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Effect of elastic scattering on miniband transport in semiconductor superlattices
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Within the quasiclassical Boltzmann-Bloch approach to nonlinear miniband transport in super-
lattices, elastic scattering is included in a relaxation-time approximation. Elastic scattering makes
the problem truly three dimensional and leads in the regime of negative differential conductance to
results that are qualitatively different from those of the quasi-one-dimensional models considered
previously and compare favorably with recent experiments and balance-equation calculations.

Quasiclassical dynamics of Bloch electrons predicts
fascinating phenomena such as Bloch oscillations and
regimes with negative differential conductivity (NDC), if
the electrons can be forced by an applied electric field to
follow the periodic band structure through a considerable
region in k space before being scattered. Whereas large
Brillouin zones and wide energy bands prohibit these phe-
nomena in natural bulk crystals, Esaki and Tsu! pre-
dicted a long time ago that they should become ob-
servable in semiconductors with artificial superlattices of
sufficiently large lattice constants a. Such superlattices
create narrow minibands and small Brillouin zones with
boundaries which can easily be reached by an electron ac-
celerated by a moderate electric field before it is scattered
into another part of the Brillouin zone. The prediction
was that the drift velocity vp of electrons responding to
an electric field F' applied in the growth (z) direction of
the superlattice will decrease with increasing F', once F'
becomes larger than a critical value Fp.x = fiv/ea, at
which the scattering rate v equals the Bloch-oscillation
frequency eaF'/h. Here —e is the electron charge. In
ideal superlattices, the motion in z direction decouples
from the lateral motion in the z-y plane, and the calcu-
lation of vp becomes a one-dimensional (1D) problem.
Scattering, however, and notably elastic scattering, cou-
ples the motion in z direction to the lateral motion, and
the problem becomes manifestly three dimensional (3D).
The aim of this paper is to emphasize the importance
and to discuss the consequences of this coupling of verti-
cal and lateral degrees of freedom, which apparently has
not been appreciated before. Previous generalizations of
the Esaki-Tsu prediction to finite temperatures using the
Boltzmann-Bloch equation in relaxation time approxima-
tion are 1D theories in this sense.?"®* Monte Carlo calcu-
lations of the drift velocity®® also did not appreciate the
particular 3D nature of scattering, and essentially con-
firmed the Esaki-Tsu prediction, long before it could be
verified experimentally.

So far only two groups have claimed that their ex-
periments reveal the Esaki-Tsu mechanism of miniband
transport, and not hopping of electrons between local-
ized states in adjacent wells of the superlattice. Sibille et
al.® systematically studied stationary transport in sev-
eral superlattices with different miniband widths (A)
and periods. They reported qualitative agreement with
the Esaki-Tsu predictions; however, their F,.x values
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seemed to decrease systematically with increasing A.
The first direct observation of a vp-F' characteristic cor-
responding to NDC up to F values far beyond the maxi-
mum, has been achieved in time-of-flight experiments by
Grahn et al.” They found a good agreement with the fi-
nite temperature prediction of the 1D theory,?3 at least
for higher temperatures, kgT > A.

These experiments, especially the unexpected A de-
pendence of Fi,.., stimulated a renewed theoretical in-
terest in the problem.® 710 Lei, Horing, and Cui® applied
a balance-equation approach!! to the superlattice model
and reported an impressive agreement with the exper-
imental results of Ref. 6. Similar to the Monte Carlo
calculations,®® their calculation included explicitly the
interaction of the electrons with acoustical and optical
phonons as well as with randomly distributed impurities,
and, in addition, the screening of these interactions. Al-
though the ansatz of Ref. 8 is very general, it lacks trans-
parency and does not clarify which particular interaction
mechanism is responsible for the qualitative differences
from the predictions of the 1D Boltzmann-Bloch theo-
ries, notably for the A dependence of Fiax.

The purpose of this paper is to discuss a transparent
theory of the NDC in miniband transport with a min-
imum of assumptions and model parameters, in order
to gain a deeper physical understanding of the appar-
ent insufficiencies of the 1D theories. The basic idea is
that elastic scattering by impurities or interface rough-
ness will transfer energy, gained by the electron during
its motion in the field direction, to the lateral degrees of
freedom. Thus, elastic scattering will effectively render
the problem a really three-dimensional one, and should
be treated explicitly. In order to do this in the most
simple and transparent way, we describe it, in addition
to inelastic scattering, by a simple relaxation rate in a
Boltzmann-Bloch equation.

