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In a semiempirical tight-binding scheme we calculate the total-energy curve for Ni, Fe, and Co disili-
cides in the CaF, structure. Agreement with recent linear muffin-tin-orbital, total-energy calculations, to
which the band structure has been fitted at high-symmetry points of the Brillouin zone, is very satisfacto-
ry. Special attention has been devoted to the form of the phenomenological repulsive potential, in order
to include the anharmonic contributions. Elastic constants, frozen-phonon frequencies, and cubic
anharmonicities at the I" point are also estimated, in quite good agreement with the existing experimen-

tal data.

I. INTRODUCTION

In the last ten years increasing interest has been devot-
ed to the structural and electronic properties of
transition-metal silicides! ~* because of the possibility of
employing these metallic materials for contacts in
silicon-based devices or connections in integrated cir-
cuits. Actually, Ni and Co disilicides in the CaF, struc-
ture have a low resistivity (~50 and ~20 uQ/cm, respec-
tively!) and display good lattice matching to silicon
(0.46% and 1.2%, respectively*), so that integration in
silicon matrices could be possible with negligible strain
and defect formation.

Very recently, sizable improvements have been
achieved in the epitaxial growth of high-quality NiSi, and
CoSi, films, both on top of the silicon substrate
[ultrahigh-vacuum molecular-beam epitaxy (UHV MBE)
(Ref. 4)] and inside it [molecular-beam allotaxy (MBA)
(Ref. 5)]. These advancements have triggered, in turn, a
renewed interest in measuring and calculating the most
important physical properties of such materials. Several
predictions of the electronic bands of NiSi, and CoSi, in
the CaF, structure are present in the literature.® Still, the
recent linear muffin-tin-orbital (LMTO) calculation by
Lambrecht, Christensen, and Blochl’ is the only one
where an estimate of the cohesive properties is also in-
cluded.

No ab initio calculation of the elastic properties and
phonon frequencies is currently available; nor do exten-
sions to the silicon-silicide system seem at hand because
of computer limitations. For this reason we present here
a semiempirical tight-binding (TB) scheme, fitted onto the
LMTO bands,” which reproduces very well the LMTO
cohesion-energy curves as a function of the lattice param-
eter and provides an estimate of the elastic constants and
the phonon frequencies (along with anharmonicities) at
the I" point, in satisfactory agreement with the existing
experimental data. Moreover, this approach is easily
transferable from one configuration to another, so that a
comparison of the cohesive energies for different phases
of NiSi, and CoSi, would be affordable, even in presence
of the silicon substrate.
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Very recently, iron disilicide (FeSi,) has been actively
studied both experimentally® and theoretically,’ since, in
the B phase, it displays a semiconductive gap. This
configuration, 48 atoms in the unit cell, turns out to origi-
nate from a distortion of the simple CaF, phase, which is
metallic and unstable in the bulk situation. However, the
latest efforts in the UHV epitaxial growth of FeSi, (Ref.
10) indicate that the CaF, structure is obtained at low
coverage on Si(111) substrates, along with a disordered
phase in the same stoichiometry. Thus, we include the
predictions for y-FeSi, in our review of the elastic prop-
erties of metallic silicides in the CaF, structure. The
tight-binding parameter have been consistently fitted to
LMTO calculations,” but no comparison to the experi-
mental elastic data has been to date possible. Here,
again, total-energy calculations for B, CaF, and disor-
dered phases would be very interesting and our method is
likely to provide interesting information.!!

II. TOTAL-ENERGY CALCULATIONS BY
SEMIEMPIRICAL TIGHT BINDING

Following a standard procedure, we separate the total
energy for valence electrons (e) and ion cores (c),

E;(R)=T,+V,+V, . +V,, (1)

into a band-structure (BS) term and a repulsive (rep) part:

Er(R)=Egg(R)+ U, (R), (2)
where R stands for the whole set of core coordinates and

EF
Eps(R)=2S E,(k)=T,+V,.+2V,, , 3)

nk

iR,.—Rj|<IT
Urep(R)E 2 f(|Ri_Rj|)=Vcc_Vee : (4)
i<j

The BS energy is just the summation of the one-particle
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eigenstates up to the Fermi level Ep. These eigenstates
are evaluated by a semiempirical tight-binding scheme
which makes use of the two-center Slater-Koster parame-
trization.'?

