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We attempt to build a Hexible and accurate theoretical model for the electronic properties of selec-
tively doped semiconductor heterostructures based on a two-band k p effective-mass-approximation
Hamiltonian that includes nonparabolicity, stress, piezoelectric, Rnite-temperature, many-body, and
DX-center effects. We present quantitative self-consistent results for a variety of b-modulation-
doped semiconductor heterostructures with the aim of optimizing the electronic density in the
active region as a function of configuration, including [001] and [111] interfaces for device appli-
cations. The presence of DX centers leads to the prediction of saturation of the carrier density with
a characteristic capacitance discontinuity as the b-doping concentration is increased. Calculated
differential capacitance C-V curves indicate that spatial charge-density inhomogeneities, but not
subband depopulation, lead to sharp steps in the capacitance as the gate voltage is increased.

I. IN TROD U CTION

The advances in epitaxial growth techniques such as
molecular-beam epitaxy (MBE) have made it possible
to grow semiconductor heterostructures of high quality,
whose configuration can be tailored to a variety of de-
sired specifications. Various doping profiles can be in-
serted with great flexibility in these structures, notably
the doping impurities can be inserted within a monolayer
of the semiconductor materials resulting in what is com-
monly referred to as b doping. Theories have been given
of the electronic properties in the presence of b doping
in devices. Experimental groups are taking advantage
of these advances in materials preparation to design and
construct heterostructure electronic devices with better
performance. The purpose of this paper is to provide
a theoretical guide for such designs. We restrict our-
selves here to planar structures. The two factors most
connected with the performance of the device are the
carrier mobility and the carrier density. We shall con-
centrate on the carrier-density distribution, particularly
the carrier concentration in the conducting channel, and
the possibility of undesirable parallel conduction. For
devices operating at room temperature, the density is a
better subject for design control than conductance. Our
aim is to develop a flexible theoretical model which can
treat any planar configuration of heterostructures and
which includes all the important factors that afFect quan-
titatively the calculation of the electron-density distribu-
tion, including the doping impurity configuration, DX
centers, band nonparabolicity, stress, piezoelectric efFect,
finite temperature, and electron-electron interaction ef-
fects. In this paper we present such a model and use it
to study the density distribution, the electronic states,
conduction-band edge profile, and other related quanti-
ties as a function of various configurations which are im-
portant from the device application standpoint. First, a
comparison with available experimental data in b-doped

GaAs is made to assess the accuracy of the theory. Then
it is used to generate quantitative results of the electronic
properties of b-modulation-doped heterostructures as a
function of configuration, with one or two b layers, with
uniform doping, or for a parabolic well.

In theoretical studies of the electronic properties
in the conduction band of the heterostructures, the
self-consistent solutions of the one-band efI'ective-mass
Schrodinger equation and the Poisson equation are com-
monly used. However, the energy of the relevant elec-
tron is often far enough away from the conduction-band
edges in the well regions and in the barrier regions that
the parabolic dispersion is inaccurate. We follow Ref. 5
in using the two-band k. p model which takes into ac-
count the nonparabolic corrections in a simple and efI'ec-

tive manner. The Schrodinger-like efFective-mass equa-
tion obtained is solved self-consistently with the Pois-
son equation providing the Hartree approximation. The
exchange-correlation effects are taken into account in
the local-density approximation (LDA) of the density-
functional theory. The efFects of applied gate voltages
are accounted for in the boundary conditions of the Pois-
son equation.

To maintain the flexibility of the configuration design,
we do not require the layers to be lattice matched. The
electronic properties are then greatly influenced by the
strain efFects. The two-band model allows the treatment
of the strain eKects in a systematic manner.

To confine the carriers in the conduction channel, it is
desirable to use a large-gap semiconductor for the bar-
rier. Then the conduction-band edge tends to be at the X
point or has energy close to the X valley. In those circum-
stances, DX centers appear, when doping impurities of
group IV are introduced in the barrier III-V semiconduc-
tor, producing deep donor levels. The efFects of DX cen-
ters on device performance prompts intensive experimen-
tal studies of the DX centers and have been included in
theoretical calculations of the electronic properties.
Reference 11 mentioned the inclusion of deep donors in
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Al Ga1 As in their study of the quantum dot with-
out describing the effects of the donors. Reference 12
treated the electron motion classically but, nonetheless,
produced useful insight into the effects of the deep donors
on the device conductance. We use the Chadi-Chang
model for the DK centers in order to study quantita-
tively the amount of donor ionization into electrons in
the conduction channel.

