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Phase diagram of the frustrated gauge-invariant Ising model
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The phase diagram of the Z(2) gauge-invariant Ising model is studied at negative gauge coupling in
three dimensions. Exact procedures are applied to establish the ground states and find, at nonzero tem-
peratures, the minima of the local mean-field free energy. The resulting phase diagram exhibits one un-
frustrated and two frustrated phases, in good agreement with Monte Carlo results. The interpretation of
the various phases in terms of a gas of random surfaces with free edges is also discussed.

I. INTRODUCTION

The Z(2) gauge-invariant Ising model was introduced
by Wegner' as an example of a system where a phase
transition occurs without a spontaneous symmetry break-
ing. Later the model has become popular in the context
of lattice gauge theories for strong interactions.

In a (hyper-) cubic lattice, let rr, and U; be Ising vari-
ables defined on sites and bonds (joining nearest-
neighboring sites), respectively, with an interaction
specified by the Hamiltonian

ticed that the model can describe open surfaces on the
lattice, and the phase diagram is discussed in terms of
surfaces. In Sec. III the whole mean-field phase diagram
is presented and discussed. Some conclusions follow in
Sec. IV.

II. GROUND STATES

The gauge Ising model on a cubic lattice is defined by
the Hamiltonian (1.1) which is locally gauge invariant
with respect to the set of transformations,

PH Iir U I PM X ~' ij ~j PG 2 ij jk ki Uii
&ij ) //ijklff

l 71 l

'J ~I &J~j (2.1)

where the sums are over nearest-neighboring sites and
elementary squares, or plaquettes. In Ref. 3 it was con-
jectured that the model (1.1) could have some interesting
relation with spin-glass systems at negative values of po
along the trajectory Po =Po(PM) where the thermal aver-
age ( VL~ ) =—( Uj Ujk Uki Ui; ) for each plaquette is zero.
Since U;J is equal to the sign of the coupling between the
nearest neighboring sPins o; and o j, at Po =Po (PM ) the
coupling configurations have the property that plaquettes
are equally probable to be found frustrated, i.e., 'M (0,
and unfrustrated, i.e., S' )0. However, in spin-glass sys-
tems the average over coupling configurations is
quenched, while it is annealed in the model we are con-
sidering.

The phase diagram of the gauge Ising model has been
studied at negative coupling only by numerical simula-
tions. Here we study the same problem, applying a local
mean-field approximation. We make use of methods
which have been found convenient for studying frustrated
configurations of spin models in a different context. The
main difference of the resulting phase diagram with the
one of Ref. 5 is that the contour of zero frustration
Po =Po(P~), as an eff'ect of the mean-field aPProxima-
tion, intersects a transition line at finite temperatures.

In Sec. II the model is better specified and the phase di-
agram at zero temperature is exactly solved. It is also no-

with the y s equal to + 1 or —1.
The ground states of the Hamiltonian (1.1) can be

found by applying the plaquette method which is de-
scribed in detail in Refs. 6 and 7. However, as a prelimi-
nary step, it is convenient to fix the gauge. This can be
done in unitary gauge by inserting the identity

1+y;0.;
X II (2.2)

in the evaluation of the partition function

Z(p, p, )=2-' y e j'"(. ')-,
0., U

(2.3)

~(p p ) y PH[a=l U)—
U

(2.4)

The plaquette method is based on rewriting the Hamil-
tonian as a sum over elementary cubes, that is,

H Io.= 1, UI = g h, I U], (2.5)

where

where I, is the total number of sites. Performing the
transformations (2.1) and using the gauge invariance of
H, one easily gets
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FIG. 1. The zero-temperature phase diagram of the Z{2)
gauge spin model in unitary gauge. The fully frustrated phases
F2 and AF2, occuring at JG ( —

~ JM ~
/4 for J~ )0 and JM (0,

respectively, are represented in terms of bond configurations
over a single cube where the bold bonds are negative. At
JG = —JM /4 and JM & 0, the phase F2 and the phase with all the
bonds positive are degenerate with the configurations in the first
line of Fig. 1(b). The cubes of the second line can be used to
build up ground states at JG =JM /4 and JM & 0; they can be ob-
tained by reversing the sign of the corresponding configurations
at JM )0. The cubes of the last two lines are fully frustrated
configurations, degenerate at JM =0.

minHIcr= 1, U) =L min h, I UI
U U

(2.7)

Thus the bulk ground state is obtained tiling the whole
lattice with the cube configuration of U's which mini-
mizes h, t UI. In some cases there are several cube
configurations minimizing h, and different tilings of the
lattice are possible, which give rise to degenerate ground
states.