The TB matrix is fitted onto ab initio band-structure
calculations at the equilibrium configuration {Rg}, and a
variation of atomic coordinates is included by scaling the
two-center integrals with a power law of the interatomic
distance d, 13

2
Hyp (d)=Hipp(do) |5 |
do 3.5

Hyy, (d)=Hy,,(d,) a4 » (5)
5
Hyan(d)=Hygn(do) |~ |

where / and I’ label s or p orbitals and m is the quantum
number for the axial component of the angular momen-
tum (o, 7, or 8). The on-site elements, on the contrary,
are kept constant. Actually, they should be modified by a
change in the overlap elements S;,, and by charge-
transfer effects (if any).'* Still, the first one is included in
U,., and the second one is usually neglected in metallic
silicides.

In fact, U, originates from the summation, up to first
(or second) nearest neighbor, of the short-range potential
terms f (IR,-—RJ-I), Eq. (4), which phenomenologically
takes into account the nonorthogonality correction to the
on-site TB elements and what remains of the near cancel-
lation between the core-core and the electron-electron
long-range interactions. In the common formulation for
semiconductors, introduced by Chadi,? f is a quadratic
polynomial:

oy | RERL g, [RERA )
f=ro 1 d, 2 d,
(6)
and Eq. (4) becomes
Uy =Upt+ U, > —d'-—1
i<j 0
IR,—R;|<R IR, —R,| 2
+U, -t 7 , 7
i<j dO

where R is usually the first-neighbor distance d, but the
inclusion of second neighbors may be necessary, as in the
case of CaF, silicides.

The repulsive energy, however, still depends parametri-
cally on U, and U,. The latter can be fixed by imposing
the equilibrium and stability conditions at the experimen-
tal lattice spacing:
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dE; _ dE g AU, “0s @
oV |(v=v, 3V |r=v, v |v=v,
’E, 3’Egg O’E ey
VE |v=v,  dV? |v=v, BV? |v=v,
oP B
= — = — 9
av (v=v, ¥V, ©)

Thus, we only need two external parameters plus
knowledge of the TB elements at {R,} (fitted or taken
from universal laws!®) to get a flexible expression of the
total energy as a function of the atomic coordinates.
Actually, the repulsive potential of Eq. (6) includes just
the harmonic terms, so that anharmonic effects are barely
supplied by Egg. Moreover, f is supposed to be rapidly
decaying with interatomic distance, and the truncated
polynomial is not consistent with such an ansatz. By
considering the major contribution to U, in metallic
systems to be due to nonorthogonality corrections of the
basis set'* and taking advantage of the similarity of our
total-energy scheme to the Huggins-Mayer potential for
alkali halides (band-structure attraction in place of the
Madelung term!”), we postulate an exponential form of f:

_ |Ri—le
f=d¢exp | —a|——— , (10)
dy
so that
IR, —R;| <K IR,—R|
U= 3 dexp|—a 4 , (11)
i<j 0

which displays two parameters only (i.e., ¢ and «a), as in
the case of the harmonic potential. In fact, by expanding
the exponential function around the equilibrium value,
we obtain

Uy=Nd¢e ¢,
U=—age ¢,
Uzz%aque““ ,

where N is the coordination number and conditions (8)
and (9) still hold. We will demonstrate in the following
that this choice of the repulsive potential is important in
order to get an accurate fit of the LMTO cohesion-energy
curves for disilicides. This is true also in the case of sil-
icon, which has been considered in a previous publication
of ours.!®

Calculations of the distortion energy corresponding to
a lowering of the crystal symmetry are also possible. In
fact, the elastic constants ¢y, ¢,, and ¢4, can be readily
calculated in our scheme by considering the total-energy
variation connected to the strain tensor ez, 19

AE

— 242
—V—-—%c“(efx +ep tel)tcleye
0

x yy+exxezz+e e, )

2z7yy
+leyled tel +el) . (12)

For a suitable deformation of the macroscopic cell,
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e, =38, eaBZO, aFh,

yy
e,=—0,

which preserves the volume to first order in §, we obtain
the distortion-energy density

_:(CII_CIZ)SZ . (13)

The bulk modulus, on the other hand, is readily ex-
pressed as a function of the elastic constant, by consider-
ing the energy-density variation (12) for an isotropic de-
formation e,, =e,, =e,, =(1/3)8 and deriving it two
times with respect to the volume [Eq. (9)]:

B:%(C“_'-chz) . (14)

Since the actual value of B is an input parameter in our
frame, by Eqgs. (13) and (14) we have