Capacitance versus gate-voltage measurements pro-
vide a common and important experimental tool to in-
fer the electronic distribution in doped semiconductor
heterostructures in general and in b-doped structures
in particular. It has been suggested that in wide
parabolic quantum wells the C-V curves that present
steplike changes with increasing gate voltage are indica-
tive of the well subbands depopulation, although in a
more recent experiment the steplike changes have been
interpreted as due to spatial inhomogeneities in electron
density. The capacitance is a measure of a small change
of electron-density distribution corresponding to a small
change in gate voltage. Numerical differentiation of the
density distribution at two close voltages is fraught with
danger of misinterpreting numerical errors as physical
structures in the C-V curve. We present an analyti-
cal formulation of the change in density distribution to
first order in the change in gate voltage by the first-order
perturbation theory of the self-consistent effective-mass
equation. The numerical evaluation of the C-V curves
in these structures then avoids the artificial structures
of the numerical differentiation. We use our method to
calculate the C-V curves of the b-modulation-doped het-
erostructures as well as parabolic quantum wells with and
without a superlattice superimposed.

The paper is organized as follows. In Sec. II the theory
of electronic properties in arbitrary planar heterostruc-
tures is presented in some detail. Section III is devoted
to the theory of capacitance calculation. In Sec. IV we
present our numerical results for the electronic properties
of a number of heterostructure configurations and com-
pare them where possible with experiments. We conclude. e

I

in the final section with a summary of the important re-
sults made possible by our theory and with a sketch of
possible future applications of our theory.

II. THEORETICAL MODEL

A. Hamiltonian with strain

We choose to use the two-band effective-mass model in-
cluding the conduction band and the degenerate valence
bands as the most convenient way to account for the de-
viation from parabolicity when the electron energy is not
close to the conduction-band edge of either the barrier
or the well. Also, when the heterostructures are made
of lattice mismatched materials and the layers are thin
enough, the mismatch can be accommodated by lattice
strain. We include the strain effects through the follow-
ing Hamiltonian term:

II,* = — *[ + „„+.,]
(') (')

—36~'i [(L —'L )e -+ c.p.]

d ' [(L Lw)e w + c.p.],3

where c.p. denotes cyclic permutation with respect to
x, y, and z, where a~'~ is the hydrostatic deformation
potential, b~'~ and d~'~ are shear deformation potentials
appropriate to strains of tetragonal and rhombohedral
symmetries, respectively, e~k is the strain tensor, the su-
perscript (i) is a band index, which takes the value zero
in the conduction band of s symmetry and one in the
valence band of p symmetry, L,. is the corresponding or-
bital angular-momentum matrix, and JL, L~) repres. ents
the symmetrized product. We restrict our attention to
the binary and ternary III-V compounds and use atomic
units everywhere in this paper. The Hamiltonian is taken
to be the sum of the strain Hamiltonian and the two-band
k . p model neglecting the spin-orbit interaction and the
quadratic terms in k. The Schrodinger equation includ-
ing strain effects has the form

( V+ A+, ' —E
Pk
Pky

Pk Pky
0

V —L — 2' —E
0
0

—bQ~ —Q )

where 2L represents the bulk unstrained band gap,
vP, P, P„, and P, are components of the envelope func-
tion, and

C12 + 4C44
bEg —— —3a

C11 + 2C12 + 4C44

bE C11 —C12,C11+ 2C12
bEg —— —2a + b (3a)

C11 + C12++3d E')

C11 + 2C12 + 4C44
(4a)

b
C11+ 2C12

bVb ———3b
11

(3b)

if the growth direction is taken along the [001] axis and

SV = —3~3d "+
C11 + 2C12 + 4C44

(4b)

if the growth direction is taken along the [ill] axis. Here
a without the superscript band index denotes the differ-
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ence between the hydrostatic deformation potentials of
the conduction and valence bands, 6 and. d without the
superscript band index denote shear deformation poten-
tials in the valence band appropriate to strains of tetrag-
onal and rhombohedral symmetries, respectively, and

where a and ap are the unstrained and strained lattice
constants of the materials, respectively. When structures
grown on thick GaAs or InP substrates are considered,
~ is taken to be the lattice constant of GaAs or InP. The
C;z are the elastic constants.

