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Current-driven plasma instabilities in modulated lower-dimensional semiconductor systems
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High threshold drift velocities (exceeding the Fermi velocity) required in semiconductor systems to
generate current-driven plasma instabilities are the primary obstacle in their experimental verification.
We demonstrate the feasibility of a current-driven plasma instability in modulated lower-dimensional
systems at much lower driving electric fields. We also discuss possible experimental systems where this
instability could be observed.

Current-driven plasma instabilities are known to occur
in gaseous plasmas. ' We have shown the feasibility
of generating analogous instabilities in a variety of lay-
ered solid-state systems. So far current-driven plasma in-
stabilities have not been directly observed experimentally
in such systems. However, current-driven infrared emis-
sion from layered semiconductors, due to thermal
plasmon generation' or Smith-Purcell effect, "' have al-
ready been detected. A recent experiment' in a current-
driven superconductor system provides a preliminary in-
dication of energy transfer from the driving current into
the carrier plasma in broad agreement with our predic-
tions.

The basic physical mechanism of the current-driven
plasma instabilities is the transfer of energy from the
current to the growing plasma waves of a given system.
With a suitable coupling arrangement such as a grating,
this energy can be further converted to electromagnetic
radiation. ' Such systems can then serve as radiation
sources or amplifiers, with potential device applications.
In semiconductor systems the typical threshold drift ve-
locity for a plasma instability is greater than the Fermi
velocity, and therefore very dificult to achieve experi-
mentally. In this paper we show that by employing densi-
ty modulated lower-dimensional systems, plasma instabil-
ities can be generated at significantly lower driving elec-
tric fields.

A setup consisting of periodically distributed electrode
strips or electrode grids over a Uniform two-dimensional
electron gas (2DEG) provides the experimental arrange-
ment for generating a periodic density modulation of the
electron gas, in one or two directions. ' By varying the
bias voltage, the amplitude of this modulation can be
varied and density-modulated systems such as one-
direction modulated 2DEG, two-direction modulated
2DEG [so-called lateral surface superlattice (LSSL) (Ref.
16)], and modulated unconnected strips or wires (i.e.,
modulated 1DEG), can be reahzed. ' Density-modulated
systems can also be obtained by etching a periodic pat-
tern on the surface of the sample just above the 2DEG.
Charges trapped in surface states then modulate the un-
derlying electron gas. "'

Due to periodicity of the density modulation, miniband
structure formation occurs in modulated systems. In di-
mensionally restricted systems (e.g., modulated 1DEG or
LSSL) under certain conditions, carrier transport caused
by an external field can occur only through the move-

where go is the single-electron susceptibility given by
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where A is a volume factor and U (q) is the Fourier trans-
form of the Coulomb potential.

In the presence of a periodic modulation in one direc-
tion (e.g. , z direction), Fourier transforms of yo and y ac-
quire a discrete spectrum for z components of wave vec-
tors (q, ), which become quantized in terms of the re-
ciprocal lattice vector go=2m. /a (a is the period of the
modulation). Taking into account this quantization, and
assuming that the system is uniform in the remaining
directions (x and y), Eq. (2) can be rewritten in the form
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where K =K+Q; k,'=k, —
q

—(m + )g nQoand K are
the x-y components of the photon and electron momenta,
respectively; q + is the reduced photon (plasmon)
momentum (in z direction); m, n, n ' are integers; A is

defined as follows:

ment of electrons in the uppermost, partially filled mini-
band. For a sufFiciently strong electric field this group of
electrons can climb up on one branch of the miniband,
opening a gap of allowed energy states below the dis-
placed electron distribution. As a result of this popula-
tion inversion, massive downward single-electron transi-
tions become possible, which generate plasmons. Basical-
ly the same physical mechanism leads to current-driven
plasma instabilities in unmodulated systems, but instead
of displacing the population of a single miniband, the en-
tire population of electrons must be displaced, thus re-
quiring a large drift velocity, exceeding twice the Fermi
velocity.

