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from superlattice transport studies
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Measurements of quantum corrections to the magnetoconductivity in two superlattice samples of
GaAs/Al Gai As difFering in the Al Gai As alloy composition (and therefore in the miniband
width) are reported. The sample with a smaller bandwidth displayed a larger correction to the
magnetoconductivity; however, this result cannot be described by a two-dimensional theory. Using
both a systematic and a detailed analysis of the transport data, we find that weak-localization (WL)
rather than electron-electron interactions dominates the quantum transport corrections. An exten-
sive quantitative interpretation of the transport results is done with an advanced weak-localization
theory for superlattices, incorporating dopant distribution, wave-function modulation, and a higher
magnetic-field range beyond the eikonal approximation. However, this advanced theory still assumes
a b-function impurity scattering potential. The theoretical fits to the data are not compatible with
the as-grown impurity profiles, but are best fit with an effective uniform impurity distribution. While
silicon dopant migration smears the impurity profile, we think some effect comes from the inade-
quacy of the point-scattering assumption commonly adopted in WL theory, which suggests that the
long-range potential scattering in WL effects is operative.

I. INTRODUCTION

Weak localization (WL) is caused by quantum in-
terference of the conduction electrons undergoing diffu-
sive scattering from defects in a system. ' In epitaxially
grown heterojunctions the short-range scattering due to
interface roughness is negligible and it is assumed that
the scattering comes from doping impurities placed in the
barriers. In the case of superlattices with the same mean
free path as the superlattice spacing it is not obvious
that the ionized impurities dominate interface roughness
scattering. Surface roughness can be simulated by plac-
ing scattering centers at the interface (as we do in this
paper), so that only potential scattering is considered.

Although the theory of WL can be formulated for a
general impurity potential, WL corrections to conduc-
tivity have only been derived for b-type point-scattering
centers. This assumption might be adequate for metal
film systems where very strong screening exists, but it is
clearly suspect for semiconductor systems.

Part of the appeal of the WL theory is that it is
material independent, neglects band-structure details,
and makes contact with system properties through phe-
nomenological parameters. This leaves a great deal of
freedom when describing gross features and gives the
possibility for quantitative "agreement" between theory
and experiment. (The qualitative agreement is beyond
doubt. )

Future progress in the subject relies on studying sys-
tems where more detailed microscopic information is
available. Specifically, in this paper we consider superlat-
tices with as-grown controlled impurity distributions. We
have studied magnetoconductivity in two samples with
potential barriers of different heights and therefore of dif-
ferent miniband widths. This feature determines the elec-

tron wave-function penetration into classically forbidden
regions and consequently an effective impurity scattering
range. Throughout the paper we stress the bandwidth
dependence of the conductivity. The measured tempera-
ture dependence of the Hall constants and zero-Beld con-
ductivity exclude a signiBcant contribution from the in-
teraction effect. The electron-electron interaction theory
predicts that the temperature changes of the conductiv-
ity have an opposite sign to those of the Hall constants
in contradiction to the observed data. Also, the tem-
perature dependence of the zero-field conductivity data
corroborates the magnetoconductivity results and rules
out the applicability of two-dimensional (2D) theory. Fi-
nally, we compare the experimental results with a re-
cent theory that incorporates the superlattice structure
in the z direction by taking into account impurity pro-
file and electron wave-function modulation. This theory,
however, still assumes a pointlike scattering mechanism.
From comparisons of the experimental results with the
theoretical predictions, we conclude that the assumption
of a pointlike scattering is not compatible with the ex-
perimental data if the nominal (as-grown) dopant distri-
bution is assumed. We make this statement on the basis
of careful measurements and the use of state-of-the-art
WL theory.

The above-mentioned disagreement can be ascribed
to two factors. The real dopant distribution is much
broader compared to the nominal one due to silicon
dopant migration. The second factor is the importance
of a weakly screened, long-range potential for ionized-
impurity scattering that has long been established in
classical transport. In order to address these points, we
have organized this paper as follows. In Sec. II the char-
acteristics of the superlattice samples are presented and
experimental procedures are described. Section III ad-
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dresses the Hall constant as a function of magnetic field
and temperature. In Sec. IV we present the magnetore-
sistance data and analyze it with superlattice specific
models. Also, the theoretical analysis of the magneto-
conductivity allows us to determine the dephasing time
as a function of temperature. In Sec. V we present zero-
field conductivity measurements, and we close with con-
clusions in Sec. VI.

II. SUPERLATTICE SAMPLES AND
EXPERIMENTAL PROCEDURE

Transport measurements presented in this paper were
performed on two n-type GaAs/Al Gai As superlat-
tices designated as SLN and SLW [N indicates high bar-
rier (narrow miniband) and W low barrier (wide mini-
band)]. They were grown by molecular-beam epitaxy
(MBE) on a semi-insulating Cr-doped GaAs substrate
with a 120-nm undoped GaAs burr. The superlattices
consisted of 30 periods of four layers each: 18.8-nm un-
doped GaAs, 1.0-nm undoped Al Ga~ As spacer, 1.8-
nm Al Gai As doped with Si (1.0 x 10 m ), and
1.0-nm undoped Al Gaq As spacer. A 100-nm undoped
GaAs cap layer was deposited on the top of the super-
lattice structure. The cross-sectional view of a repre-
sentative superlattice structure is shown schematically
in Fig. 1. The alloy composition was x = 0.3 in SLN and
x = 0.1 in SLW. An x-ray scan performed on SLN gave
a measured superlattice period of 22.3 nm which agrees
very well with the nominal value of 22.6 nm expected
from the MBE growth conditions.

The samples were patterned into Hall bars consisting
of three (for SLN) and two (for SLW) pairs of voltage
probes. This geometry corresponds to transport studies
in the direction parallel to the layered structure. Lateral
sizes of the samples are 9.06 x 1.225 mm and 0.720 x 0.125
mm for SLN and SLW, respectively. The Hall bar struc-

tures were fabricated by standard lithography and chemi-
cal etching. Gold wire leads were bonded to Au Geq Ni
alloyed metal Ohmic contacts.

At the interfaces between GaAs and Al Gaz As lay-
ers, conduction- and valence-band discontinuities develop
due to differences in the band gaps and electron aKnities
of the two materials. Recent studies have determined
that the conduction-band ofFset AE, (in terms of the
band-gap difFerence AE~) is AE = 0.6M,Es in the low-
T, direct-gap region. This yields AE = 0.82x (eV) based
on commonly accepted band-gap values and AE~
1.3z (eV). Hence, the mismatch in the conductance-band
edges of the superlattice component layers is found to
be EE, = 0.246 (0.082) eV in SLN (SLW). [Note: for
the remainder of the paper when two symbols are given
in which one appears in parentheses, the first (second)
refers to SLN (SLW).]

It has been reported that the miniband widths and
band-edge values from the Kronig-Penney model for
GaAs/Alo qGao 7As superlattices (but for larger mini-
band widths than in our samples) are within 10%%uo of the
values obtained from a more accurate k . p method.

In our case the band structure and dispersion relations
in the superlattices were calculated using the Kronig-
Penney model with the following parameters: elec-
tron effective mass m = 0.0667mo (where mo is the free-
electron mass), the barrier height Vb = 0.246 (0.082) eV,
the barrier width is 3.8 nm, and the well width is 18.8 nm.
The dispersion relations are very Bat and, in the case of
the ground miniband, can be accurately described by the
tight-binding formula, viz. ,

e, (k, ) = w[1 —cos(k a)], (1)
where a is the superlattice constant and m is the mini-
band half-width.

The ground miniband is located 12.0 (7.5) meV above
the potential minima. Its width 2m is found to be
1.12 (4.05) meV. The first excited miniband is formed
at the relatively large energy of 44.3 (30.3) meV and is
approximately four times wider [14.0 (4.90) meV] than
the ground miniband. The Fermi energy is calculated
from the resulting density of states and found to be
17.1 (13.8) meV (for the measured density of carriers
given in Table I). The Fermi level lies in the middle of the
band gap between the first two minibands. Its distance

TABLE I. Superlat tice parameters.