If we take the reference of energy at the bottom of the
conduction band of the material with the smallest band
gap, the system of Eqs. (2) leads, by elimination of P
and P„ to the following Schrodinger-like equation:

] d ] (g k + A:„ + V(z) —E;
2 dz m~~(z, E;) dz 2m'(z, E,)

(6)

—e(z) = 4~[«(z) —~(z)]
d dUH (z)

dz dz

E(z) being the dielectric constant. VXC (z) is the LDA
exchange-correlation potential. We have chosen to use
the expression parametrized by Perdew and Zunger us-
ing the local mass and dielectric constant. The energy
dependence in the masses is a consequence of the two-
band model which provides a mechanism for deviation
of the conduction band from parabolicity. The mobile
electron density is given by

~(z) = 2 ) .&(E')&,'(z)

where f (E;) is the Fermi-Dirac distribution function, and
the factor 2 is due to spin.

In addition, we have to take into account the piezo-
electric nature of the materials. Since in this case only
the piezoelectric constant ei4 is nonzero, the diagonal
strains do not induce any polarization. However, the
[111]-grown structures have finite off-diagonal strain
components that generate an electric polarization par-
allel to the growth direction given by

where z is along the growth direction, the transverse mass
is given by

P = ~3ci4e

The displacement field in the Maxwell equations becomes

m~(z, E,) = m'*(z)
(
1+ E, —V(z) l

2A' D = E+4~P', (14)

and the longitudinal mass by

where

bF
2

where E is the electric field. The Poisson equation ac-
IP'

quires a new term given by 4'
&

which is nonvanish-
ing at the interfaces. This term will act as a dipole
whose energy must be added to the potential V(z) in
the Schrodinger-like equation.

From Eq. (6) we see that the boundary conditions for
the envelope functions are that @, and

1 d

m~~ (z, E;) dz

V(z) = V, (z) + UIi (z) + Vxc(z). (10)

V, (z) is the conduction-band-edge potential of the un-
doped heterostructure. VH(z) is the Hartree energy due
to the doping impurities and the mobile electrons, whose
densities are taken to be «(z) and p(z), respectively.
VH (z) satisfies the Poisson equation

and m'* (z) = 4'(z) /P . Therefore, the strain affects
Eq. (6) in two ways: First, it alters the value of the mass,
through 4', increasing it for the compressed materials
and decreasing it for the dilated ones. Second, it leads to
different masses in the parallel and normal directions to
the growth axis due to the change in the cubic symmetry,
since the term bVp appears only in the longitudinal mass.
The potential V(z) is given by

are continuous, since V(z) is at worst piecewise contin-
uous. The one-band model is recovered if we neglect the
quantity e = [E; —V(z)]/2A'(z) in Eq. (6).

The boundary conditions for the Poisson equation (11)
depend on the specific structure we are studying. In the
calculations we performed. , we encountered two cases.
The first is the isolated structures, where from charge
neutrality the boundary conditions are that the electric
field dVH(z)/dz is zero at both ends of the structure.
The second is the case where the structures are between
an Ohmic contact or a semi-insulating substrate and. a
Schottky barrier. Then we take VH(0) = Vo, the en-
ergy at the top of the Schottky barrier, and VH(z) and
dV~(z)/dz to be equal zero at the other end. We use the
first condition to determine the Fermi energy and the
other two to integrate the Poisson equation.
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B. Numerical procedure

We seek a self-consistent solution to Eqs. (6) and (11).
We can simplify this problem significantly if we make the
following approximation. We see that the eigenenergy E,.
is a function of k = k + k„. Since we are dealing with
energies close to the conduction-band edge we can expand

E; to first order in k2

k2
E,(k') = E,' '+ (16)

where m,'. is a parallel mass introduced to simplify the
k2 integration in the electronic density. Then Eq. (6) to
first order in k becomes

1 ci 1

2dzm~~(z El ) dz

k2 k2 d m'*(z) d+ V(z)+ ——E
2m (. E") 2m,*. dz 4m~~(z, E s

) ~1(z) dz

k2
$, =0. (17)

m,*=
1 ——1

4
( d m" (z)

rn (z E!' )2~ (z)

It is a reasonable approximation by first-order perturba-
tion theory to eliminate the k term in this equation
by choosing m,*. as

find the Hartree energy and the Fermi energy. To update
V(z) for the next iteration in the self-consistent proce-
dure, we have used Broyden's method, which we found
to converge faster than any other method based on the
simple mixing scheme.