We develop a formalism to study the current-driven
response of modulated electron-gas systems. In the
random-phase approximation, the Fourier transformed
total suscptibility is

X(q, q';~) =Xo(q, q', ~)+ y XO(q, q" ~)U(q")X(q" q', ~),
q"
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u„(z)*u„,(z) = g A (k„k,')exp(img oz),
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where the periodic functions u are defined through
Pk (z)=uk (z)exp(ik, z)

To demonstrate the main phenomenon, we will now
consider the case of a modulated one-dimensional elec-
tron gas (1DEG). This is an experimentally realizable
system, since superlattices of quantum wires (1DEG's)
can now be fabricated, ' and modulated as discussed
above.

To simplify analysis we consider here a system with
only two minibands. The energy is then given in the
extended-zone scheme by

sik, i=(fi'zk/2m*)+ UF(k, ), 0& ~k, &go, ()
F(k, ) = [B sgn(B—) I/B'+ U ] /U,

B =(A' /4m )go(go —2
~ k, ~ ),

where U is the first component of the Fourier expansion
of the periodic potential. For the model total potential
Vcos(goz), U = V/2. Then the single-particle suscepti-
bility reduces to
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as the only nonzero A are

AD= [1+F(k,)F(k,')]R, A, =F(k, )R,
A ) =F(k,')R, R =[1+F(k,)'][1+F(k,') ] .

The integration is restricted to the range where both k,
and k,' remain in the extended zone —g0 to gp. The total
density response function is given by a modified Eq. (1),

g( n, n ', co 1
=go( n, n ', cI)+ cg yo( n, n ";co iu ( n ")g( n ",n ', co 1, (8)

where the Coulomb factor is' u(n)=(2e /c, )Ko(q„d), d
being the width of the wire, q„=q+ngp, and c is the
dielectric constant of the semiconductor. In matrix nota-
tion, g can be expressed in terms of the single-particle
susceptibility yo as y =go(1 —ufo)

We now turn to finding the modifications of the elec-
tron distribution function under the inhuence of the
current-driving electric field. The problem of trans-
port in lower-dimensional systems (including modulat-
ed systems) has been explored with a variety of ap-
proaches. However, to illustrate the main fea-
tures of the phenomenon studied here, the exact
knowledge of the distribution function is not necessary.
It su%ces to realize, that in this dim ensio nally re-
stricted case at T=O, electrons in the occupied mini-
band cannot contribute to conductivity, and their
distribution function effectively remains unchanged.
In contrast, the distribution function of the higher
partially occupied miniband generally shifts as individ-
ual electrons acquire extra momenta towards the field,
and distorts due to various scattering effects. The
key feature, here, is that as a result of the applied elec-
tric field, a gap of allowed states opens (in k, ) below
the shifted distribution. We model this by assuming

det(1 —Uyo) =0, (9)

which makes g diverge.
Figure 1 depicts the dispersion relation [Re(co) vs q]

and the growth rate [Im(co) vs q] obtained from Eq. (9)
for various energy gap sizes, for kd, =0.35k+ and
g0=1.8k+, where kF defines the wave-number scale in
terms of the (average) linear density n through
k~ = (m/2)n Th. e frequency and energy scales are
defined in terms of co~ =erik~/2m '. The Fermi energy for
the system is E~( U, go ) = e( k, =k„) from Eq. (8). The
most striking, and essential, feature of these results is that
the instability occurs at much lower drifts than in all pre-
viously studied cases of unmodulated semiconductor sys-
terns. The mode is acoustic, with phase velocity
cu/q ~ vz, almost independent of U. The growth rate at-
tains a maximum value at q =q „=kd„, and drops back
to zero near qo=kd„+(k~ —go/2), which represents the
largest q jump a particle from the drifted distribution can
make. For larger U the growth rate develops a two-
peaked structure, with the peak strength diminishing as
U is increased. For typical parameters, near q
Re(co) =10' —10' sec ' and Im(cu) = 10"—10' sec ', in-
dicating a strong instability. The onset of this instability
occurs for kd„as low as 0.22kF for U/A'co~=0. 1, and
even smaller values for smaller U (e.g. , 0.12kF for
U/ficoF=0. 01); these values are almost a factor of 10
below the threshold for an unmodulated system.

