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Explicit expressions for the oscillatory behavior of the magnetoconductivity, associated with the mag-
netophonon resonance effect in quantum wires, are obtained in the case of polar—optical-phonon scatter-

ing, by taking the linear-response limit of the results of nonlinear-response theory [Phys. Rev. B 44
11328 (1991)] developed previously. The magnetoconductivity o, consists of two types of contribution;

]
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one is related to the current carried by the electron hopping motion between the localized states, and the
other is caused by the electron nonhopping motion within the localized states through the electron-
phonon interaction. In both cases, the dependence of the magnetoconductivity on the phonon occupa-
tion number and the coupling constant of the electron—optical-phonon interaction is investigated. The
results obtained here are compared with the work of some other authors.

I. INTRODUCTION

Recently, magnetophonon resonance (MPR) effects in
low-dimensional systems' ™3 received much attention
from both experimental and theoretical points of views.
However, so far, only a few attempts have been made to
investigate the MPR effects in a quasi-one-dimensional
electron gas (QIDEG). Vasilopoulos et al.* have studied
MPR effects in Q1D quantum-wire structures assuming a
parabolic confinement potential of frequency Q, based on
the Kubo formula® and the quantum Boltzmann equa-
tion,? and their calculations revealed that the ordinary
resonance condition wyo=Pw, is modified to w; =P,
where P is an integer, w;g and o, are the longitudinal-
optical-phonon (LO-phonon) frequency and cyclotron
frequency, respectively, and @, is the renormalized cyclo-
tron frequency given by @, =(w?+Q?)!/%. Therefore, the
position of the peaks gives information about the
confining frequency. It should be noted that only one
contribution with respect to the magnetoconductivity is
included in the expression appearing in Ref. 4, which is
valid for weak confinement potentials. In 1992, Mori,
Momose, and Hamaguchi® presented a theory of MPR
for the same model as treated by Vasilopoulos et al.,* by
utilizing the Kubo formula and the Green’s-function
method.” A numerical analysis with respect to the mag-
netoconductivity has been performed for weak and strong
confinement potentials by introducing the current-density
operator due to the electron-phonon interaction and
confinement potential. It should be noted that in the for-
mulation of Mori, Momose, and Hamaguchi,(’ an analyti-
cal calculation with respect to the MPR effects has not
been made explicitly. Concerning the MPR effects in
Q1D quantum-wire structures, we are not aware of
theoretical work other than that of Vasilopoulos et al.*
and Mori, Momose, and Hamaguchi,6 and it is clear, in
general, that the investigation of such effects is at an ini-
tial stage both experimentally and theoretically. There-
fore, we are motivated to present an alternative approach
to the analysis of MPR effects in Q1D quantum-wire
structures. The purpose of the present work is to investi-
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gate analytically the MPR effects in Q1D semiconductor
quantum-wire structures, by taking the linear-response
limit of the results of nonlinear-response theory®
developed previously, to understand the unusual behavior
of the MPR line shape (e.g., conversion of MPR maxima
into minima, and MPR peak shift due to the parabolic
confinement potential), and to compare our results with
those of other authors obtained by the different methods.

II. MODEL FOR A QUANTUM WIRE

We consider the transport of an electron gas in a Q1D
quantum-wire structure, where a static magnetic field
B(||Z) is applied to the wire. For the sake of simplicity,
the confinement of electrons with respect to the quantum
wire is modeled by a triangular potential well (such as
that realized in heterostructures) in the z direction, which
leads to electronic subbands, and by a parabolic potential
well with the confining frequency  in the y direction.
The conduction electrons are free along only one (x)
direction of the wire. Here we assume electron densities
such that only the lowest subband with one-electron ener-
gy E? is occupied. Applying the effective-mass approxi-
mation for conduction electrons confined in the quantum
wire, the one-particle Hamiltonian (4, ) for such electrons
together with its normalized eigenfunctions (|A)) and ei-
genvalues (E, ), in the Landau gauge of vector potential
A=(—By,0,0), are given, respectively, by*