FIG. 1. Cross-sectional view of the superlattice structure.

Parameter

vb (ev)
2w (meV)

n (x10 m )
EF (meV)
kF (nm )

p(m V s )
r. (ps)
E, (nm)

kFE,
D~~ (cm s )

B, (T)

SLN

0.246
1.12
2.03
17.1

0.173
0.646
0.224
67.2
12

1.0 x 10'
0.073

SLW

0.082
4.05
1.47
13.8

0.155
0.551
0.190
51.3
7.9

6.9 x 10
0.125
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from the first excited band is large enough () 9 meV) so
that the transport contributions from the excited bands
are negligible at low temperatures (kT & 1 meV). On the
other hand, the Fermi level is located high () 9 meV)
above the top of the ground miniband which is a typi-
cal situation in highly or moderately doped superlattices.
Consequently, the Fermi surface has an almost cylindri-
cal shape. This fact simplifies the analysis of the weak-
localization eKects in superlattices and was employed in
the development of the theoretical models in Refs. 14—16.

The carrier densities in the superlattices under con-
sideration were determined from low-temperature Hall
measurements. The average Hall constant in the field in-
terval (—0.1, +0.1) T yields n = 2.03 (1.47) x 102s m
assuming a thickness of 30 x (18.8 nm+3. 8 nm). The Hall
mobilities are found to be p = 0.64 (0.55) m2 V i s

All the basic parameters of the superlattices intro-
duced and discussed above are listed in Table I, which
also contains the following entries: elastic-scattering time
w, (from the classical Drude formula), the electron mean
free path E„the disorder parameter k~8„the parallel (to
the superlattice layer structure) difFusion constant DII,
and the characteristic field for elastic scattering

shows examples of the Hall resistivity data at selected
temperatures for SLN and SLW, respectively. Experi-
mental points are represented by small squares and only
every third point is shown for clarity. The approximate
linear behavior of p „asa function of the magnetic field
is clearly seen. In order to study the Hall resistance in
more detail, the derivative of p „with respect to the
magnetic field B was calculated numerically. Due to the
statistical error (of the order of 1 x 10 Am) direct dif-
ferentiation of the data prod. uced significant scatter in the
results, thus obscuring interesting features in p „.There-
fore, a smoothing procedure was first applied. The solid
lines through the experimental points are the results of a
standard cubic spline smoothing routine. The extent of
smoothing, measured by standard chi-squared statistics
(y ), was determined from the number of data points
(y = N) with uncertainty given by o (y ) = g2¹
The derivative &" was then calculated for the smoothed
data and is shown in the same figures. Error bars added
to those plots represent the uncertainty of &" given
by o'(y ). This procedure was applied to the data sets at

B, = h

4~D~~~.
(2)

All the data presented in this paper were taken by a
pulsed dc current technique and an automatic data acqui-
sition system. A programmable current source connected
to the sample source and drain electrodes was used to
send short (500 ms), low-amplitude (1—5 pA), positive-
polarity square pulses of dc current through the sample.
Four digital voltmeters connected to various pairs of volt-
age probes around the sample (two for longitudinal volt-
ages V and two for transverse voltages V „)were trig-
gered to read near the end of each current pulse. This
sequence was then repeated with a negative-polarity cur-
rent pulse. Bipolar pulses were used to eliminate thermal
emfs. After about 1 s of settling time, this cycle of plus
and minus current pulses was repeated to obtain another
data point. In the magnetotransport experiments the
magnetic field was typically continuously changing at a
constant rate of the order of 30 mT/min while the data
were being taken.

The zero-field resistivity measurements were character-
ized by a large number of points (on the order of 1000).
Statistical analysis of this data resulted in a standard
deviation of —1 x 10 of the measured voltage for a
single data point. This corresponded to an absolute er-
ror of 100 nV which was equivalent to the resolution of
the voltmeters (in the 52 digit mode). This value was
used to determine the input data error in the analysis of
the magnetotransport results.
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III. HALL EFFECT

Hall voltage measurements of the GaAs/Al Gai As
superlattices were performed by the standard technique
for bridge-type samples while collecting magnetoresis-
tance data. For reasons discussed below, only low-field
results are relevant and are presented here. Figure 2

FIG. 2. Hall resistivity p „anddifFerential Hall constant
vs magnetic field B for SLN at T = 0.025 K (a) and

SLW at T = 0.1 K (b). Squares represent data points. Solid
curves result from data smoothing. The error bars represent
the uncertainty of the smoothed values. The dashed curves
are low magnetic-field fits of the semiclassical theory to the
experimental results.
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various temperatures. Thus the temperature dependence
of the derivative &" was determined and is presented
in Fig. 3 for SLN (a) and SLW (b), respectively. Here,
the data is plotted for constant values of B = 0 and
B = B,where B

„

is the maximum field for which
the magnetoresistance data will be analyzed in the next
section. B „=0.03 (0.06) T.

The results introduced above for the differential Hall
constant, B~ = &", show positive changes of B~ for
both the increasing magnitude of magnetic field B and
temperature T. These changes are remarkable notwith-
standing relatively large errors of 1%. For example,
B~ increases by 10% when the magnetic field changes
from B = 0 T to B = 0.1 T in SLN; similarly, a 7.5%
difFerence in B~(B = 0) is observed for temperature
changes from T = 0.02 K to T 20 K in SI.W. In
order to analyze this behavior of B~, one has to take
into consideration three possible effects: (i) the semiclas-
sical effect; (ii) the weak-localization effect; and (iii) the
electron-electron interaction effect.

3.10
SLN

A. Semiclassical effect

This effect manifests itself as a correction to B~
through a scattering factor rH defined by the equation

pxy = rH)
en

for one type of charge carrier with density n. This factor
is, in general, a complicated function of doping, temper-
ature, and magnetic field. However, for metallic systems
such as doped superlattices, at temperatures T much be-
low the Fermi temperature T~, with impurity scatter-
ing as a dominating scattering process, and in the limit
of classically weak magnetic fields ~,7 = p,B (& 1, the
scattering factor r~ is given by the following formula ob-
tained via the standard Sommerfeld expansion

('T l'
rH =&o+&il

I
+&2(pB)'

I,T~ J
where coefIicients C, , i = 0, 1, 2 are of order unity and
result from the anisotropy and energy dependence of the
scattering process involved. For example, in the model
discussed in Ref. 14, where the scattering time w(p) =
To 1 + 6 cos(p, a), these coefFicients are found to be

3.05

3.00—
B = 003 T

Cp /1 —b2
'

'9+ '
Ci ———2rI —(1 + rl),6 Ql —52

1+ b2 1 1 2 —3b2

1 —6' 2/1 —g2 1 —5' ' (5)

2.90

2.85

B = 0.0 T

SLW

where it was assumed that ro(E) oc E". The differential
Hall constant B~ —— &" acquires a similar form

1 (Ti'
I-". + &iI I

+ 3&2(~B)' .
en kTF)

4 5

4 4

4.3
0.06 T

4.2

4. 1

4.0
0.01

B = 0.0 T
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FIG. 3. The differential Hall constant &" as a function
of temperature T at fixed values of the magnetic Beld B in
SLN (a) and SLW (b). Dashed curves represent best fits of
semiclassical results to experimental data.

Field dependence. According to the above formula,
the Hall constant B~ is a quadratic function of magnetic
field B. For small fields this type of behavior is actually
observed in the superlattices studied here (see Fig. 2).
However, the experimental results can be quantitatively
explained by the semiclassical effect only if large values
of the scattering anisotropy factor b are assumed. The
dashed parabolas in Fig. 2 were obtained using the es-
timated mobilities [p = 0.646 (0.551) m V s j and
adjusting the anisotropy factor b, which was found to be
5 = 0.94 (0.90). These large values are not consistent
with the magnetoresistance data, which will be discussed
in Sec. IVC . On the other hand, this disagreement im-
plies that a more complete analysis requires the quantum
effects be included.