C. DX centers

—+ V(z) —E, Q; =0.
2 d, ( EI'~) d

The mobile electron density becomes

(19)

p(z) = ) (2Oa)

as long as the masses do not vary too much with z,
which is the case in all the structures we studied. We
have verified in the eigenenergies that the replacement of

m~~ (z, E; ) by m'*(z) in Eq. (18) makes negligible difFer-
ence because the second term in the numerator is already
a small correction (of the order a few percent) of unity in

the first term and the energy dependence in m~~(2:, E; )
(o)

provides a small correction to m'*(z). The wave function
g; tends to confine the electron to the well region where
E, —V(z)+bVs is small. In this case, the Schrodinger-like
efFective-mass equation including strain efFects becomes

As mentioned in the Introduction, when doping impu-
rities of group IV are introduced in some III-V semicon-
ductors as donors, they are found to exhibit the persistent
photoconductivity (PPC) phenomenon. This effect can
be explained by deep donor levels called DX centers. It
is now accepted that the model proposed by Chadi and
Chang is adequate to describe the donors. Therefore
we will use that model to calculate their statistics. The
defects are assumed to have three charge states, (1) a
shallow neutral state, doubly degenerate, with an ioniza-
tion energy E&, , (2) a nondegenerate, positively ionized
state, with the electron released to the conduction band,
and (3) a deep state negatively charged, with a degen-
eracy factor of 4, coming from the four possible &111)
directions that the impurity has to go to the intersti-
tial position, and an ionization energy Ed, . We used
the grand canonical ensemble to derive the occupation
distribution of the defect. 2 In the limit of high doping
densities where the shallow level merges with the ionized
band, the total charge of the center is

E E&'l l
¹

= ' kTln 1+ exp
7l

(2ob) 1 —4 exp[P(2E~ —Eq, —E~, )]pgz =Knez 1+4exp[P(2E~ —Eq, —Eq, )]
'

m-
1 + i dQ, i dQ;

4 dz m' {z)A'(z) dz

i ~(0)

(20c)
where E+ is the Fermi energy, N~(z) is the intended dop-
ing density profile of the Si donors, and P = 1/kT, k
being the Boltzmann constant and T the temperature.

The self-consistent problem consists in solving Eqs. (19)
and (11) with V(z) given by Eq. (10) and p(z) by
Eq. (20). We have solved this problem numerically. First
we solve Eq. (19) using the finite-difference method; we

start by setting E,. to zero in the mass term. Then we
solve the problem iteratively updating the mass with the
new value of E,- . Once the eigenvalues and the corre-
sponding eigenvectors are obtained, we solve the Poisson
equation with the appropriate boundary conditions to

III. C-V CALCULATION

In this section we describe a way to calculate the ca-
pacitance of the heterostructures which avoids numeri-
cal differentiation with respect to the gate voltage by a
self-consistent first-order perturbative treatment of the
change of the self-consistent bands as the gate voltage
varies. The capacitance is given by
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bq
be ' (22)

where Vg is the gate voltage and q the total electronic
charge which is given by

bV(z) = bVH(z) + bVxc(z) (28)

between the eigenstates of the effective-mass equa-
tion (19). The problem now is to determine these matrix
elements

Vv = (&'l~&~+ bV«l&~) (29)

Since the capacitance is measured by placing the sample
between an Ohmic contact and a Schottky barrier we
have to use the boundary conditions described at the
end of section II A. The energy at the top of the Schottky
barrier is given by

bVH (z) = —4vr G(z, z')bp(z')dz', (30a)

which in turn depend on the change in density and to
determine the change in the Fermi energy in terms of
bVg. To do this we rewrite the two terms in Eq. (28) as

Vo ——4g+ EF —Vg, (24)

where @b is the Schottky-barrier height of the metal semi-
conductor contact. The relation is made clear by an ex-
ample studied later in Fig. 4. We also express the solu-
tion of Eq. (11)using the Green's function for the Poisson
equation in one dimension

(30b)

We can also write the change in the Fermi energy by
using Eq. (24) as

HEI, = bVg —47r G(0, z)bp(z)dz

G(z, z') =
z d //

as

By difFerentiation of Eq. (23) we get

V~(z) = 47r G(z, z')[pg(z') —p(z')jdz'.

(25)

(26)

We again use first-order perturbation theory to express
the change in the electronic density as a function of V~
and substitute it in the previous three equations. Using
Eq. (31) to express bE+ in terms of V~ in Eq. (30) we
obtain an integral equation with a separable kernel for
bVII(z) and bVxc(z). By taking the matrix elements of
both sides of these equations between the eigenstates of
Eq. (19), we obtain a linear system of equations for those
matrix elements. By solving this system for V~ in terms
of bVg and substituting in Eq. (27) we obtain the desired
result for |~.