As in previous work,' 8710 we take the tight-binding
energy

E (k) = A1 —cosak, ) (1)

-2

in the z direction and free motion with effective mass m
in the lateral directions,

E(k) = k%k3 /2m + Eq(k.), (2)
with k3 = k2 + k2.
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The stationary Boltzmann-Bloch equation is written
as

_eF if(k) =

5 akz ~Vin {f(k) _fO[E(k)]}+Cel(fak)v

(3)

where the inelastic scattering rate v;, describes relaxation
towards the equilibrium distribution function f,. If elas-
tic scattering is neglected, C; = 0, and if nondegenerate
statistics is assumed, one obtains the well-known result
for the drift velocity,?3

vp = vo {(F/Fo)/[1+ (F/Fo)*]} Q (kgT/A), (4)

where vog = —aA/2h, and Q(t) = I;(1/2t)/Io(1/2t) with
modified Bessel functions I,,. The maximum of vp occurs
at the electric field Fy = hv;,/ae. The original Esaki-Tsu
result follows in the limit 7" — 0, with Q(0) = 1.

In order to simulate elastic scattering, we introduce in
the Boltzmann equation (3) the collision term

Ca(f, k) = —ve { f(k) — 2¢[E(k)] } . (5)
Here

4(E) = a / &k §[E— E(K)] f(K')/D(E)  (6)

is the average of the distribution function taken over sur-
faces of constant energy, E(k’') = E, D(E) is the density
of states, and a = 2/(27)3. This ansatz describes back
and forth scattering with equal weights between the state

z(e)

Te

Z(E) —z(e)

95(e) = (L =re) fo(e) =

Here, we have inserted the density of states, D(E)
(2m/m2ak?) z(E/A), with 2(e) = arcsin(y/e) if 0 < ¢
1, and z(e) = w/2 if ¢ > 1. In view of the low elec-
tron densities in the experiments,®7 we present numer-
ical results only for nondegenerate statistics, fo(e) =
exp(—e/t), where t = kgT/A is the reduced temper-
ature. Figure 1 shows ®; for different situations. As
compared with the equilibrium case (§ = 0), in a sta-
tionary state with applied field (£ > 0) electrons are re-
distributed from states with lower energy to states with
higher energy. This “heating” of the electron system is
even increased, if part of the scattering is elastic. Appar-
ently, this heating cannot be described by the equilibrium
distribution at an elevated electron temperature T, > T,
since this would lead to a straight line in Fig. 1, because
®¢ = f if f depends on k only via the energy. The cusp
behavior at € = 1 is, of course, closely related to the
van Hove singularity of the density of states.
The drift velocity is defined by

IN I

vp = a/d3k vz (k) f(k) /e, (10)
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k and all states k' of the same energy. It effectively cou-
ples the motion in superlattice direction to the lateral
degrees of freedom. Before proceeding, we stress that
our 3D model is qualitatively different from the corre-
sponding 1D model discussed by Ignatov, Dodin, and
Shashkin® (IDS). The IDS model couples the motion in
the z direction only to that in the —z direction, but not
to the lateral degrees of freedom. As a consequence, the
drift velocity can be calculated analytically. The result
can be written in the form of Eq. (4), if one replaces v
with vfPS = vo6'/2 and F, with F3PS = §Y/2hu,,/ea,
where V4ot = Vin + Ve is the total scattering rate and
6 = 1 — (Vel/Vtot)- This model yields a suppression of
the drift velocity below the value of Eq. (4). It cannot,
however, explain a A dependence of Fy,... Moreover, it
predicts the same temperature dependence of the drift
velocity as Eq. (4), namely, a simple scaling factor which
does not change the shape of the vp-F curve.