c=(p—eAP/2m*+m*Q%?2/2+Hy(z) , (1)
[AY=|N,k,,0) =dn(y —y,)explik,x Wo(z)/V'L, , )
E\=E,_o=(N+1/2Yio, +#k}/2m +E? (3)

where p is the momentum operator of a conduction elec-
tron. Here N denotes the Landau-level index, where
&, =02+ Q%% and m=m*®&:/O? denote the renor-
malized cyclotron frequency with respect to the cyclotron
frequency w.=eB/m* and the renormalized mass with
respect to the effective mass m* associated with the
confining frequency (), respectively. Also ¢xn(y —y;)
represents harmonic-oscillator wave functions, centered
at y =y, =—bl3k,. Here k, is the wave vector in the x
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direction, b=w,/®,, and Iz=(#/m*®,)""* is the
effective radius of the ground-state electron orbit in the
(x,y) plane. For Wy(z) we take the usual variational wave
function Wy(z)=b3"%z exp(—byz/2)/V2 with average
thickness (L,)=3/b,. The dimensions of the sample
are assumed tobe V=L,L,L,.
III. MAGNETOCONDUCTIVITY ASSOCIATED
WITH RELAXATION RATES

We want to calculate the static electric conductivity
component o,, for the QIDEG system, subjected to
crossed electric E(|[X) and magnetic B(||2) fields, by tak-
ing the linear-response limit of the results of nonlinear-
response theory derived in Ref. 8 and considering the fol-
lowing matrix elements in the representation (2):

AL A P =(e Q% /o, Vyi8:
+(elgw, /V2P[(N+ 18y p 11+ N8 ay], (@)

where j, = —(e/m*)(p, +eBy) is the x component of a
single-electron current operator and the Kronecker sym-
bols S}LI,AzsNI,NSkl ,kXSO'vO and 81.',7\.t1 = SN',N:tISk;kaSO',O

indicate the selection rules, which arise during the in-
tegration of the matrix element with respect to each
direction. It should be noted that the matrix element
with respect to the current operator in Eq. (4) is directly
proportional to the dc magnetoconductivity, which con-
tains two types of contribution as follows: one corre-
sponding to the first term of the right-hand side in Eq. (4)
is related to the current carried by the electron on hop-
ping motion within the localized cyclotron orbits, and the
other corresponding to the second term is caused by the
current carried by electron hopping motion between the
localized cyclotron orbits. Considering the selection
rules of Eq. (4) above, we can see that the sum over the A,
state in Eq. (2.31) of Ref. 8 includes the A,=A (=) and
Ay=A=x1 terms. Furthermore, separating the sum over
the A, state in Eq. (2.31) of Ref. 8 into two types of con-
tribution, carrying out the Cauchy integral in the same
equation, and taking the Ohmic condition E—O0 in Eq.
(2.29) of Ref. 8, the complex transverse conductivity for-
mula for the Q1D version is obtained, as it appears in Eq.
(2.39) of Ref. 8, as

ol =(1/V) lim 3 {[f(Ey)— f(E)]/E,—Ey}

x -0 AN

xijk’<7xA'A(Ex ) )phs)\’ktl ’ (5)

ot =( “B/V)Elimo S AEDN—FE) sl TearlEx)pn »  (6)
x TV A

where X,;. =(A|X|A') for any operator X, (- ),
denotes the average over the phonon scatterings,
B=1/kyT with kp being Boltzmann’s constant, and
f(E,) is a Fermi-Dirac distribution function associated
with the state A of Eq. (2) and the energy E;, of Eq. (3).
Also, limEx _o.(E,) is the Laplace transform of

jx(tlh,+v+H,). Here v and H,, are the electron-
phonon scattering potential and the phonon Hamiltoni-
an, respectively. Noting that the detailed derivation of
(Jx(E,)),n is given in Sec. III of Ref. 8, we find that,

from Egs. (3.46), (3.47), and (4.38) of Ref. 8 and Egs.
(3)—(5) and (6) of the present text, the transverse conduc-
tivity o, for the Q1D version is given by the sums of the

