while nitrogen in the simple cubic structure
is mechanically unstable at both pressures. In addition,
we present calculations of the frequencies of the Raman-
and infrared-active modes in cg nitrogen as a function of
pressure to aid in the identification of the cg phase.

THEORETICAL METHOD

The calculations whose results are presented below em-
ploy density functional theory within the local density
approximation (LDA), with the electron-ion interaction
modeled by a pseudopotential. The Ceperley-Alder
exchange-correlation potential was used in the Perdew-
Zunger parametrization. The momentum-space for-
malism and a plane-wave basis for the wave functions are
used. A nonlocal, norm-conserving pseudopotential was
generated using the scheme of Troullier and Martins,
and the separable form of Kleinman and Bylander 4 was
used in the calculations.

Since the nitrogen atom contains only one core orbital
(1s2), there are no p or d states in the core and the corre-
sponding components of the pseudopotential will be very
attractive, requiring a large kinetic energy cutoff for the
plane wave expansion of the wave functions. We employ
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will take place in a diamond anvil cell at high pressure
and temperature, knowledge of the optical response of cg
nitrogen will be necessary to con6rm its creation. The
cg structure has nine zone-center optical modes which
occur as two triply degenerate modes, a doubly degener-
ate mode, and one nondegenerate mode. All of these are
Raman active, and the triply degenerate modes are also
in&ared active. The calculated frequencies of zone-center
modes versus pressure are plotted in Fig. 5. The appear-
ance of these modes, together with the disappearance
of the molecular vibron, would signal the transformation
into the cg structure. Since the vibron lies at much higher
frequency ( 2300 —2500 cm ~, depending on pressure),
the dissociation of the molecular phase should be clearly
observable. The multiply degenerate modes in Fig. 5 may
split under nonhydrostatic conditions, and so more than
four lines may be observed for cg nitrogen.

TABLE II. High-symmetry points for the Brillouin zone of
the cubic gauche structure. The wave vector g is given in
Cartesian coordi. nates in terms of the lattice constant a of the
bcc real space lattice. We have studied the possibility of metastability of

nitrogen in the simple cubic and cg structures via ab
initio full-zone phonon calculations using the linear re-
sponse formalism. The simple cubic structure was found
to be mechanically unstable over the entire pressure
range considered, while the cg structure was found to
be metastable over a wide pressure range up to 360 GPa.
Since the predicted transition pressure (50 6 15 GPa)
for the formation of polymeric cg nitrogen from molec-
ular nitrogen falls within the region of metastability, it
can be hoped that cg nitrogen will persist after cooling
to low temperature under pressure and perhaps also at
low pressure. The calculated optical mode frequencies
presented here should aid in the identification of the cg
structure.
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