Two gauge-invariant quantities are useful in character-
izing the phases of the system: the thermal average of
Vl —= Q, ~ U; for each plaquette p, and of
X; =cr; Ujcr/ for each link (ij ). We will also denote
with X the space average of X,

In Fig. 1, the zero-temperature phase diagram is
represented in terms of single cube configurations (in uni-
tary gauge). At positive values of JM and JG, all the U;
are equal to l. For JG & —J~/4, the ground state can be
obtained by replicating the cube shown in the picture
over the whole lattice. The phase, denoted as F2, is fully
frustrated in the sense that for each plaquette Vl = —I;

h, I UI = — g U, . —
(ij ) Cc

Uij Ujk Ukl Ul
j fijklf f

Cc

with JM =PM IP and JG =PG/P. Since the whole lattice
can be tiled by a given cube configuration of U's (two
cubes with a common face have U configurations which
are mirror images one of each other with respect to the
plane containing the common face), one has

FIG. 2. The phase F2 in terms of surfaces made by plaquettes
on the dual lattice.
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FIG. 3. The phase AF2 in terms of surfaces. The three tubes
have to be intended of infinite extension. The structure is two-
lattice-spacing periodic.

moreover X is equal to 0.5. The phase diagram at nega-
tive JM can be simply obtained from the one at positive
J~ by changing the sign of the link variables. The phase
corresponding to F2 at J~ &0 will be denoted as AF2.
At the contact points between the homogeneous and the
frustrated phases, other not fully frustrated
configurations, shown in Fig. 1(b) (see the caption), are
degenerate. At J~=0 and JG &0, all the fully frustrated
phases with X ranging from —0.5 to 0.5 are degenerate.

The gauge Ising model can be also interpreted as a gas
of open random surfaces made of plaquettes on the dual
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lattice. ' A plaquette belongs to some surface if the link
variable X,J dual to that plaquette is negative. The Ham-
iltonian (1.1) can be mapped on a surface Hamiltonian
where only the area and the edges are weighted. Inter-
sections between edges and surfaces and between surfaces
are allowed. Examples of open surface configurations
corresponding to the phases F2 and AF2 are given in
Figs. 2 and 3.

III. MEAN-FIELD PHASE DIAGRAM

Mean-field theory for lattice gauge models has been in-
troduced and discussed in Ref. 9. We will first study the
model (1.1) without fixing the gauge. ' In the following,
the average of the variables o; and U;. will be denoted by
rn; and l; . The mean-field free-energy functional corre-
sponding to Eq. (1.1) is

/3I ({m j {l ))= /3~ —g m / m —
PG g / l klan&l&,

«j & IIijk~II

1+rn; 1 —rn,+ g ln(1+m )+ ln(1 —m ) +
1

2 &ij )
1+l,

ln(1+/, ")+
2

1 —I;.
2

ln(1 —1")EJ

(3.1)

The translationally invariant minima of Eq. (3.1) have
been discussed in Ref. 9. At negative gauge couplings,
frustrated configurations are favored and one has to look
for solutions which are not uniform.

We will study I ( {m, j, {l;Jj ) for all values of the cou-
plings, applying the method described in Ref. 6. The
method consists in writing I ( {m, ), {/; J ) as a sum of free
energies relative to single cubes. A minimum
configuration over a single cube gives a global minimum
if the whole lattice can be tiled by that cube
configuration. This can be generally done due to the in-
variance of the free energy (3.1) with respect to space
rejections; therefore only minimum configurations over a
single cube have to be found. This problem can be solved
numerically and, in the following, we describe the results
obtained by this procedure.

In Fig. 4 the phase diagram is shown for PM ~0. At
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FIG. 4. The phase diagram of the Z(2) gauge-invariant spin
model. The full lines and the dotted lines represent erst-order
and second-order transition lines, respectively', the regions F1
and F2 correspond to fully frustrated phases. The dashed line is
the contour PG=PG(P~) where the frustration is zero. In the
narrow region between this contour and the transition line all
the bond variables are positive, but assume two diFerent values
m and M, as shown in the inset.

positive gauge coupling /3G, the standard results are
reproduced. " The almost horizontal line at PG=0. 68
separates the disordered high-temperature phase from a
region where the link average (X) is still zero and the
plaquette average (Vl ) is positive; the line at/3M =0.16,
which ends in the triple point T, =—(PM =0.16,
/3G =0.68), is a second-order transition line through
which (X ) becomes positive too.