Temperature dependence. At temperatures low com-
pared to the Fermi temperature, the Hall constant in-
creases quadratically with temperature. Although carry-
ing relatively large errors, the experimental results follow
closely a T dependence as shown in Fig. 3. The dashed
curves in these figures were calculated using the formula
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RH —RH(T = 0) 1+ &i~
fTI
ETF )

Here, the scattering anisotropy factor is neglected (b = 0)
and the Fermi temperature Tp = 198 (160) K corre-
sponds to the Fermi energy E~ = 17.1 (13.8) meV. Thus,
the exponent g, which determines the energy dependence
of the scattering time, was found to be rI = 2.2 (1.3) at
B = 0. At finite magnetic fields the temperature depen-
dence of the Hall constant is reduced. At B = B we
find the exponent that fits the data best is 1.9 (1.2).

The processes of electron scattering from ionized impu-
rities in superlattices have not been studied so far. There-
fore, a direct comparison with a theory and/or other ex-
periments is not possible at this time. In 3D systems
with randomly distributed impurities, g varies between
1.5 for weakly screened potentials down to 0 for com-
pletely screened impurities. The situation is even more
complicated in the case of 2D systems, where the scat-
tering centers are usually displaced from the plane of
the 2D electron gas. For remote impurities, the scat-
tering time v is typically a linear function of the electron
energy while closely located scattering centers result in
7 oc E&.

The exponent g = 1.3 found in SLW falls into the range
stated above for 2D systems as well as three-dimensional
(3D) ones. SLN exhibits a larger exponent q = 2.2.
This superlattice is characterized by a narrower miniband
(1.12 meV vs 4.05 meV in SLW); electrons are more local-
ized in the well regions, and consequently ionized donors
intentionally doped in the barriers cannot be screened as
effectively as those in wide-miniband superlattices. This
qualitatively explains the difference in the exponent g.
However, it is not clear whether this large value of g
can be completely ascribed to the semiclassical effect dis-
cussed here.

B. Weak localization

A weak-localization theory of the Hall efFect has been
developed for small magnetic fields. Off-diagonal ele-
ments of the conductivity tensor required for the Hall
constant B~ were calculated in the linear-response ap-
proximation to the external fields (E,B). This proce-
dure provides only the zero-field limit of R~(B ~ 0).
Therefore, the magnetic-field depend. ence of BH cannot
be studied in detail at this time. However, an important
result is that weak localization predicts no correction to
the Hall constant at zero field, i.e. , AR~(B = 0) = 0,
independent of the dimensionality and other particular
features of a weakly localized system. This may be
simply interpreted as the absence of weak-localization
corrections to the carrier density (R~ —— —). The
importance of this result stems from the fact that the
other quantum-mechanical phenomenon described by the
electron-electron interaction theory predicts significantly
different behavior of the Hall effect.

C. Electron-electron interaction efFect

Studies of electron-electron interactions in weakly dis-
ordered systems have shown that the Hall conduc-

tivity remains unperturbed by this effect, i.e. , 40. „=0.
Consequently, the Hall constant as B —+ 0 is modified
according to

LBH Acr 1= —2
R~ 0 z~ 1 —((d~'r)

(8)

This relation was investigated experimentally and con-
firmed in Si metal-oxide-semiconductor field-effect tran-
sistors (MOSFET's), 2i where the positive changes of the
conductivity o. with temperature and electric field were
observed concomitant with the negative changes of the
Hall constant.

As shown in Sec. V the superlattices studied in this
work clearly demonstrate positive changes in conductiv-
ity with temperature. If these changes were caused by
electron-electron interactions, then one should see the
Hall constant decrease with increasing temperature
opposite to the observed behavior. Therefore, the
electron-electron interaction efFect is not consistent with
the experimental data at low fields. Also, at the maxi-
mum fields studied here (B —B „)for which Eq. (8) is
still correct, it is not plausible that the electron-electron
interaction contributes significantly to the observed ef-
fects. At this field the amplitude of the temperature
changes of Ao is strongly reduced. Therefore, any
possible changes of BH due to the electron-electron in-
teraction effect are even smaller than those at zero field.
Here, the factor [1 —(w, r) ]

i can be neglected since
~ v. &( 0.01 for B & B

The absence of temperature-dependent corrections to
the conductivity due to the electron-electron interactions
implies that the contributions from exchange effects vir-
tually cancel those from direct interactions since the two
enter the conductivity formula with opposite signs. Al-
though a theory of electron-electron interactions specified
for superlattices does not exist at this time, the interac-
tion coupling constant E can be estimated within limits
set by the expressions for 2D and 3D systems, where the
conductivity corrections are proportional to

(2 —zF) in 2D and (s —zF) in 3D. (9)

From the cancellation condition, mentioned above, E is
found to be 3 in 2D and 9 in 3D. Consequently, in the
superlattice I" is expected to be of the order of unity.
This value will be used to estimate corrections to the
magnetoresistivity in the next section.

IV. MAGNETORESISTANCE EFFECTS

Magnetoresistance of metallic systems is normally
positive. This statement is quite general and based
on the notion of minimizing energy dissipation. Ex-
ceptions from this general rule are found in magnetic
systems where the scattering can be affected. by the
spin alignment. Also, boundary scattering may alter
the infIuence of the magnetic field on electron transport
and cause a negative magnetoresistance. In addition,
the energy arguments completely neglect any correla-
tion efFects due to the quantum nature of electron trans-
port. Therefore, negative magnetoresistance observed in
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nonmagnetic systems, where boundary scattering does
not significantly alter electron motion, bears evidence of
quantum effects.

The GaAs/Al Gai As superlattices studied in this
work provide an interesting example of such a system.
Figure 4 presents low-temperature experimental results
of the longitudinal resistivity p as a function of mag-
netic field B for SLN and SLW, respectively. To a very
good accuracy this magnetoresistivity effect is symmet-
ric with respect to the magnetic field. The small asym-
metry can be included as a linear-B component of p
(p occB) where c=jx 10 s

p (0) T i in SLN and
c = 3x 10 4

p (0) T i in SLW [p (0) is the zero-
field resistivity]. Similarly, only a very small asymmetry
of the Hall resistivity p

„

is observed at low magnetic
fields (see Fig. 2). This small asymmetry implies that the
voltage probes of the superlattice devices are accurately
aligned. Moreover, the lack of a significant asymmetric
contribution in p (B) is interpreted as the result of the
macroscopic homogeneity of the samples. As shown in

our simulations even a small inhomogeneity of sample
properties (such as the local density of carriers and/or
the scattering rate) in the direction of the current How
result in relatively large asymmetry in p (B). The one-
order-of-magnitude difference between the asymmetries
of the two superlattices can be easily explained as due to
the corresponding difference in the sizes of the samples.
The larger asymmetry is observed in the bigger sample
(containing more macroscopic inhornogeneities) of SLN,
where the size of the effective area is 2.54 mm x 1.27 mm
as compared to the 0.24 mm x 0.125 mm area for SLW.

The superlattices studied here were not intentionally
doped with any magnetic atoms and the level of residual
magnetic impurities is estimated to be below 1 x 10 m
(see discussion in Sec. IVD), much lower than the aver-
age density of Si donors ( 1 x 10 rn ). Therefore,
the negative magnetoresistance under consideration can-
not be ascribed to scattering from polarized magnetic
moments. Also, the boundary scattering is completely
negligible in this case because the width of the devices
() 100 pm) is much larger than the electron mean free
path (0.05 pm).

Consequently, the observed reduction of the resistiv-
ity with applied magnetic field should be explained in
terms of quantum corrections to electron transport. Ad-
ditional information about the superlattices studied here
is provided by the disorder parameter k~l, (k~ is the
Fermi wave vector, /, is the electron mean free path)
which is found to be —10. This parameter measures
the scattering disorder of a system and its value found
here implies that the superlattices are only weakly dis-
ordered. In this regime, the weak-localization effect as
well as electron-electron interaction effects (under spe-
cial conditions discussed below) can result in negative
magnetoresistance phenomena as has been verified in a
variety of systems. These two effects will be studied
in Secs. IV A—IV D.