2AE
=B+ , (15)
‘u 37,52
AE
cy,=B— . (16)
12 31,82

For what concerns the determination of ¢4, an inter-
nal strain is involved in the suitable deformation?® and
the calculation of the relaxation energy would be neces-
sary. However, we can make a rough estimate of its
value by taking the Keating expressions,?! which substi-
tutes the Cauchy relation for tetrahedrally coordinated
crystals,

(cll _012)(011+3C12)

1
=— . (17)
4T3 (enntep)

This ansatz quite surprisingly provides a fair prediction
of ¢4 also in the case of metallic CoSi,, where compar-
ison to experiments is possible. An important point,
which will be addressed in the next section, is the accura-
cy in the determination of tiny AE [Egs. (15) and (16)],
stemming from the subtraction of the large quantities.
This is a subtle problem, which deserves some care also in
the determination of frozen-phonon frequencies and
anharmonicities.

In principle, our total-energy scheme is suitable for the
evaluation of any phonon energy, whenever the displace-
ment pattern is known.?? Here, we restrict our analysis
to I'-point vibrations, since displacements are readily es-
timated by symmetry arguments and no extension of the
primitive unit cell is necessary. If we consider the distor-
tion energy per cell, corresponding to optical modes with
a displacement pattern {u;} in the (111 )direction, we
have (up to third order in u,) (Ref. 23)

us 3
— | +O(u?) , (18)

V3

1
AEP}‘ZE EMsa)zuSZ—i-E 4y
s s

where s labels the atoms inside the unit cell, w is the pho-
non frequency, and y is the cubic anharmonicity term, as
defined by Wendel and Martin for silicon.?*

The relative intensities of the core displacements u; in

the case of the polyatomic basis are determined by impos-
ing the conservation of center-of-mass coordinates, so
that the expression (18) becomes a single-variable polyno-
mial to be equated with the distortion energy, as calculat-
ed by our method.

Estimations of w and y for the TO phonon in silicon
are quite satisfactory,'® especially for the latter, which
turns out to be very well predicted by our exponential
repulsive potential. Obviously, this frozen-phonon
scheme does not allow for LO-TO splitting evaluation,
since no macroscopic field contribution is here includ-
ed.?? However, this is not expected to be a relevant
feature in the case of metallic silicides.

III. APPLICATION TO THE SILICIDES

The conventional cell of Ni-, Co-, and y-FeSi, is
displayed in Fig. 1. It corresponds to an fcc lattice with
three atoms per unit cell:

M=aO(0’O’O) >

Sij=ay(4,+,1),

Si,=ag(—4,—4,— 1) .
Therefore the metals (M) are tetrahedrally coordinated
with respect to one silicon atom and M is inside a cubic
cage of first-neighbor Si. The lattice parameter a, is
5.406 A,% 5.365 A (experimental values),?’ and 5.387 A

(ab initio prediction),’ for Ni-, Co-, and y-FeSi,, respec-
tively. We note that the interatomic distances are

dsisi=3d0 »
1
Ay ‘/—5_‘10 »

so that the first-neighbor (M-Si) and second-neighbor (Si-
Si) distances are not very different, while d,,_,, is sensibly
larger. After these crystallographic considerations, we
decided to take advantage of a former TB calculation for
NiSi, by Robertson?® and to use the following basis set:
sp? for Si and sp3d® for M. Two-center integrals Hy,,,
involving the whole set are used for M-Si and Si-Si in-
teractions, whereas H [ elements only are considered for
M-M couplings. In Tables I, II, and III we report Hy,,
and the on-site elements E (/), as originated by our fitting
to the LMTO bands at T" and X.”° We note that the
Hy.,, elements correctly scale from NiSi, to CoSi,, ac-

FIG. 1. Conventional cell of the CaF, structure.
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TABLE I. TB parameters (eV) for NiSi, in the CaF, structure.

d (A) sso spo ppo ppT sdo pdo pdm
Ni-Si 2.34 —1.09 1.68 1.41 —0.63
Si-Ni 2.34 —1.09 1.03 1.41 —0.63 —1.08 —0.95 0.58
Si-Si 2.70 —0.99 1.43 2.13 —0.86
Ni-Ni 3.82 —0.21

E(s) E(p) E(d)

Ni 2.44 8.18 —3.70
Si —5.68 1.06

cording to the interatomic distance. FeSi,, on the con-
trary, actually displays fitted elements which do not fol-
low such a trend. We interpret this feature as a first indi-
cation that the CaF, structure is not the stable one for
the bulk.

