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Effect of elastic scattering on miniband transport in semiconductor superlattices
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Within the quasiclassical Boltzmann-Bloch approach to nonlinear miniband transport in super-
lattices, elastic scattering is included in a relaxation-time approximation. Elastic scattering makes
the problem truly three dimensional and leads in the regime of negative di6'erential conductance to
results that are qualitatively diBerent from those of the quasi-one-dimensional models considered
previously and compare favorably with recent experiments and balance-equation calculations.

Quasiclassical dynamics of Bloch electrons predicts
fascinating phenomena such as Bloch oscillations and
regimes with negative difFerential conductivity (NDC), if
the electrons can be forced by an applied electric Geld to
follow the periodic band structure through a considerable
region in k space before being scattered. Whereas large
Brillouin zones and wide energy bands prohibit these phe-
nomena in natural bulk crystals, Esaki and Tsu pre-
dicted a long time ago that they should become ob-
servable in semiconductors with artiBcial superlattices of
sufFiciently large lattice constants a. Such superlattices
create narrow minibands and small Brillouin zones with
boundaries which can easily be reached by an electron ac-
celerated by a moderate electric Beld before it is scattered
into another part of the Brillouin zone. The prediction
was that the drift velocity vo of electrons responding to
an electric field F applied in the growth (z) direction of
the superlattice will decrease with increasing I", once I"
becomes larger than a critical value F „= hv/ea, at
which the scattering rate v equals the Bloch-oscillation
frequency eaF/h. Here —e is the electron charge. In
ideal superlattices, the motion in z direction decouples
from the lateral motion in the x-y plane, and the calcu-
lation of v~ becomes a one-dimensional (1D) problem.
Scattering, however, and notably elastic scattering, cou-
ples the motion in z direction to the lateral motion, and
the problem becomes manifestly three dimensional (3D).
The aim of this paper is to emphasize the importance
and to discuss the consequences of this coupling of verti-
cal and lateral degrees of freedom, which apparently has
not been appreciated before. Previous generalizations of
the Esaki-Tsu prediction to finite temperatures using the
Boltzmann-Bloch equation in relaxation time approxima-
tion are 1D theories in this sense. ' Monte Carlo calcu-
lations of the drift velocity ' also did not appreciate the
particular 3D nature of scattering, and essentially con-
Grmed the Esaki-Tsu prediction, long before it could be
veriGed experimentally.

So far only two groups have claimed that their ex-
periments reveal the Esaki-Tsu mechanism of miniband
transport, and not hopping of electrons between local-
ized states in adjacent wells of the superlattice. Sibille et
al. systematically studied stationary transport in sev-
eral superlattices with diB'erent miniband widths (A)
and periods. They reported qualitative agreement with
the Esaki- Tsu predictions; however, their I" values

in the z direction and free motion with effective mass m
in the lateral directions,

E(k) = 6'k /2m + E, (k, ), (2)

with k2 = k2 + k2.
y

seemed to decrease systematically w ith increasing
The Grst direct observation of a v~-I" characteristic cor-
responding to NDC up to I'" values far beyond the maxi-
mum, has been achieved in time-of-Bight experiments by
Grahn et al. They found a good agreement with the G-

nite temperature prediction of the 1D theory, ' at least
for higher temperatures, kIBT ) A.

These experiments, especially the unexpected A de-
pendence of I'", stimulated a renewed theoretical in-
terest in the problem. Lei, Boring, and Cui applied
a balance-equation approach to the superlattice model
and reported an impressive agreement with the exper-
imental results of Ref. 6. Similar to the Monte Carlo
calculations, ' their calculation included explicitly the
interaction of the electrons with acoustical and optical
phonons as well as with randomly distributed impurities,
and, in addition, the screening of these interactions. Al-
though the ansatz of Ref. 8 is very general, it lacks trans-
parency and does not clarify which particular interaction
mechanism is responsible for the qualitative differences
from the predictions of the 1D Boltzmann-Bloch theo-
ries, notably for the A dependence of I"

The purpose of this paper is to discuss a transparent
theory of the NDC in miniband transport with a min-
imum of assumptions and model parameters, in order
to gain a deeper physical understanding of the appar-
ent insu%ciencies of the 1D theories. The basic idea is
that elastic scattering by impurities or interface rough-
ness will transfer energy, gained by the electron during
its motion in the Geld direction, to the lateral degrees of
freedom. Thus, elastic scattering will effectively render
the problem a really three-dimensional one, and should
be treated explicitly. In order to do this in the most
simple and transparent way, we describe it, in addition
to inelastic scattering, by a simple relaxation rate in a
Boltzmann-Bloch equation.

As in previous work, ' we take the tight-binding
energy

Ei(k, ) = 2A(l —cos ak, )
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tic scattering makes the miniband transport through a
1D superlattice in a 3D semiconductor effectively a 3D
problem. Incorporating this into a Boltzmann equation
in the simple relaxation time approximation, we obtain
qualitative deviations from the results of the previously
studied 1D theory. Our results are in good qualitative
agreement with the very sophisticated calculation of Lei,
Horing, and Cui. Quantitative agreement cannot be ex-
pected, since our model does not contain any detailed in-
formation about scattering matrix elements or screening,
and even assumes the scattering rates to be independent
of energy. In principle such detailed information could
be incorporated into a Boltzmann-Bloch treatment. But
this would be at the expense of transparency, and, per-
haps more important, these details are not well known
for semiconductors with superlattices. For a meaning-
ful comparison with the experimental results of Sibille et
a/. , we would have to assume that, at a given temper-
ature, the scattering rates are the same for superlattices
with different miniband widths L. Then we conclude,
e.g. , from Fig. 3 that the electric field E at maximum
drift velocity should decrease with increasing A. This
is in agreement with the data of Ref. 6, but these data
scatter by about 30%, so that the assumption about the
scattering rates becomes questionable. Therefore, we do
not attempt a quantitative fit. From a rough estimate,
we conclude that in their experiment the elastic scatter-
ing rate must be more than an order of magnitude larger
than the inelastic one. Considering the experiments of

Grahn et al. , is seems not surprising that at relatively
high temperature good agreement with the result of the
1D theory is obtained, although this indicates that elas-
tic scattering is not so predominant in this situation.

It should be mentioned that, for a known period and
bandwidth of the superlattice, the total scattering rate
can be evaluated from the linear response regime, i.e. ,
from the low-field mobility, whereas the field F „at
maximum then allows us to extract the ratio of the scat-
tering rates from Fig. 3. This can be done at each value
of the lattice temperature T.

Of course, we can also calculate the heating of the elec-
tron system within our approach. But since this is not
easily accessible to experiments, we postpone this infor-
mation to a more detailed publication, where we will also
discuss the degenerate case, which is not relevant for the
experiments mentioned here. We also postpone the sim-
ilar, though in detail different, case of a lateral super-
lattice in a 2D electron gas. This situation may become
of great interest in the future, since such superlattices
can be fabricated with wide and well-isolated minibands
and very high mobility, so that pronounced NDC and
related effects can be expected to occur already at low
applied fields.

Stimulating discussions with Wolfgang Muller and Hol-
ger Grahn are gratefully acknowledged. For critical
reading of the manuscript I am indebted to V. Fal'ko,
D. Pfannkuche, and D. Weiss.
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