A. Electron-electron interactions

(b) SLW

«

«

~t

84 — 0020 K ~

8.3
7.22

~««~
~«««V«

K
~«

~« ~«

~H
~«

~« ~
~~

~~~« ~«

~ «P «««

~«~~«

8.2 I I I I I I I I I ] I I I I I I I I I

0.0
a (T)

0.1

FIG. 4. Longitudinal resistivity p as a function of mag-
netic field B at selected temperatures in SLN (a) and in SLW

The mutual electron-electron interaction effect com-
prises several distinct corrections to the conductivity of
a weakly disordered system. With respect to magne-
totransport, these corrections are naturally divided into
spin effects and orbital effects. The spin effects become
important when the magnetic field is strong enough to
split the antiparallel electrons into spin-up and spin-down
subbands with an energy gap of g*pri B [the efFective elec-
tron magnetic moment ratio, g* = 0.522 for GaAs (Ref.
29)] larger than the thermal energy k~T This defines a.
characteristic field for the spin effects as B, = ".~ . For

g Pa
fields B ) B„negative magnetoconductivity is expected.

The orbital effects also lead to negative magnetocon-
ductivity. These effects become important when the cy-
clotron radius l = & becomes comparable to the ther-
mal length /z

——
k T or, equivalently, for fields B greater

than the characteristic thermal field Bq ——""~~ . The or-
bital effects are suppressed at fields higher than the char-
acteristic elastic field B' =

4 D . Typically B& ( B
B, and in the two nonoverlapping regions of the mag-
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netic Beld, i.e. , Bq ( B ( B, and B ) B, the electron-
electron interaction effects contribute to negative magne-
toconductivity, Ao' (B g 0) & Ao-* (B = 0).

The behavior of the magnetoresistivity Ap' (B)—
Ap* (0) can be deduced from the following expression
obtained by inverting the conductivity tensor and calcu-
lating first-order corrections due to Ao'

p' (B) —A&' (0)

&~;.(B) —&~*..(o) = —2(BI )'&~;.(o)
CTO

and is negative because the interactions always suppress
the zero-field conductivity, Aa' (0) & 0. However, this
effect is negligible unless it occurs at large magnetic fields
B = B,.

In the samples studied here, the characteristic fields
discussed above are B, = 2.85 T at 1 K, B'q

0.027 (0.039) T at 1 K, B, = 0.073 (0.125) T, B,
1.55 (2.0) T. Hence, the electron-electron interaction
effects cannot account for the negative magnetoresis-
tance because it is observed in the superlattices at fields
B & 0.1 T, much lower than B, (see Fig. 4). However,
it is possible, in general, that a relatively small positive
magnetoresistivity from the interaction efFects is super-
imposed on a larger negative magnetoresistivity due to
weak localization. This situation is discussed below.

As is evident from the values of B, the spin effects do
not contribute to the magnetoresistivity with the pos-
sible exception of very low temperatures (T & 35 mK)
and large fields (B ) 0.1 T). The orbital effects require
more detailed analysis. Unlike the case of weak local-
ization which does not involve any coupling parameters,
the interaction effects include coefIicients which measure
an effective strength of the electron-electron screened
Coulomb repulsion. In particular, the magnetoresistiv-
ity corrections from the orbital efFects are proportional
to the following coupling constant:

E 1

2 1 + P l 1.13'
2 T

(12)

where F was estimated in Sec. III C to be approximately
one. At low temperatures (T & 1 K) the coupling con-
stant g is suppressed due to the relatively large denom-

= —,[&~'..(0) —&~.'.(B) + (BI )'&~'..(B)I (»)
00

where p is the classical mobility and 00 is the classical
conductivity at zero field. Here, the absence of correc-
tions to the Hall conductivity was employed, Lo&y 0.
From Eq. (10) it follows that for classically weak fields
(B « B„where by definition B, = p i) the second
term dominates, and the negative magnetoconductiv-
ity implies positive magnetoresistivity. On the other
hand, in the field regions of B ( Bq or B ( B ( B,
the electron-electron interaction effects produce field-
independent corrections, so that Aa* (B) = Aa' (0).
Consequently, in these regions the'magnetoresistivity ac-
quires the simple form

inator, e.g. , T~ ——198 K and E = 1 result in g ( 0.13.
On the other hand, at higher temperatures (T ) 1 K)
the efFective range of the magnetic field in which the
electron-electron interaction efFects contribute substan-
tially becomes very small as B& approaches B . Con-
sequently, at fields smaller than 2B„where the ob-
served magnetoresistance efFects are large, the positive
magnetoresistance contribution by the electron-electron
interaction effects is insignificant. For example, a 2D
analysis, which significantly overestimates quantum in-
terference effects in superlattices as shown in Sec. IV 8,
yields an e-e contribution to the magnetoconductivity
that is less than 2.5% of the value measured in SLN at
T = 1.4 K and B = 0.03 T. Therefore, the e-e interac-
tion effects will be neglected in the subsequent analysis.
The absence of the electron-electron interactions in low
magnetic Beld and low-temperature experimental studies
of magnetotransport was also observed in other systems
based on GaAs/Al Gai As heterostructures. so si

B. Weak localization: 2D analysis

A semiconductor superlattice consisting of % periods
can be approximately considered as a system of N inde-
pendent, noninteracting, 2D quantum wells which, from
the viewpoint of electrical transport, form a parallel ar-
ray of conductors. Such an approach was adopted in the
past by several groups, including those observing quan-
tum corrections to conductivity. Therefore, in this
section the negative magnetoresistivity, as observed in
the superlattices and presented in Fig. 4, will be analyzed
using the theory of weak-localization in 2D. According to
this theory ' ' the magnetoconductivity corrections
are given by

Bph-
4eD~ph

(i4)

where r~b is the dephasing time, and @ is the digamma
function.

The weak-localization corrections O~p are obtained by
subtracting the classical conductivity from the total one,

Pea
&WI, =

&~~ + &~y

cl
Pxx

(~cl )2 + (~cl )2 ' (i5)

where the superscript "cl" refers to the classical compo-
nents, and we employed p „=p'„due to the vanishing
weak-localization corrections to the Hall resistivity. Fig-
ures 5 and 6 show the experimental results of the quan-
tum corrections to magnetoconductivity, EowL(B)

WL (B)—:OWL (B) —OWL (0)
B„~ (1 B i

27r2h 2 B 2 B )
B+ln

ph

where the characteristic elastic field B was defined in
Eq. (2), the characteristic dephasing field B~i, is given
by
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FIG. 5. Data vs the 2D theory of weak-localization cor-
rections to magnetoconductivity in SLN at two different tem-
peratures. Squares represent experimental points. Curves
are theoretical results of weak localization in 2D calculated
for different dephasing times 7ph.

FIG. 6. Data vs 2D theory of weak-localization correc-
tions to magnetoconductivity in SLW at two different tem-
peratures. Results are analogous to those for SLN shown in

Fig. 5.

ovv&(B) —owz, (0), obtained from Eq. (15). Here, the
classical resistivity p'~ was 4.762 (7.692) x 10 0 m.

For comparison, the same figures present theoretical
predictions calculated according to Eq. (13) and normal-
ized per one superlattice period. The theoretical curves
in each plot are drawn for three difFerent dephasing times,
7'&h. All other parameters entering Eq. (13) were deter-
mined earlier. The discrepancy between theory and ex-
periment is especially obvious at low temperatures. The
theoretical curves fitting the experimental points at very
small fields significantly overestimate the effect at higher
fields with the difFerence increasing with B. By introduc-
ing a phenomenological prefactor o. ( 1 into the theoret-
ical formula of Eq. (13) one can reduce Aowz& and make
the theory comparable to the experiment results. Be-
cause of the normalization condition for Lo~g, the pre-
factor o; would be equivalent to the fraction —~', where

and X are the efFective and real number of lay-
ers, respectively. The values of o. determined in such
a procedure vary between —0.45 for low temperature
(T ( 0.1 K) and —0.60 for high temperature (T ) 1 K)
in SLN, and between = 0.14 for T & 1 K and = 0.30
for T & 8 K in SLW. We rule out the justification of
these small prefactors as coming from the reduction of
the number of efFective 2D layers (wells). The known

geometry of the samples cannot be reconciled with the
small prefactors even in the presence of the depletion of