For our 3D model, the drift velocity cannot be cal-
culated analytically. With the dimensionless quantities
e =E/A and £ = F/Fy where Fy = Aviot/ea, our Boltz-
mann equation has the formal solution

Pl k) = G ems/e [T il ekl g ek, k)L, ()
k.
where
gr(e) = (L —re) fo(e) + 7 Ps(eA) (8)
and r = Vel/Vtot. Inserting (7) into the definition (6), we

obtain an integral equation for g; which can be written
in the form

J
dz / due?* gs [e — sin*% + sin®(z + u)] . (9)
0
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FIG. 1. Average of the distribution function over surfaces
of constant energy, as defined in Eq. (6), vs energy for three
values of the reduced temperature and, in each case, for
thermal equilibrium fo(e)=exp(—FE/kpT) (F=0, thin broken
lines), for a stationary state with purely inelastic scattering
(F=Fy, r.=0, dash-dotted lines), and for the stationary state
with partly elastic scattering (F=F,, r.=0.75).
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with v,(k,) = A"'dE;/dk,. The normalization constant
is the electron density,

ne = a/d3k £(K) :/ dED(E)®;(E).  (11)
0

Since n. in the stationary state has the same value as
in the equilibrium state without applied electric field, we
may replace in Eq. (11) ®; with fo. We used this sum
rule for ®5 to check our numerical results. With the for-
mal solution (7) the integral in Eq. (10) can be evaluated
to yield vp again in the form of Eq. (4), but now with

Q(Teaﬁ,t):/Oldfgf(s)m//owdez(f) fole) -
(12)

In the absence of elastic scattering, 7. = 0, one has gy =
fo, and Q is independent of {. With fo(e) = exp(—e/t)
one exactly recovers Eq. (4). For degenerate statistics
this factor Q(t) is, of course, different. For r. > 0, Q
depends via £ on the electric field. Then the shape of
the vp-F curves is different from the Esaki-Tsu result
and changes with changing temperature. Two limits can
easily be discussed analytically. The first is the linear
response regime, { < 1. Here one obtains from Eq. (9)
g = fo + O(€?). Thus, up to first order in &, the dis-
tribution function and the drift velocity depend only on
the total scattering rate, and Q(0,0,t) is a sufficient ap-
proximation. A distinction between elastic and inelastic
scattering is irrelevant in the linear response regime. The
other trivial limit is that of extremely high temperatures,
where fo(g) becomes a constant independent of . In this
limit the solution of Eq. (9) is the constant g5 = fo, and
again Q(0,0,t) is sufficient. Thus, our result should ap-
proach the 1D form (4) in the linear response regime and,
for arbitrary values of £, in the limit of high temperatures,
provided we define the scaling field as Fy = Avior/ea.

In Fig. 2 we present typical results of our numerical
calculations for three values of the temperature and for

0.5 T T . .

0.0 1.0 2.0 3.0
F/F,

FIG. 2. Calculated drift velocity vp vs electric field F' for
re= 0.0 (dashed lines), 0.5 (solid lines), and 0.9 (dash-dotted
lines), and, in each case, for kgT/A = 0.1, 0.5, and 1.0
(from top to bottom). The units are vo = —aA/2k and
Fy = hvior/ea, where vioy is fixed.
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FIG. 3. Electric field values at the maxima of curves as
shown in Fig. 2 vs reduced temperature for several values of
Te. Symbols have the same meaning as in Fig. 2.

three values of the ratio re = ve1/viot, keeping viot fixed.
For r. = 0 (dashed lines) we get the results of the 1D
theories:™® with increasing temperature the curves are
reduced by an F-independent factor, but their shape does
not change. For fixed reduced temperature and increas-
ing re, the shape of the curves changes, the maxima are
reduced and shifted to smaller values of F'. This behav-
ior is qualitatively similar to, but quantitatively different
from the results of Ref. 9. For fixed 7, > 0, the position
of the maximum shifts with increasing temperature to
larger values of F', so that the effect of elastic scattering
is largest at low temperatures and becomes small at high
temperatures. This result is qualitatively different from
that of the 1D model of Ref. 9. It is, however, in quali-
tative agreement with that of Ref. 8. Systematic results
for the dependence of the position Fp,,x and the height
(vD)max Of the maxima on the scattering-rate ratio r.
and the reduced temperature kT /A are presented in
Figs. 3 and 4, respectively. The results of the 1D model
of Ref. 9 would appear in Fig. 3 as horizontal straight
lines at (F/Fo)max = (1 — 're)l/2 and in Fig. 4 as curves
with the same shape as that for r. = 0 (curve 9), but
rescaled by a constant factor (1 — re)l/z.