hopping part ¢’ and the nonhopping part o™, which
are

(elpw.)?
o= = SN HDIAE) = (Ere) drins (7)
c A
oM =(#Be 0% /0?) S yIf(E)[1— F(E; )] A5y, (8)
A

where the spectral density 4 uv 1S given by
Auv:FOyv/{[EV“E#_vO}Jv]2+[FO;Av]2} (9)

for any localized quantum states p and v. It is noted that
the quantities Ty and V, play a role in determining the
width and the shift in the spectral line shape, respec-
tively. In the presence of collisions, assuming’
T, Vo<<#®w,(=E,,,—E,) and shift zero, which are
usually satisfied and which is in fact the condition for ob-
serving the oscillatory behavior of MPR, the spectral
densities in Egs. (7) and (8) can then be approximated as
Lot /(Aim, ) and 1/T,,, respectively. To express the
dc magnetoconductivities of Egs. (7) and (8) in simpler
forms, we assume that the f’s in Egs. (7) and (8) are re-
placed by the Boltzmann distribution function for
nondegenerate semiconductors, i.e., f(E;)=fy(k,)
NCXP[B(EF_EN,kX,o)], where Eyy o0=(N + 5,
+#k2/2m +E? and Ep denotes the Fermi energy.
Then, we can further perform the sum over N (if N is
large) by writing 3N exp(—aN)=—(3/da)3exp(—aN)
and summing the geometric series, and carry out the one
summation with respect to k, in 3y k, by making use of

the following relation: 3, —(L,/2m) [ ---dk
Thus, we obtain

ot ~[(e®5 bl NIP) /8%(#i5, P AT ors1n » (10)
o™ ~[(16me*Q*mIyN/PA) /bow, [[Ton] !, (11)

where A=b,/8wfiw,. To derive Egs. (10) and (I1)
we utilized the electron density* given as N/P
=v/mL2/8w#*Bexp[BEr—E?)]/sinh(B#id>,/2)  and
approximated the factor 1 — f(E, ) in Eq. (8) by 1 (nonde-
generate limit) since polar-optical phonons are dominant
at high temperatures. We note that the transverse mag-
netoconductivity o,, is, as seen from Egs. (10) and (11),
related to the two different relaxation rates Ty . ;; and
Tpiu- The electronic transport properties (e.g., electronic
relaxation processes, MPR effects, etc.) in the QID
quantum-wire structures can be studied by examining the
behavior of T, as a function of relevant physical parame-
ters introduced in the present theory.

x*

IV. MAGNETOPHONON RESONANCES

For the calculation of the relaxation rates T, 1, and
Ty, for a specific electron—LO-phonon interaction in
Egs. (10) and (11), we need the interaction potential C(q)
for polar—-LO-phonon scattering given by the Froh-
lich interaction potential:*® |C(q)|*=4mati(#iw.o)*/?/
[(2m*)12Vg®]= A /[V(g?+4q2)] with 4 and a being
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the constant of the polar interaction and the dimension-
less electron-phonon (polaron) coupling constant, respec-
tively, and the following matrix elements in the represen-
tation (2):

|(K|exp(iiq-r)]k’>|2=|JNNv(u)|2[J(iqz)]25k, K Tq (12)
© 2
[J(iqz)]2=) [ ws@exp(tig,2 ) y(2)dz |, (13)
[J(g)] o
2 =(L,/2m) -+ dg,
% qi+q? I e
by = b,
= Lz/2 Ty T T w z TS s
( ) pERY: (L /Zw)qil(r) (14)
|JNN,(u>P=<N,,!/Nm!)e*uu”m‘”"[L,i’nm‘N" (W], (15)

where r=b,/q, with ¢2=¢}+gq}, N,=min{N,N'},

N, =max{N,N'}, u =I3(b*q2+q2)/2, and L}M(u) is an
associated Laguerre polynomial.loy We assume that the
phonons are dispersionless (i.e., fiw =~ fiwy o~ const,
where @y is the polar—LO-phonon frequency) and bulk
(i.e., three-dimensional). Therefore, we have neglected
any changes in the electron-phonon interaction brought
about by the Q1D confinement of the electrons and the
surface-roughness effect. The detailed derivation of the
relaxation rate and its general expression in the lowest-
order approximation for the weak-coupling case of an
electron-phonon system can be seen in Eq. (4.39) of Ref.
8. Using Eq. (12), the Q1D version of this quantity asso-
ciated with the electronic transition between the state
|A;) and |A,) can be evaluated as