a few top and bottom layers due to the pinning of the
Fermi level caused by the deep Cr+ impurity levels in
the substrate and by midgap surface states at the cap
layer 12

The same problem appeared in previous work on posi-
tive magnetoconductivity (caused by antilocalization ef-
fects from dominant spin-orbit scattering) by Moyle,
Cheung, and Ong, who obtained o. = 0.3 —0.42 in
HgTe/CdTe superlattices treated as 2D systems. Also,
magnetotransport studies of 2D Si MOSFET's re-
vealed the necessity of introducing an analogous pre-
factor o. —0.3. However, as proved by Fukuyama
that; prefactor took into account an intervalley scatter-
ing efFect. This efFect is absent in GaAs-based systems
due to its simple band structure. In GaAs/Al Gaq As
heterostructures the prefactor o. was found to be
greater than 0.75 and was ascribed to superconducting
fluctuation effects. However, the same samples also re-
vealed logarithmic changes in conductivity with temper-
ature which are characteristic of 2D systems.

In our case, o. is significantly smaller than 0.75. It
also changes with temperature an effect not observed
in GaAs/Al Gaq As heterostructures. In addition,
the large difFerence (by a factor of 2) in n between
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C. Weak localization:
Analysis with superlattice-specific models
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FIG. 7. Comparison of weak-localization corrections to
magnetoconductivity in SLN and SLW. Experimental results
are presented in reduced form, AowL/o'(B = 0) vs B/B, .
The total zero-field conductivity is o(B = 0), and B, is the
characteristic field for elastic scattering.

the two superlattices strongly suggests that the anoma-
lous magnetoconductivity is sensitive to those parame-
ters of the superlattices which are neglected in the 2D
approach, i.e., parameters describing interlayer coupling.
Indeed, smaller values of n were found in SLW which is
characterized by lower potential barriers and, therefore,
stronger interlayer coupling. Consequently, this sample
is more "three dimensional" than the other superlattice
with higher potential barriers. This argument is logi-
cally consistent with the well-known fact of decreasing
weak-localization effects with the increasing effective di-
mensionality of a system.

Experimental conGrmation of the conclusion reached
above is shown explicitly in Fig. 7 where the mag-
netoconductivity data are plotted in a reduced form
b o~L/o (B = 0) as a function of the reduced magnetic
field B/B, for the two superlattices at the same tem-
perature. Here, the use of reduced quantities eliminates
the difFerence in classical transport parameters (v~, w, ).
This figure clearly illustrates the correlation between the
superlattice structure and the magnitude of the weak-
localization corrections to magnetoconductivity.

The failure of the 2D weak-localization theory to sat-
isfactorily explain the positive magnetoconductivity in
superlattices calls for the use of other theoretical models
that adequately take into account the intrinsic proper-
ties of these periodic structures. Such theoretical models
of weak-localization effects specific to superlattices were
developed in Refs. 14—16. The basic model (Ref. 14) in-
troduced the main feature of weak localization in super-
lattices, namely its transitional character between bulk
2D and 3D versions of this phenomenon. However, this
model is restricted to low magnetic Gelds. In addition, it
does not allow for subtle effects of electron wave-function
modulation and impurity distribution. A direct applica-
tion of this model to study experimental results, which
were published elsewhere, required introducing a phe-
nomenological parameter into the magnetoconductivity
formula in order to account for the experimental results
at higher magnetic fields. Also, the vertical diffusion con-
stant derived from the data was different from the the-
oretically predicted value by = 50%. Therefore, the ba-
sic model was subsequently improved in a twofold man-
ner. One improvement led to the structure dependent
model (Ref. 15) where the electron wave-function modu-
lation and a nonuniform impurity distribution were taken
into account. The main result of this model can be de-
scribed as a renormalization of the diffusion tensor. The
other model (Ref. 16) elaborates on high magnetic-field
effects. Due to relatively large mobilities of the sam-
ples, the characteristic fields (B„B~i,) are very small.
Consequently, the magnetic Geld which would normally
be considered quite weak (= 0.1 T) becomes large with
respect to weak-localization effects. In addition, mea-
surements at very low Gelds are restricted by the resolu-
tion (= 1 mT) of the experimental setup. On the other
hand, results at higher fields show more complicated and
also more sample-speciGc features than those at low Gelds
which become a quadratic function of the magnetic field
(b,owL Ix B for B -+ 0). This conclusion can be in-
ferred from Eqs. (34) and (36) of Ref. 14, and from the
asymptotic form of the Kawabata function [Eq. (35) of
Ref. 14]. In the following analysis of the experimental
data, the high-field model will be used and the super-
lattice structure effects discussed above will be included
through the renormalized diffusion constants.

The procedure of fitting theoretical curves to the ex-
perimental data involves a numerical integration step in
the expression for AowL(B), (see Ref. 16), namely

2e DII~ eB . dq2 n+1
+o

~~,UL(B) = — ) Q(n~ qz)—
n

dn'Qp(n', q, ) (16)

Intermediate steps require calculations of the Cooperon-
related functions Q and Qp defined as

OO
- —1

Q(n, q, ) = 1 —— dxe ~ 1„(nx)Jp(/3x)
+e 0

(17)

I

and

E(s4, 4i;1;y')
Qp(n, q, ) = 1 ——

1+4(n+ -', )n+ P'
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where I is the Laguerre polynomial of the nth order,
Jo is the zeroth-order Bessel function, I' is the hyperge-
ometric function,

4p (n+ -', )n

1+4(n+ —)n+ P2

2eD~~~' 1 B (r &'

h~. 2 B, (20)

and

2D 7.2 sin(2q, a)
7 2G

1 1 1—= —+
7 7~ Vph

(21)

(22)

(23)

where the Fermi energy c~ is large compared to the su-
perlattice miniband width 2u) ~ DII does not depend ex-
plicitly on the details of the superlattice structure and
impurity profile. Such a dependence does exist for the
vertical diffusion constant D, as calculated in Ref. 15,
viz. , D = D, +D h, , where

to G 'r~ vl —6
D, , =(v r)ps= 1+ 1 —62

(24)

is the coherent term, and

Q 12

27., v'1 —b2 P„„+P„„+i (25)

is the hopping diffusion term. Here, the parameter b
describes the scattering anisotropy, and P„~i/P „+
P ~ q is the relative interlayer hopping probability

is the total scattering rate involving the dephasing time
'r&g. (To abbreviate the notation, we use here Q and Qo
instead of the Cooperon functions II and IIo referred to in
Ref. 16. They are related through Q = [1 —n; pV211]
and an analog expression for Qo. ) The parallel diffusion
constant DII is determined from the measured mobility
and density of carriers according to the standard expres-
sion,

(probabilities P „and P ~i are defined in Ref. 15).
They depend explicitly on electron wave-function modu-
lation and the impurity distribution. We use the known
superlattice parameters (iv, a, r, ) and calculate 6 and
P~ ~~i/(P„~ + P„~i)for three different scattering
cases: (a) impurities (dopants) confined to the barrier
regions, (b) impurities located at interfaces, and (c) im-
purities uniformly distributed throughout the superlat-
tice layer structure. These values are then used to obtain
the vertical diffusion constant. The results are shown in
Table II.

Given the diff'usion constants (D~~, D, ), scattering time
(7,), and the superlattice constant (a), the Cooperon-
related functions (Q and Qo) and, subsequently, the mag-
netoconductivity are calculated as a function of magnetic
Geld B with the dephasing time mph being the only ad-
justable parameter. The results of these calculations
are then compared with the experimental data. Typi-
cal plots of this comparison are shown in Figs. 8 and 9
for low- and high-temperature regimes in SLN and SLW,
respectively. Both cases of the nonuniform impurity dis-
tribution underestimate the magnetoconductivity effect.
(Here, w~h was adjusted in attempts to reproduce data
at least in small fields. ) The difference between the the-
ory and experiment becomes particularly large at low
temperatures. For example, in the case of the in-barrier
scattering in SLN at T = 0.025 K even extremely large
dephasing times mph = 10 ps result in the magnetocon-
ductivity being smaller than the measured one by a factor