The electronic information enters our scheme through
the total density of states (DOS), as integrated by a
Green-function method over a mesh of about 800 points
in the irreducible part of the Brillouin zone (BZ).?’ Our
results are displayed in Fig. 2. They compare quite well
with respect to the original LMTO DOS,”? and the posi-
tion of the Fermi level scales between NiSi, and FeSi, in
the same way. For what concerns the latter, calculation
of the Fermi level for any deformation of the equilibrium
configuration has been performed. Our results for NiSi,
in the case of isotropic compression and/or expansion is
displayed in Fig. 3, where a decrease with respect to the
lattice parameter is found, much steeper than the a ~2
behavior of the free-electron model.

We have tested the validity of Andersen scaling laws
Hy.,, <(dy/d)*'"*1 (Ref. 28) in comparison to the Har-
rison ones, with no sizable differences in our calculations
of the cohesion-energy curves. We have also tried to im-
prove the fitting of NiSi,, taking advantage of a larger
set, which included d polarization orbitals for silicon,
fitted onto different LMTO calculations.?’ The DOS at
the equilibrium configuration is actually better repro-
duced. Still, total-energy calculations for the cohesion-
energy curve pointed out that neither Harrison nor An-
dersen scaling rules are suitable for polarization orbitals.
This is an interesting problem which deserves some more
attention in the future.

For what concerns the repulsive potential f, we re-
tained interactions up to Si-Si second neighbors only, in

agreement with the structure of the TB matrix and with
the larger distance occurring between M-M pairs. There-
fore, the repulsive potential per unit cell for hydrostatic
changes of volume is

(19)

dM -Si dSi-Si

U,ep =8dexp | —a +6dexp | —a

0 0
dM»SI dM—Si

where the same two-body potential has been used for M-
Si and Si-Si pairs. Since this term is mainly related to the
overlap of atomic orbitals, we suspect that the parame-
ters should be different if d orbitals are involved, in addi-
tion to s and p ones. Therefore our choice can be con-
sidered just a first approximation. On the other hand, as
the Si-Si distance is not much larger than the M-Si one
and only two input parameters are disposable in our
model (a, and B), we decided to adopt expression (19),
which turned out to give much better results than a first-
neighbor summation only.

By considering the link between the isotropic changes
of volume and the relative variation of the lattice parame-
ter (e=a /a,) in the CaF, structure, conditions (8) and (9)
become a pair of nonlinear equations

V3 ~ oE
—¢a e~ L3 o-2V3a | = 1 OB , (20)
8 de |,
~ d’E
2, —ay ,—2V3ay_ _ 1 9 LBs 9 B4l 21
da“(e “+e ) 8 e €:1+ 37 Bao (21)

which are solved by numerical methods. In particular,
the first and second derivatives of Egg have been estimat-

TABLE II. Asin Table I for CoSi,.

d (A) sso spo ppo ppT sdo pdo pdm
Co-Si 2.32 —1.12 1.71 1.42 —0.71
Si-Co 2.32 —1.12 091 1.42 —0.71 —1.24 —1.06 0.68
Si-Si 2.68 —0.99 1.69 2.17 —0.86
Co-Co 3.79 —0.22
E(s) E(p) E(d)
Co 3.74 9.59 —1.61

Si —4.52 2.44
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TABLE III. As in Table I for FeSi,.

d (A) sso spo ppo ppT sdo pdo pdm
Fe-Si 2.33 —1.31 1.38 1.57 —0.80
Si-Fe 2.33 —1.31 1.16 1.57 —0.80 —1.28 —1.02 0.69
Si-Si 2.69 —0.88 1.45 2.55 —0.98
Fe-Fe 3.81 —0.23

E(s) E(p) E(d)

Fe 5.32 7.62 —0.93
Si —4.14 3.08
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ed in different ways, by analytic calculations, by numeri-
cal differentials, and by interpolating the numerical
Egg(e) curve with polynomials up to fourth order in
(e—1) and with more physical scalings, such as

EB5(8)=A+D/8n . (22)

All of them provided a satisfactory estimation of first and
second derivatives, which agree within 1% and 5%, re-
spectively. Equation (22), however, allows for a meaning-
ful comparison of the exponent » among Ni-, Co-, and
FeSi,, and so we report in Table IV our results for 4, D,
n, ¢, and «a, along with the input parameters a,, B.