Lo, =73 3 [C@P Ty, n(u) T (g )N+ D[N, — N'Vid, + {#2h 3, —#2kpx — g, 1P} /20 — ooy o)

q VFE,

+NoS[(N, —N" i, + {#2k3, —# (ko +q,)*} /2 + i 0])
+73 3 1C@P Uy, (WP (g)PUNo+ SN’ — Ny Vi, + {#(K 1 - g5 )* = #k 3} /2m + o]

q NFA

+NoS[(N'—Ny)ioo, + {#:(ky, +q, ) —#ki, } /2m —fioo]) , (16)

which is due to the inelastic scattering in the collision
processes. Here N’ indicates intermediate localized Lan-
dau states and N is the polar—LO-phonon distribution
function given by N =[exp(Bfing)—1 17! with 0= 010
The energy-conserving 8 functions in Eq. (16) imply that
when the electron undergoes a collision by absorbing en-
ergy from the field, its energy can only change by an
amount equal to the energy of a phonon involved in the
transitions. This in fact leads to the MPR effect, whereby
fiw, >T [or @,7>>1] is satisfied. Proceeding as in
Vasilopoulos et al.* with respect to the summation over q
in Eq. (16), making an approximation N'+1~N"' for very
large N’, and setting N'—N = —P in the emission term
and N'—N =P in the absorption term, the relaxation
rates Ty 412 and T, can be written in a simple form:

o= AAIF)2Ny+1) 'S (8(P +wr0/@,)
P
+8(P —w0/@,)} , 17

Poun=2AAI(N2N,+1) 3 8(P +op0/d,) . (18)
P

As seen from Egs. (17) and (18) the transverse magneto-
conductivity [(10) and (11)] shows resonant behaviors:
MPR at P&,=w;o. The above conditions for the
MPR give the resonance magnetic fields (i.e., the MPR

peak positions at) Ep: Ep =1/B2—(m*Q/e)*/P, where
Bp(=m*wy/eP) is the fundamental magnetic field for
the ordinary MPR (no confinement in the y direction).
We see that the effect of confinement in the y direction
for the Q1D quantum-wire structure is to shift the ordi-
nary MPR peak position to lower magnetic field. Fur-
thermore, it is very interesting to point out that, for fixed
confining frequency (), the relative peak shift
(AB)?/Bp[=1—{1—P>Q/w;5)*}'/?] increases strong-
ly with increasing P or decreasing magnetic field, where

(AB)’=B,—B, denotes the MPR peak shift. These
characteristics for the MPR peak shift are identical with
those indicated by Vasilopoulos et al.* The remarkable
point is that the relaxation rates T'g; 4, and Ty, have
identical characteristics with respect to the MPR peak
shift. Note that the relaxation rates diverge whenever the
conditions for the MPR are satisfied. These divergencies
(associated with the complete quantization of the elec-
tron energy spectrum [cf. Eq. (3)] in the presence of a
magnetic field and the confining frequency) may be re-
moved by including higher-order electron-phonon
scattering terms or by inclusion of the fluctuation effects
of the center of mass.!! The simplest way to avoid the
divergencies is by introducing a width parameter y so
that each & function in Egs. (17) and (18) is approximated
by Lorentzians of width and shift zero. Employing this
collision-broadening model*® and  applying Poisson’s
summation formula'? for the 3, in Egs. (17) and (18) we
then obtain

¥ %o

>

I~“0A+1;\=l~"OMzZAAI(r)(2NO+1)\1/
o, @,

, (19)

where

W(a,b)=1+2 3 e >™cos(2msb)

s=1

sinh(27a)
= . 20
cosh(2ma)—cos(2mbd) (a>0) 20)

To obtain the width parameter y, we assume the width
parameter ¥ to be the same for all associated states and
approximate I’y on the left-hand side of Eq. (19) as y.
Then, considering W(y /#®.,w;o/®.)=coth(wy /#®,)
for w;o=P@, and utilizing cothX ~1/X+X /3—X3/45
for X << 1, the resonance width y is given by the approxi-
mate result
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y=(15{(1—A)+[(1—A)+4/5]'?} 209) i,
with
A=12(%&,)? /[ AboI(r)(2N,+1)] .