of —2. This difference decreases with temperature; nev-
ertheless, the overall tendency is preserved. On the con-
trary, the experimental results are quite consistent with
a uniform distribution of scattering centers throughout
the superlattice structure. A small deviation from uni-
formity may occur in SLN, but it cannot be ascribed
decisively to a particular distribution case. For the case
of the uniform impurity distribution, the results of the
one-parameter fitting procedure over the full tempera-
ture range are shown by the solid curves through the
data in Figs. 10 and 11 for SLN and SLW, respectively.

A general comment about this comparison between
theory and experiment is that the theoretical model of
weak localization with an effective uniform distribution
of impurities reproduces the magnetoconductivity data
very well. This agreement is remarkable in SLW where
it holds through three decades of temperature changes
(T = 0.02—19.2 K) and persists up to a magnetic field
of 0.06 T (= 0.5B,). In the case of SLN, the theory

TABLE II. Effect of impurity distributions on superlattice parameters.

Superlattice

SLN

SLW

Impurity

distribution

uniform
interface
in-barrier
uniform
interface
in-barrier

0.0018
0.17
0.32
0.031
0.48
0.71

&n, n y1
&n, n+1++n, n

3.3x10 '
0.015
0.070

21x10
0.012
0.27

D,
(cm s )

0.42
0.59
1.2
4.6
6.1
8.9
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works very well at fields B & 0.03 T (B ( 0.4B,). A
small deviation from the data is seen at low tempera-
tures (T ( 0.1 K) and B & 0.02 T as pointed out above.
This conclusion is not expected in view of the known
parameters of the superlattices. Both superlattices were
selectively doped in narrow layers at the centers of the
barrier regions. However, silicon dopant migration dur-
ing MBE growth has recently been found to be an im-
portant process. On the other hand, there is evidence
suggesting that we should not think of this happening
to the extent that dopant atoms are completely and uni-
formly spread throughout the whole superlattice. A sec-
ond source for the apparent agreement between the data
and a theoretical model of weak localization with an ef-
fective uniform distribution of impurities is that the ac-
tual scattering from ionized dopants of a sharply defined
distribution can be thought of as mimicking the scat-
tering from point impurities of a broader distribution.
From this viewpoint the ionized dopants in the barriers
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Impurity distribution: SLW 0.02 K
uniform
interface

Impurity distribution: SLW 8.P, 1 K
uniform
interface
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I I I I I I I
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FIG. 9. As in Fig. 8 for SLW.
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FIG. 8 ~ Weak-localization corrections to magnetoconduc-
tivity in SLN at two different temperatures. Squares represent
experimental points. Curves are theoretical results for three
different impurity distributions.

FIG. 10. Weak-localization corrections to magnetocon-
ductivity in SLN at various temperatures. Curves through the
points are one-parameter fits of the weak-localization theory
in superlattices (the case of uniform impurity distribution).
Note that the data have been vertically offset for viewing.
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A more exact treatment of this aspect of weak-
localization effects requires a new theory not limited by
the simplified assumption of short-range scattering but
rather using the more realistic screened Coulomb interac-
tions. This refers not only to superlattice structures but
also, more generally, to all semiconductor systems where
ionized impurities play a dominant role in the transport
properties. At this time such a theory does not exist
mainly due to its evident complexity.

D. Depbasing time

15.71 K

19.18 K

~

-q -r--V--a--r -r- 1

—0.06 —0.02 0.02 0.06

FIG. 11. As in Fig. 10 for SLW. Note the agreement
through three decades of temperature up to —B in magnetic
field.

are not effectively screened by the electron gas of the re-
duced local density; therefore the electrons are scattered
by slowly decaying Coulomb potentials at distances sig-
nificantly larger than those implied by simple geometrical
arguments as applied to sharply defined doping profiles.

To provide a more convincing argument of this point,
let us examine an example of an extremely localized
impurity distribution described by a b function at the
barrier centers. The scattering potential is assumed to
be separable with respect to the space coordinates, i.e.,
V, (r~~, z) =

V~~ (r~~
—R, ) V (z —Z;), where (R;, Z;) are the

impurity coordinates. Here the parallel component V~~ is
neglected for simplicity, and V takes the steplike form
V, (z —Z, ) = Vg(2 —~z —Z, ~), where 2 is the poten-
tial range. Details of these calculations are presented
in the Appendix of Ref. 15. The result for the scat-
tering anisotropy factor b is given by Eq. (A14), viz. ,
b = Pr/ sinh(Pr), where P is a parameter that describes
the electron wave function in the barriers. The potential
range 2 is taken to be the screening length A, = 7.6 nm
which was calculated using the standard formula for a
degenerate electron gas, A, = e eoeg (e~), where

= 12.9 is the dielectric constant of GaAs. The sub-
stitution of realistic parameters for a superlattice (e.g. ,

sample SLW) yields b 0.4. This value should be com-
pared to b = 1 calculated for a short-range (pointlike)
potential. Obviously, the finite range of the scattering
potential affects the b factor in a way similar to what
a short-range (pointlike) potential does in the case of a
more uniform distribution.

10

ph ps

10

10 —11 93.2 T ps

1 0 —18

0.01
I I I I I

Illa'

0. 1

I I I I I I lf

10

FIG. 12. Dephasing time 7pb as a function of temperature
T in SLN. Squares represent results of magnetoconductivity
6ts in Fig. 10. Dashed lines are power-law fits to the data.

The theoretical analysis of the magnetoconductivity
data presented in the previous section allows us to deter-
mine the dephasing time 7 pI, This parameter is shown as
a function of temperature in Figs. 12 and 13 for SLY and
SLW, respectively. It was found from fitting the weak-
localization theory for the uniform impurity distribution
to the data (Figs. 10 and ll). Both superlattices reveal
very similar behavior for 7~& There exist two tempera-
ture regions (above and below 0.5 K), where the de-
phasing time shows a different temperature dependence.
In both regions a single-term power function 7~g ——CT
was fitted to the experimental results. At temperatures
above 0.5 K the dephasing time obeys the power law
with p = 1.52 (1.45) and C = 93.2 (91.2) ps K". In
the other region (T & 0.5 K) r~b is almost temper-
ature independent. The exponent p is very close to
zero [p = 0.01 (0.02)j and the constant C amounts to
271 (209) ps K".

The dephasing time is an important parameter in
weak-localization theories. It sets an upper scale for the
quantum interference phenomena (a lower one is given by
the elastic-scattering time). As pointed out by Altshuler
and Aronov this phase relaxation time is the shortest
observable energy relaxation time in a system.
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is a very good approximation.
The temperature behavior of mph found for the super-

lattices in the high-temperature region satisfies this rela-
tion extremely well. A rough estimate of the scattering
rates for the small and large momentum transfer colli-
sions shows that, indeed, the former exceeds the latter
by at least one order of magnitude in the superlattices
where q, = p~ holds.

A detailed quantitative analysis of mph requires a theory
of electron-electron interaction effects in superlattices.
Such a theory does not exist at this time. In order to
make an approximate estimate of the electron-electron
scattering time, the expression of Eq. (26) is modified to
include anisotropy of a superlattice by the replacement
D + DI~D, which yields

FIG. 13. As in Fig. 12 for SLW. Squares represent results
of magnetoconductivity Bts in Fig. 11. Te-e

g' (kT)s
OC

hgsr, (eF) h D2D, (30)

&e-e,S

r kT&"
oc

hg(e+) qhD)
(26)

where g' is a dimensionless coupling constant, g(eF) is
the density of state at the Fermi energy e~, and D is
an isotropic diffusion constant. Processes with a large
momentum transfer yield a scattering rate proportional
to T, i.e.,

e e)L

(kT)2 q,
OC

hey pp
(27)

where p~ is the Fermi momentum. These collisions are