IV. RESULTS

A. Cohesion-energy curves

Total energies for isotropic deformations are deter-
mined by summing up expressions (19) and (22), except

R S O B B B B B A B e B

P

LB s e

P

T

Pt R i N P

T T T T T L L L

(b) CoSi,

LI B S S e

i W1

LIS I L N N N LB B L B B B N B B

Density of States

(c) FeSi,

for a constant-energy term, taking into account the free-
atoms contribution. By adopting the parameters of Table
IV we obtained the cohesion-energy curves displayed in
Fig. 4 (solid lines). In the case of NiSi, and CoSi,, com-
parison to LMTO data (open circles) is possible and very
satisfactory, within the accuracy in reporting the graphi-
cal data of Ref. 7. As for the vertical energy rescaling
mentioned above, the horizontal positioons of our TB
curves have been displaced for a, by 0.14 A for NiSi, and
0.001 A for CoSi, in order to let their minima superim-
pose to the LMTO predictions, which slightly overesti-
mate the actual equilibrium values. By using a quadratic
repulsive potential, as in the case of the Chadi model, the
agreement is quite poor (dotted lines), since repulsive
anharmonic terms are missing.

Such a good prediction of the cohesive-energy curves
could be obtained also in the case of different crystalline
phases, with no adjustment of the scaling laws, but for
different repulsive terms for M-Si and Si-Si interactions.
The transferability of our total-energy scheme has been
recently tested for the case of NiSi, and CoSi, in the
adamantane structure.'!

B. Elastic constants

The elastic constants c¢;; and ¢, are evaluated by Egs.
(15) and (16), with & ranging from —0.05 to +0.05. De-
formation of the unit cell corresponding to such a strain

-
o
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@

NiSi,
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Energy (eV)

FIG. 2. Total DOS for (a) NiSi,, (b) CoSi,, (c) ¥ FeSi,. The
Fermi level is indicated by a vertical line.

Lattice Constant (&)

FIG. 3. Fermi level for NiSi,, as a function of the lattice con-
stant. The arrow indicates equilibrium value, as referring to
Fig. 2.
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TABLE IV. Egg parameters 4, D, and n [Eq. (22)], U,,, parameters ¢ and a [Eq. (11)], along with
the input values for a, and B [experimental estimations (Refs. 25, 30, and 31) and theoretical predic-

tions (Ref. 9 and 7)].

ay (A) B (Mbar) A (eV) D (eV) n ¢ (keV) a
NiSi, 5.406* 1.60° —59.86 —28.19 3.38 3.12 7.86
CoSi, 5.365° 1.90>¢ —29.65 —31.70 3.49 4.00 7.97
1.69¢ 2.77 7.56
FeSi, 5.387° 2.06° —16.12 —37.60 3.17 3.43 7.71

2Reference 25.
*Reference 7.
°Reference 30.
dReference 31.
“Reference 9.

gives rise to small total-energy variations, so that integra-
tion on the irreducible part of the distorted BZ is per-
formed with more than 1000 special points.2’” We fitted
the distortion-energy curve AE(8) by a quartic polyno-
mial, and we extracted the quadratic term. Table V re-
ports the results for c;;, ¢q,, and ¢,y [estimated by Eq.
(17)], along with a couple of experimental sets for CoSi,,
both by neutron-scattering measurements>® and by the
pulse-echo-overlap method.?!

Obviously, our predictions depend on the B value, not
only for what concerns Egs. (15) and (16), but also from
the very beginning, by Eq. (9). Thus, we compared the
experimental data for CoSi, with consistent calculations

SN L B B B S B

(a) NiSi,

NENEI I

2_
0+ ]
R B TR R
5.2 53 54 5.5 5.6
LI I L LA IR B
4 —
(b) CoSi, 1

Cohesive Energy (10° meV/cell)

2 d

ol ]
I TR AN BN R
52 53 54 55
N R T

4K

2

ok

P U U H TS S ST RN

5.2
Lattice Constant (&)

53 64 55 586

FIG. 4. Cohesion energy as a function of the lattice constant,
calculated with U, in Eq. (7) (dashed line) and Eq. (11) (solid
line): (a) NiSi,, (b) CoSi,, (c) ¥ FeSi,. Circles are LMTO results
(Ref. 7).

of ours and the agreement is rather good. For NiSi,, ex-
perimental measurements are in progress. Still, prelimi-
nary estimations of (¢, —c,) give us 0.57 Mbar,*? in
striking agreement with our estimation.