We can expect to understand the above results,
at least to zeroth order, by considering the case
of a uniform 1DEG with a simulated distribu-
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FIG. 1. Mode frequency 0=Redo/coF (solid lines) and
growth rate 1 =Imps/coF (dashed lines) vs Q =q/k„ for
U/AcoF =0.01, 0.05, 0.08, and 0.12. Material parameters are
m /m, =0.0665, v=13.1, and d=200 A.

f„=8(EF—
Ek )8(go/2 —~k, ~

) in the lower miniband,

and fk =8(E+—Ek. )8( k, ~

—go/2) in the upper mini-

band, with k'=k, —kd for k, )g0/2+kd or k, & —gp/2
and k'= kd —k, +g0 for g0/2 & k, &gp/2+ kd. The
momentum shift kd =eE~/A, where ~ is the effective col-
lision time.

The system becomes unstable when the amplitude of
the induced charge diverges, which is a result of diverg-
ing y(n, n', cu) W. e have obtained the dispersions of un-
stable modes by searching for complex solutions [co vs q,
with Im(co) )0] of
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tion function fk
= 0(go /2 —

I k, I ) +8(k, —kd„+ k~ —
go )

—8(k, —kd„k—~). For drifts kd )k~ g—o/2, this faith-
fully represents the physical distribution function of the
modulated 1DEG system with a small U, under the
influence of the applied constant electric field. The veloc-
ity gap that opens up due to the drift assures the ex-
istence of a plasma instability for the simulated distribu-
tion function as a corollary of the Penrose criterion. In
fact this is an illustration of a uelocity gap instability
which we have discussed earlier in another context. '

The susceptibility can be evaluated analytically and the
resulting mode structure and the growth rate agree very
well with the results for the modulated system for small
Uin Fig. 1.

The plasmon growth rates, shown in Fig. 1, represent a
balance between generation of plasmons due to the down-
ward single-particle transitions (from the upper mini-
band), and absorption of plasmons due to the upward
transitions. For larger U, the flattening of the minibands
leads to an increased density of states near the Brillouin
zone, and a corresponding increase in interminiband ab-
sorption transitions. Both normal and umklapp transi-
tions occur with increasing strength, and counter the
basic velocity-gap instability, represented by the upper
( U =0) curve. The difference between the various U
curves quantitatively represents this effect of increased
absorption. The "dip, " which remains near
q;„=kd„—(k~ —go/2), is caused by the strong absorp-
tion due to upward transitions from the top of the lower
miniband to the top of the velocity gap. For a sufficiently
large U the overall balance shifts in favor of absorption,
destroying the instability for all q.

The simple interpretation of this plasma instability as a
velocity-gap instability gives us a general insight, which
can be extended to modulated systems with several mini-
bands, and in more than one dimension. The physical ve-
locity of a group of Bloch electrons of momentum =k in
a given miniband n is given by u„k=(1/R)de„j, /dk.
Each miniband has point of maximum slope defining the
characteristic maximum velocity the electrons in this
band can achieve along the direction of the periodicity.
In the one-dimensional system, when an external field is
applied, the distribution merely shifts by a constant
amount kd„but due to the periodicity in k space, there is
no change at all in the overall momentum distribution of
the completely filled minibands (at T=O), since fk =1 in
the entire Brillouin zone. The electrons in the partially
filled uppermost miniband, on the other hand, do respond
to the external field and in the process acquire large ve-
locities: v(k)~v(k+kd„). This is illustrated in Fig. 2
for the one-dimensional two-miniband system, where the
velocity space distribution functions,

in terms of the effective velocity distribution function

f (u) which now includes integration over the perpendic-
ular momenta. This expression for the susceptibility is in
the standard form as obtained in classical plasma
theory, and properties of f (u) thus (approximately) pro-
vide the instability criteria for the modulated system.

It should be noted that the key to achieve this instabili-
ty is to partially fill the uppermost miniband in such a
way that the applied field will significantly increase the
velocity of these particles. This necessarily requires that
the Fermi level be well below the point of maximum ve-
locity of that miniband. Thus the filling factor k, /(~/a),
where E(k, ) =e~, has to be just slightly greater than an
integer; this condition will be described as "filling factor
resonance. "

This instability should occur in modulated 1DEG, and
LSSL. It might also occur in the 2DEG modulated in
one direction, even though interminiband transitions
would fill up part of the velocity gap. This filling may not
be substantial under some conditions, and a population
inversion in velocity space may still exist, leading to an
instability through inverse Landau damping.