characteristic of pure systems where the scattering rate
is determined by the available phase space and does not
depend on the details of the electron-electron interaction.
In general, both processes should be taken into account
and the resultant scattering rate acquires the form

High-temperature region. In a majority of weakly disor-
dered systems at low temperatures, the electron-phonon
scat tering becomes negligible and inelastic electron-
electron collisions with the rate ~, , are the dominant
processes which determine the energy relaxation time.
Altshuler, Aronov, and Khmel'nitskii showed that in
3D the phase relaxation time is governed by processes
with large energy transfer (Ae = kT) for which the
equality Tph T — holds. In 3D isotropic systems, colli-
sions with small momentum transfer q « q, (where q, is
an inverse screening length) contribute to the electron-
electron scattering rate as a term proportional to T ~,

This expression results in r, = 11 (25) T ~ ps K ~ .
Here, the following values of the involved parameters
were used: g' = 1, gsi, (e~) = 7.69 x 10 J m

Dii = 1.0x 10 (0.69x 10 ) m s, D, = 4.2x
10 5(4.6 x 10 4) m2s

The results obtained from the experiment, i.e. , w

93 2 T ps K s (91.2 T ps K 4
) show an order-

of-magnitude agreement with the values calculated
above. The lack of any difference in 7, between the
two superlattices is not confirmed by these rough calcu-
lations and clearly requires a more detailed theoretical
model.

Low-temperature region. In this region the dephas-
ing time is practically temperature independent and the
corresponding dephasing length in the direction parallel
to the superlattice layered structure is calculated to be
l~h = QDiir~h = 1.67 (1.23) pm. A very ~b~~pt on-
set of the temperature-independent dephasing time (par-
ticularly obvious in SLW) strongly suggests an electron
heating effect. The absence of a T term in the dephas-
ing time (this temperature dependence is characteristic of
the electron-phonon scattering) and the dominant contri-
bution of electron-electron collisions to inelastic processes
imply that electrons can redistribute energy among them-
selves but there is no effective channel for energy loss.
Thus, the electron heating effect results from the fact
that the phonon relaxation time for electrons becomes
so long that the electron gas, having absorbed excess en-
ergy, cannot cool down to the lattice temperature in the
finite size of the sample. This effect can be studied quan-
titatively using a simple two-bath model.

Using this model we obtain the following electron-
phonon scattering rate (for SLN)

+e-e
(28)

Te p
4.1. x 1.06 T3 1

sK3
However, in the special case of weak screening where
q, & p~ the contribution from large momentum trans-
fer becomes small and

This result implies very large relaxation lengths at low
temperature, e.g. , at T= 0.1 K I,,„=QDIIv;

„
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1.5 mm. It is also consistent with the high-temperature
behavior of 7~h. At T = 20 K w, „=30 ps which is sig-
nificantly greater than 7;, = 1.0 ps; thus the dephasing
time w~h

——~, , to a very good accuracy.
Wennberg and co-workers studied the electron-

energy-loss rate in n-doped GaAs/Al Gai As het-
erostructures with lateral sizes 6 x 6 mm and equivalent
3D density of carriers n = 2.7 x 10 m . They found
the electron-phonon scattering rate to be

1=2.5x ]0
7 Q p

In another experiment Roukes et a/. measured the en-
ergy relaxation rate in a metal (Cu) film which had di-
mensions 6 cm x 10 pm x 100 nm. They also found p = 3
and their corresponding relaxation rate was

1=9x10 T sK3

CO

b
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Consequently, the electron-phonon scattering rate found
in our superlattice is consistent with the analogous pa-
rameters obtained in other systems. This allows us to
consider the electron heating eÃect as the probable cause
for saturation of the dephasing time at low temperatures.

V. IERO-F IELD C ON DU CTIVIT Y

Results of the zero-field conductivity measurements are
shown in Figs. 14 and 15 where the temperature changes
of o (T) relative to the low-temperature limit cr(T i 0)
are plotted versus temperature.

In the regime of very low temperatures, the conduc-
tivity becomes temperature-independent. This is consis-
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b

b

500—

250—

I ] I t
I
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I

t
I

0.0 1.0 2.0 3.0 4.0 5.0 6.0
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FIG. 14. Zero-field conductivity as a function of temper-
ature in SLN. Squares represent experimental data. The
dashed curve gives the values of semiclassical corrections. The
solid curve includes both semiclassical and weak-localization
corrections with no adjustable parameters.

FIG. 15. As in Fig. 14 for SLW.

tent with the behavior of the magnetoconductivity dis-
cussed earlier and quantitatively described in terms of
the dephasing time. However, in the case of the zero-
field conductivity, the transition region leading to the
temperature-independent regime is broader and the lat-
ter begins at lower temperatures (T = 0.2—0.3 K instead
of T = 0.5 K). Above the transition region the two su-
perlattices reveal a qualitatively diferent temperature
dependence of o(T). In SLN, the conductivity o(T) is
approximately linear in temperature while SLW displays
more parabolic-type behavior, suggesting a larger contri-
bution from the semiclassical eKect. As in the case of
the Hall factor r~ discussed in Sec. III, the semiclassical
corrections at low temperature (T (( T~) are quadratic
ln T

hcr, i(T) = o.,i(T) —cr, i(0)
7t-2 (T l'

= o.i(0)—g(rI+ 1)
~6 &TF ) (31)

where g is the energy exponent introduced in Sec. III.
Using the value of g determined from the temperature de-
pendence of the Hall constant [rl = 2.2 (1.3)I, the Fermi
temperature T~ = 198 (160) K, and approximate num-
bers for the classical term of the conductivity at T = 0,
o,i(0) = 20700 (12071) Sm consistent with the val-
ues used earlier in the magnetoconductivity analysis, the
semiclassical contribution is calculated and the results
are plotted as dashed curves in Figs. 14 and 15. It should
be noted here that o', i(0) cannot be determined directly
from the experiment. The estimates used are subject to
an error (of a few percent) which prevents us from calcu-
lating the absolute values of cr,.i(T) with sufficient accu-
racy to make comparison with data. However, the tem-
perature changes cia, i(T) do not suffer from this disad-
vantage and a few percent accuracy is sufBcient to make
reliable analysis. As seen in Fig. 15, the semiclassical
effect contributes significantly (- 70%) to the observed
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changes of 0 (T) in SLW and determines the quadratic-T
form. On the other hand, this same effect gives only 35%%uo

of the total conductivity increase in SLN (see Fig. 14).
Next, the weak-localization contribution

hall wr, (T, To), describing the change of the conductiv-

ity between temperatures T and To

~&ll, wL (Tr To) = ll, WL ( ) ll, WL ( 0) ~

is calculated according to

(32)

2e Dilute
~&ll, wL(T, To) =-

vrh 4'
diaz

[Qoo(qll, q, T(T)) Qoo(qll, q„r(T0))],

where

&00(qll q &(T)) =
+e 1+ ll~ ~2+ p2

ample is given by the electron-phonon scattering. This
process makes the total scattering time w (and also the
momentum relaxation time) a weakly decreasing function
of temperature. Using the standard Drude formula this
effect may be estimated by

2p
2D

1+ q +p~e

(35)

7 Q p

Now substituting realistic values of w = 0.2 ps and r
30 ps (found in Sec. IV D at T = 20 K) yields

and other quantities were defined in Sec. IUC. The ref-
erence temperature To was fixed. in the low temperature
range (To ——0.5 K) above the onset of the apparent
self-heating effects. It should be emphasized that all pa-
rameters used in this calculation were determined earlier
from (i) the superlattice structure (superlattice period,
miniband width), (ii) the basic transport properties of
the samples (mobility, density of carriers), and (iii) the
magnetoconductivity fits (dephasing time). Hence, no
free parameters are used here to adjust the results to
the data. These results are determined for temperatures
above 0.5 K where the heating effect is absent. They
are combined with her, ~(T) and plotted as solid lines in
Figs. 14 and 15. The theoretical results correctly repro-
duce the general trend in the temperature dependence of
o(T) but slightly overestimate their magnitude. In the
case of SLN the linearity of cr(T) is confirmed by the