C. Phonon frequencies and anharmonicities

Optical vibrations at the I' points involve (a) sym-
metric counterphase motion of the silicon atoms along
(111) while the metal atom is at rest; and (b) counter-
phase (111) motion of the silicon atoms with respect to
the metal, with a displacement ratio in such a way that
the center of mass is at rest. The (a) mode is Raman ac-
tive and lower in frequency; the (b) mode is IR active and
higher in frequency.

We have calculated the tiny distortion energies corre-
sponding to such phonons for Si displacements as large as
0.1 A (both inward and outward??). Note that, because of
the metallic character of the silicides we are studying, a
large number of k points are considered. As an example,
integration over the irreducible part of the distorted BZ
is performed with about 3000 special points®’ in the case
of CoSi,. Figures 5 and 6 display our calculated
distortion-energy curves for (a) and (b) displacement pat-
terns, respectively (open squares). Quadratic and cubic
terms in u,, as required by Eq. (18), can be obtained by
fitting our AEP™(ug;) by a quartic polynomial (solid lines
in Figs. 5 and 6): v and y are reported in Table VI. Our

TABLE V. Elastic constants (Mbar) calculated by the TB
scheme, as compared to existing experimental data. The corre-
sponding B value (Mbar) is also reported.

B €11~ Cn2 ‘1 C12 Caq
NiSi, (TB) 1.60 0.58 1.99 1.41 0.53
CoSi, (TB) 1.90 0.74 2.39 1.65 0.67
CoSi, (expt.?) 1.90 0.79 2.40 1.61 0.74
CoSi, (TB) 1.69 0.75 2.19 1.44 0.67
CoSi, (expt.b) 1.69 0.88 2.28 1.40 0.83
FeSi, (TB) 2.06 0.87 2.64 1.77 0.78

*Reference 30.
#Reference 31.
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FIG. 5. Distortion energy for the displacement pattern corre-
sponding to the IR-active mode at I': (a) NiSi,, (b) CoSi,, (c) ¥
FeSi,. Open squares are the calculated values; solid lines are the
fitting polynomials.

accuracy does not allow for the determination of quartic
terms, which, however, are not usually reported in the
literature, even for ab initio calculations.

The phonon frequency of the (a) mode in CoSi, can be
compared to Raman data, where a single peak is observed
at 267 cm™ .3* Our estimation is satisfactory, somehow
higher than the experimental value, as for the case of sil-
icon.!® For NiSi,, our frequencies can be compared to
the Raman- and neutron-scattering measurements in
disordered system.3 Because of disorder activation, the
Raman spectra display broadbands, representing the
weighted phonon DOS. Comparison to our results is not
as direct as in the case of sharp Raman peaks. Still, we
can assign the (a) and (b) phonon frequencies to the Ra-
man bands at 290 cm ! and 372-392 cm !, respectively.
Although the agreement is qualitatively satisfactory, we
actually underestimate both (a) and (b) modes. Taking

TABLE VI. Calculated phonon frequencies (em ™) and cubic
anharmonicities (eV/A %). For what concerns CoSi,, our calcu-
lations refer to the experimental estimation of B (Ref. 31).

v (Raman) Y v (IR)
NiSi, 263 9.90 373
CoSi, 285 11.15 371
FeSi, 310 25.52 355
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FIG. 6. As for Fig. 5 for what concerns the Raman-active
mode at I'. Note that for FeSi, this displacement pattern gives
rise to a larger instability in the calculation of the distortion en-
ergy.

aside strain effects in the sample a residual indeterminan-
cy in our predictions still remains from the fitting to the
elastic modulus, so that optical phonons are very likely to
be affected by a systematic error. Mazur and Pollman®*
have correctly suggested to fit a I'-mode frequency, but
this is possible just in the case of materials where a good
wealth of experimental data is disposable.

For what concerns the anharmonic terms, the (a) mode
displays a cubic contribution, which can be compared to
the one for the optical mode in silicon, where yg=81.2
eV/A3.18 By taking into account that the bond deforma-
tion is double in silicon, ¥Vsi/8=7VNisi, ¥ cosi, (see Table
VI). For what concerns FeSi,, on the contrary, we note
that the anharmonic constant y is more than 2 times
larger, so that we may wonder whether this is another in-
dication of the structural metastability of FeSi, in the
CaF, structure. This is confirmed also by the larger in-
stability in the calculation of the distortion energy corre-
sponding to such a mode (see Fig. 6). Further investiga-
tions along these lines are in progress.
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