Inserting Eq. (19) into Egs. (10) and (11) we obtain the
magnetoconductivity o, given by the sum of the hop-
ping part o”, and the nonhopping part o™ as

2 45, Th
oho~ 22 208 N+ DNPI( |-, 2| 21
il Fid>, ) to, @,
o™ ~ (87e2Q*mly / Abod, )
-1
XN/ [(2Ny+ DI (W | L, 220 (22)
fio, o,

It should be noted that the amplitude of the magnetocon-
ductivity in Eq. (21) is somewhat different from the
theoretical result of Vasilopoulos et al.* with respect to
the confining potential and/or temperature dependence.
However, if N =0 is assumed in Eq. (7) and we take the
high-temperature limit so that

SEN)—f(Ey 4 )=[1—exp(—BAo ) f(E))[1—f(E;+,)]
~phi. f(E,)

in Eq. (7), the term [1/(%®,)*] in the amplitude in Eq.
(21) is replaced by B/#iw.. Therefore, we can expect that
Eq. (21) gives an identical result to that of Vasilopoulos
et al.* if any approximation has been made. However, it
should be noted that the contribution with respect to the
magnetoconductivity, which has not been considered by
Vasilopoulos et al.,* is included.

V. CONCLUDING REMARKS

In this work we have presented a theory of MPR for
electron—polar—LO-phonon scattering and derived the
analytical expression describing the MPR effects of
QIDEG formed in quantum-wire structures, by taking
the linear-response limit of the results of nonlinear-
response theory developed previously.® As seen from Eqgs.
(10) and (11), the transverse magnetoconductivity o, ap-
pears in the form of two types of contribution associated
with the selection rules of the current-density operator.
The transverse magnetoconductivity o’ is directly pro-
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portional to the relaxation rate Ty, ;;, while the trans-
verse magnetoconductivity o™ is inversely proportional
to the relaxation rate T'y,. The amplitude of the relaxa-
tion rates (Toy 412, Loan) given in Eq. (19) is directly pro-
portional to the coupling constant (a) of the electron-
phonon interaction and the phonon occupation number
(No) and hence o is directly proportional to a and N,
while o™ is inversely proportional to a and N,. These
results agree with the theoretical results*® obtained from
a different approach to the same model system. It should
be noted that Vasilopoulos et al.* did not consider the
effect of the o™. The relaxation rates (Tgy 43, L oan) for
polar—LO-phonon scattering show the Q1D MPR at
P&, =w; . Here P is an integer. Since o, <@, for 1> 0,
the resonances are shifted to smaller magnetic fields.
Furthermore, the dependence of the magnetocon-
ductivities o” and o™ on the oscillatory term
Y(y /#d,, w1 0/®, ) is inversely proportional to each oth-
er. Therefore, we can expect different oscillatory
behaviors for o, and o™. It is noted that our result for
the relaxation rates (T'gy;,Top+12) and hence o, is tied
to the following approximations: negligence of any
modification of the electron-phonon interaction brought
about by the confinement of phonons, and of any
influence due to surface roughness. In addition, another
approximation has been made with respect to the summa-
tion over q of Eq. (16), as Vasilopoulos et al.* did, which
is valid for the weak confinement potential. There are
several important issues under continuous study, includ-
ing impurity scattering, acoustic-phonon scattering, the
MPR shift due to dynamical screening (plasmon-LO-
phonon coupling), and the MPR shift’ due to the in-
tracollisional field effect at strong electric fields only. We
shall consider these effects elsewhere.
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