In a recent experiment' negative dynamic resistance
has been observed in a LSSL. In a high-electron-mobility
transistor (HEMT) structure (GaAs/Al„Ga, ,As modu-
lation doped heterostructure) the gate was made of a la-
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ponent ( n = n
' =0) of the susceptibility, Eq. (5) reduces

to
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y (q, co)- dk, dU'
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f(v)= g f„(v), f„(u)= y 0
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are displayed with and without drift. The formation of
the velocity gap is quite evident.

For small q, and small U (and taking the perpendicular

Q =0), it can be shown that the only significant com-

v/v

FIG. 2. Velocity space distribution functions for
U/AmF =0.1, go= 1.8kF. (a) kd„=0. Individual miniband pop-
ulations (dashed lines); total (solid lines). Note f ( —u) =f (u).
(b) kd„=0.35kF. Now the minibands have no overlap. Lower is

same as (a), upper has all particles near U = 1.25UF.
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terai metallic grid of period of 0.2 pm. When polarized,
this grid "imprints" a density modulation of the same
period in the 2DEG in the HEMT channel. It was es-
timated that the potential modulation can produce mul-
timiniband occupation. At low temperatures the nega-
tive dynamic resistance was observed in a narrow-gate
voltage domain. An explanation in terms of sequential
tunneling was proposed. The current-driven plasma in-
stability due to a velocity gap, as discussed above, could
occur in such a system for appropriate parameters. A
large enough kd, can be achieved in this experiment
within their range of applied voltages. The filling-factor
resonance condition can be met by tuning the gate volt-
age, which changes the Fermi energy. One possible test
of the occurrence of such a plasma instability would be
emission of sharply peaked radiation by applying a grat-
ing coupler with wave number q

Another experiment' could also provide a system
where the existence of such plasma instability could be
explored. In this experiment broadband far-infrared
emission induced by a weak periodic potential was ob-
served in high-mobility GaAs/Al Ga, As heterostruc-
tures. This radiation was ascribed to the Smith-Purcell-
type of emission. For a sufficiently strong potential
modulation, and by varying the density to achieve the
filling-factor resonance, the conditions for the existence
of this instability might be realized. Far-infrared emis-
sion can then be obtained by employing a grating coupler
with a period equal to 2~/q, „, where q „is the wave
number corresponding to the maximum growth rate of
the plasma waves. The frequency of emission will be
co Q v ph where U „h is the phase velocity of the plasma
mode slightly higher than the Fermi velocity of the sam-
ple. This emission would be more efficient since it is
coherent radiation due to a collective mode, to be con-
trasted with the individual particle origin of the broad-
band Smith-Purcell-type of emission.

We have shown the feasibility of a current-driven plas-
ma instability in a modulated one-dimensional system,

with a much lower driving field than is required in un-
modulated systems. For samples of high mobility ( —10
cm /V sec) and with Fermi velocity vz —10 cm/sec, elec-
tric fields of the order of a few V/cm would suffice in-
stead of the much larger several tens of V/cm for an un-
modulated system. Typical threshold current densities
are of the order of 10 A/cm and the current is —10 A.
Unlike the unmodulated systems, the instability here is
achieved in the domain of essentially cold electron trans-
port, since the (frozen) lower minibands are unchanged
and the heating of the upper miniband electrons is only of
the order of (kd„/k~) sF=(0. 1)EF. If the instability
occurs, it can be detected and exploited in many ways: it
can be detected through the emission of coherent elec-
tromagnetic radiation as already mentioned, or by Ra-
man spectroscopy, and it can be employed to develop ra-
diation sources in submillimeter wave range or to achieve
amplification of radiation in that range.

We now comment on a number of relevant points. (i)
The modulation strength U has to exceed the thermal
broadening, as well as the change in energy across one
period under the inhuence of the applied field. The latter
condition is easily met for high-mobility systems. In ad-
dition, we note that the effective field in the interior will
be significantly screened. ' (ii) In higher-dimensional sys-
tems U has to be strong enough to moderate the effects of
scatterings which tend to redistribute the miniband popu-
lations. (iii) The calculated growth rate should exceed
the inherent electron-phonon or impurity-electron col-
lision frequency to achieve instability. (iv) The velocity-
gap plasma instability studied here must not be confused
with the Bloch oscillations, ' * which can develop in
high-mobility modulated lower-dimensional systems sub-
jected to an external electric field sufficiently strong to
displace electrons across the entire Brillouin zone.
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