theory but the theoretical slope is = 25% larger than
the observed one. In SLW the rate of the temperature
change in o (T) is correctly increased from that implied
by the semiclassical theory and the parabolic shape is
retained. The difference between the theoretical values
and experimental results amount to 13% at a maximum
temperature of T = 20 K.

There are a few possible reasons for this modest dis-
agreement between the experiment and theory. The pa-
rameter g as obtained from the data (the Hall constant in
the zero-field limit) carries large errors, especially in SLN
(see Fig. 3), and is the least accurate parameter (with an
error of up to 10%).

It is worth noticing that for a difference between the
theory and experiment which amounts to 13'%%uo (25'%%uo) of
the temperature changes, bar corresponds to merely 1% of
the absolute value of the conductivity. There is a whole
group of classical effects which reduce conductivity at
finite temperatures but they are small and usually ne-
glected in the temperature regime of interest. An ex-

bo. = 0.67%,

~awL(T» T2) = ~WL(Tr) awL(T2)
e'

I
~r h(T2)

27r'ha mph(Ti)

yields

So.WL(7 K, 0.1 K) = 1450 S m

(37)

for SLN, and

ho.wL(19.18 K, 0.02 K) = 1950 S m

for SLW.
These results are significantly larger (by more than

50%) than the measured 8a even with the semiclassical
term excluded. Consequently, the 2D weak-localization
theory cannot account for the temperature changes in the
zero-field conductivity observed in the superlattices.

VI. CON CLU SION S

We believe future progress in the area of weak-
localization is related to studying systems for which more

which is of the same order of magnitude as the difference
under consideration.

It should be emphasized that the data does not show
a logarithmic temperature dependence for cr(T) typical
of 2D weakly localized systems. In addition, it may be
shown that a 2D analysis is subject to the following in-
consistency. Prom the best 2D fits to the magnetocon-
ductivity data (including prefactor n, see Sec. IV B) w~h

was found to be 52.8 ps at T = 0.1 K and 3.7 ps at
T = 7.0 K in SLN, and 36.3 ps at T = 0.02 K and 1.02 ps
at T = 19.2 K in SLW. Applying the standard formula
for 2D weak-localization corrections to the conductivity
(normalized per one layer)
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detailed microscopic information is available. Specifi-
cally, we have studied superlattices with controlled impu-
rity distributions. In previous measurements ' on 2D
and 3D systems, only uniform impurity cases were stud-
ied, which obscured finite-range-potential effects. For ex-
ample, in a standard heterojunction geometry, the elec-
tron sees only small variations in the ionized dopant po-
tential because of averaging effects from a dopant distri-
bution that is remote and uniform throughout a plane.
On the other hand, in superlattices, the electron, due to
its coherent vertical motion, probes all distances of an
ionized impurity potential. Consequently, superlat tice
structures are well suited for probing more deeply these
types of quantum interference transport mechanisms.

We measured the parallel magnetotransport properties
of two GaAs/Al Gaq As superlattices with identical
impurity profiles but with a different alloy composition of
Al Gai As. We found that the zero-field conductivity
did not display a logarithmic temperature dependence as
characteristic of quasi-two-dimensional systems; instead
a weaker power-law dependence which is typical of 3D
structures was found. Similarly, the magnetoconductiv-
ity data could not be explained by the 2D WL theory.
Consequently, to quantitatively analyze the experimental
results we used a recent theory that incorporates the su-

perlattice structure in the z direction, including impurity
profile and electron wave-function modulation. There-
fore, we are able to adequately describe the bandwidth
dependence on quantum corrections to the conductivity.
This theory, however, still assumes a pointlike scattering
potential model. We then compared the experimental
magnetoconductivities with theoretical ones calculated
for various impurity profiles. As a result, we found that
although the samples were intentionally doped in the bar-
rier regions, the best fits were obtained using a uniform
impurity profile model.

We can explain these results in two ways: (i) the data
show the inHuence of the long-range potential on weak-
localization effects; (ii) the best fit is obtained using a
pointlike scattering model compatible with the experi-
mental data provided that the real dopant distribution
is different from the nominal one (as intended by the
grower). Here one has to assume that silicon migration
during growth is the reason the dopant spreads out of the
barriers where it was originally placed. Evidence for sil-
icon migration has been recently reported, and since
the barriers in our samples are thin we expect this effect
to be operative but not dominant.

Further progress towards a fully realistic description
of WL will be difIicult when applied to the superlattice
structures used in this study. First, if the real impu-
rity profile is properly accounted for, then the differ-
ence in contributions from long-range scattering com-
pared to effective pointlike scattering will be smaller.
We are in the process of doing an analysis for a real-
istic impurity profile. Second, scattering from partially
screened ionized impurities has to be properly accounted
for. There do exist self-consistent calculations of momen-
tum and energy relaxation times that employ such a re-
alistic potential. Recently, the role of ionized-impurity
scattering in a quasi-two-dimensional, quantum confined

system was studied by Masselink. He observed an en-
hancement of scattering in a 2D system compared to
bulk material, in agreement with theoretical calculations
using a screened Coulomb interaction between electrons
and ionized impurities. However, such a realistic descrip-
tion has never been used in the context of weak localiza-
tion (nor the e-e interaction effect) because the Bethe-
Salpeter equation for the Cooperon becomes intractable
or at least extremely difFicult to solve.

Weak localization is caused by the singular behavior
of the Cooperon. The interaction effect is another im-
portant phenomenon of quantum transport besides weak
localization for which the behavior of both the Cooperon
and a related propagator, the diffuson, is decisive. Scat-
tering from partially screened ionized impurities is even
more important for understanding the interaction effect.
Because both phenomena may contribute to transport
properties, uncertainty in determining one of these ef-
fects causes likewise uncertainty in the other. In more
detailed studies of the interaction effect and its depen-
dence on a carrier distribution, one needs to take into ac-
count the doping profile, and a realistic electron-impurity
weakly screened long-range potential. This hopefully
will allow one to resolve enormous discrepancies exist-
ing in the literature (such as a negative value of an ef-
fective e-e potential —a clearly unphysical feature for a
GaAs/Al Gaq As system). 2

In summary, this is the first work delivering some evi-
dence for the effect of long-range electron-impurity scat-
tering in the context of a WL correction. The effect
is obvious in classical transport. There is mention of
it in the electron-electron interaction work of Paalanen,
Tsui, and Hwang. These workers consider classically
the electron-electron interaction effect correction to the
conductivity in high magnetic field w, 7. ) 1, where ~ is
the transport relaxation time. They find general agree-
ment between energy relaxation times from Shubnikov-
de Haas oscillations (SdH) and an electron-electron in-
teraction correction to the conductivity. These energy
relaxation times are much shorter than the transport re-
laxation times and this fact is attributed to the inhomo-
geneous Landau-level broadening by the dominance of
long-range potential Huctuations. The electron-electron
interaction theory used in their paper also employs the
pointlike electron-impurity scattering and accounts for
the electron-electron long-range interaction in the lowest
order (this procedure is considered by some as inade-
quate, e.g. , Kawaji .) In our paper we study the Wi
correction to conductivity at low magnetic fields, where
the electron energy relaxation time is obviously different
from the high-B' case and where there is no SdH coun-
terpart for comparison.
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