For negative PG, the line at PM=0. 29 separates two
fully frustrated phases with (X)=0 (phase Fl) and
(X ) =0.5 (phase F2), at low and high P~ values, respec-
tively. This line can be shown to be second order, since it
is the locus where the determinant of the second deriva-
tives of the free energy with respect to the site magnetiza-
tions vanishes. The line ends at the triple point
T2 ——(P~=0.29, /3G= —0.68). In Ref. 5 this line is at
PM = 1.25+0. 5 and terminates at the triple point
(@~=1.3+0.05, PG = —0.79+0.01). In Fig. 4 the disor-
dered phase, everywhere limited by a first-order transi-
tion line, does not extend itself towards zero temperature,
as it does in the Monte Carlo phase diagram. Indeed, the
mean-field approximation (3.1) predicts the existence of a
transition line joining the triple points T, and T2. This
line should be interrupted at least around the pG =0 axis
where the model becomes trivial. A reminiscence of this
discrepancy could be that here, at sufficiently large values
of PM, the transition along the direction /3G

= —PM/4 is
from an ordered homogeneous phase to an inhomogene-
ous still not frustrated configuration where, in unitary
gauge, the bond variables are all positive, but with two
difFerent values as in the inset of Fig. 4. This mean-field
peculiarity is confirmed by a low-temperature expansion
of the state equations which predict the above transition
at pG = —p~/4+0. 125 lnpM. Moving from the transi-
tion line towards more negative values of PG, this inho-
mogeneous phase changes continuously without transi-
tion into the fully frustrated configuration with
& Vl~ & = —1 and &X & =0.5. The transition at
pG = —pM/4+0. 125 lnpM can be checked to be first or-
der.

The contour of zero frustration, which is inside the in-
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IV. CONCLUSIONS
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FIG. 5. The phase diagram of the Z(2) gauge spin model in

unitary gauge. The symbols are the same as in Fig. 4.

homogeneous phase, becomes undistinguishable from the
transition line at small values of PM. The contour crosses
the transition line joining T, to Tz at the point
(PM=0. 775, PG= —0.505). Finally, the horizontal line
at PG = —0.68, which separates the frustrated phase Fl
from the disordered phase, is symmetric with respect to
the corresponding line at positive PG. Since at PM =0 the
Hamiltonian is an even function of the bond variables,
and there exists a transformation changing the sign to all
the R„'s [e.g. , the one making three links of each cube
negative as in Fig. 1(a)], one has Z(PM=0, PG)
=Z(@~=0,—PG). Thus the phase diagram has to be
symmetric for PM =0.

The phase diagram in unitary gauge is given for com-
pleteness in Fig. 5. At negative BG, under the transition
line, there is the F2 phase. Also here the zero frustration
contour is inside the F2 phase and becomes undistin-
guishable from the transition line at small values of PM.
As expected, all the transition lines corresponding to a
jump in the value of the m s have disappeared.

We have presented an exact analysis at T=O and a lo-
cal mean-field calculation of the coupled Z (2) gauge spin
system. The results have been described in relation with
the phase diagram of Ref. 5 which has been obtained by
numerical simulations. The main difference is the ex-
istence here of the contour suggested in Ref. 3 as an ap-
proximate model of spin glasses. This contour, with zero
frustration or zero unit Wilson loop, intersects the
disorder-F2 transition line at finite values of the parame-
ters. As an effect of the mean-field approximation, the
critical dimension is lower than the one suggested in Ref.
5. It has to be noticed that the procedures used in this
work can also be applied to the same model in higher di-
mensions.

Moreover, we have already observed that the gauge Is-
ing model can also describe a system of open random sur-
faces. ' The mean-field phase diagram can be interpret-
ed in terms of open surfaces by saying that the value
(1 —(L; ) )/2 represents the probability that the pla-
quette dual to the link ij is present. When (X; ) =0 the
probability for a plaquette to belong or not to some sur-
face is the same. The phase F2 at very low temperatures
has been represented in terms of surfaces in Fig. 2. The
phase Fl with ( Vl ) = —1 and (X, . ) =0 corresponds to
a configuration with plaquettes in the same local order as
in F2 but with convoluted disordered configurations on
large scales. Therefore, in conclusion, we observe that
the Z(2) gauge-invariant Ising model can also describe
less conventional physical systems.
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