In conclusion, we have emphasized the fact that elas-
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FIG. 4. Maximum values of curves as shown in Fig. 2 vs
reduced temperature for different values of re.
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tic scattering makes the miniband transport through a
1D superlattice in a 3D semiconductor effectively a 3D
problem. Incorporating this into a Boltzmann equation
in the simple relaxation time approximation, we obtain
qualitative deviations from the results of the previously
studied 1D theory. Our results are in good qualitative
agreement with the very sophisticated calculation of Lei,
Horing, and Cui.® Quantitative agreement cannot be ex-
pected, since our model does not contain any detailed in-
formation about scattering matrix elements or screening,
and even assumes the scattering rates to be independent
of energy. In principle such detailed information could
be incorporated into a Boltzmann-Bloch treatment. But
this would be at the expense of transparency, and, per-
haps more important, these details are not well known
for semiconductors with superlattices. For a meaning-
ful comparison with the experimental results of Sibille et
al.,® we would have to assume that, at a given temper-
ature, the scattering rates are the same for superlattices
with different miniband widths A. Then we conclude,
e.g., from Fig. 3 that the electric field Fj.x at maximum
drift velocity should decrease with increasing A. This
is in agreement with the data of Ref. 6, but these data
scatter by about 30%, so that the assumption about the
scattering rates becomes questionable. Therefore, we do
not attempt a quantitative fit. From a rough estimate,
we conclude that in their experiment the elastic scatter-
ing rate must be more than an order of magnitude larger
than the inelastic one. Considering the experiments of
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Grahn et al.,” is seems not surprising that at relatively
high temperature good agreement with the result of the
1D theory? is obtained, although this indicates that elas-
tic scattering is not so predominant in this situation.

It should be mentioned that, for a known period and
bandwidth of the superlattice, the total scattering rate
can be evaluated from the linear response regime, i.e.,
from the low-field mobility, whereas the field Fi,., at
maximum then allows us to extract the ratio of the scat-
tering rates from Fig. 3. This can be done at each value
of the lattice temperature T'.

Of course, we can also calculate the heating of the elec-
tron system within our approach. But since this is not
easily accessible to experiments, we postpone this infor-
mation to a more detailed publication, where we will also
discuss the degenerate case, which is not relevant for the
experiments mentioned here. We also postpone the sim-
ilar, though in detail different, case of a lateral super-
lattice in a 2D electron gas. This situation may become
of great interest in the future, since such superlattices
can be fabricated with wide and well-isolated minibands
and very high mobility,'? so that pronounced NDC and
related effects can be expected to occur already at low
applied fields.

Stimulating discussions with Wolfgang Miiller and Hol-
ger Grahn are gratefully acknowledged. For critical
reading of the manuscript I am indebted to V. Fal’ko,
D. Pfannkuche, and D. Weiss.

! L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

2F.G. Bass and E.A. Rubinshtein, Fiz. Tverd. Tela
Leningrad 19, 1379 (1977) [Sov. Phys. Solid State 19,
800 (1977)].

3R.A. Suris and B.S. Shchamkhalova, Fiz. Tekh.
Poluprovodn. 18, 1178 (1984) [Sov. Phys. Semicond. 18,
738 (1984)).

*D.L. Andersen and E.J. Aas, J. Appl. Phys. 44,
3721 (1973).
5M. Artaki and K. Hess, Superlatt. Microstruct. 1,
489 (1985).

8 A. Sibille, J.F. Palmier, H. Wang, and F. Mollot, Phys.

Rev. Lett. 64, 52 (1990).

"H.T. Grahn, K. von Klitzing, K. Ploog, and G.H. Déhler,
Phys. Rev. B 43, 12094 (1991).

8 X.L. Lei, N.J.M. Horing, and H.L. Cui, Phys. Rev. Lett. 66,
3277 (1991).

9 A.A. Ignatov, E.P. Dodin, and V.I. Shashkin, Mod. Phys.
Lett. B 5, 1087 (1991).

1© K. Huang and B. Zhu, Phys. Rev. B 45, 14404 (1992).

' X.L. Lei and C.S. Ting, Phys. Rev. B 32, 1112 (1985).

'2H L. Stormer, L.N. Pfeiffer, K.W. Baldwin, K.W. West,
and J. Spector, Appl. Phys. Lett. 58, 726 (1991).