(27)
IV. RESULTS FOR THREE

HETEROSTRUCTURES

A change in the applied gate voltage leads to a change
in the self-consistent potential bV(z), w'hich leads to a
change in the electronic states bE,. and corresponding
wave functions bQ, . We can use the first-order pertur-
bation theory to express bE, and bg, in terms of the
matrix elements of

Based on the model with the ingredients described
in Sec. II, we have written a computer program which
is flexible enough to study the electronic properties as
a function of the heterostructure configuration at any
temperature. In this section we present the results for
three diferent classes of configurations. Table I summa-

TABLE I. Parameters used in the self-consistent calculation.

Parameter

Eg (eV)
m (mp)

a (eV)
b (eV)
d (eV)
C» (10" dyn/cm )
Ci2 (10 dyn/cm )
C44 (10" dyn/cm )
a (A)

GaAs
519 5408 x 10 T

T+240
0.067

12.40(1+1.2 x 10 T)
—9.80
—1.70
—5.30
11.26
5.57
6.00
5.653

InAs

0.418
0.0239
15.15
—6.00
—1.80
—3.60
8.329
4.526
3.959
6.0583

AlAs

3.13
0.15
10.06

12.02
5.70
5.89
5.66

From Ref. 26.
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The system is grown in the [001] direction with the fol-
lowing dimensions: 1000 A of undoped GaAs, followed se-
quentially by an active layer of In Gai As of width W~,
a spacer layer of undoped Al„Gai „As of width 8, a Si
b-doping layer of variable density %d, and finally an 800-
A layer of undoped. Al„Ga1 „As. First we chose an active
channel of width 100 A, a spacer of 100 A, and studied
the electronic density in the channel as a function of N~.
We took x=0.17, y=0.35, T = 1.6 K, a conduction-band
offset of 70'Fo of the strained band-gap difference, a sur-
face potential of 0.7 V to account for an n++ GaAs cap
layer, and the deep donor level Ed, ——2 x (0.7y —0.15) eV.
The results are shown in Fig. 3. We see that the elec-
tronic density in the channel saturates due to the pres-
ence of the DX centers in the Alp 35Gap 65As layer. As
the density of Si donors increases, the fraction of dou-
bly occupied states rises to a saturation limit giving a
maximum active channel density of 1.397x10 cm

D
I I I I I I I I I I I I I I I I I I I I

-2

v, (v)

FIG. 2. Self-consistent capacitance vs applied voltage
for b-doped GaAs. The points are obtained from the
self-consistent calculation as outlined in Sec. III.

This is reminiscent of the observation of Ref. 29 where
it was suggested that the free-electron concentration in
b-doped GaAs may saturate when the depth of the po-
tential is such that the Fermi energy coincides with the
energy level of the DX center. This would occur at a
critical value of 5.5x10 cm . Figure 4 shows a typical
self-consistent potential and electronic density. In order
to study this saturation phenomenon further, we con-
sidered the efI'ect of gate voltage on a similar structure
with a well width of 150 A. and a b-doping layer of den-
sity 2.5x10 cm . Figure 5 shows the calculated self-
consistent channel density and capacitance as a function
of applied voltage. The saturation of the channel density
due to DX centers is clearly seen. This density remains
constant down to a gate voltage of —1.4 V. Below this
voltage the capacitance of the structure calculated by the
method of Sec. III is due entirely to the charges trapped
in the DX centers in the b-doping layer in the barrier
which get depleted first. The structure acts essentially
as a plane capacitor. As the reverse gate voltage is in-
creased, the deep centers continue to be depleted until
they are empty. When the channel electrons start to get
depleted the capacitance shows a discontinuity which in-
dicates that the depleted charges are coming from the
channel.

Next we considered the value of the saturation density
as a function of configuration. First, we varied y, the Al
fraction in the barrier in the range where the deep levels
of the DX centers played a major role. Table III shows
the saturation density possessing a weak dependence on
y. For y ( 0.22 where the DX center deep levels did not
play an essential role at low temperatures, the barrier
potential was so low that not all donor electrons left the
doping layer. Second, we added a second b-doping layer
on the same side of the barrier keeping the spacer thick-
ness 8 between the channel and the first b-doping layer
constant. Of course, we could obtain higher channel
density by adding the second b-doping layer to the oppo-
site side of a narrow well or by adding the second b-doping

1.4
3&& 1018

1.2

E
O

C3

08

E

i 5X1018

0.6
[ i i » I i i i I I i i i i ]

1.5 2 2.5
N (10'2crn 2)

3.5
0

0 1000
z(L)

0
2000

FIG. 3. The channel electron density for
Alp ps Gap ps As/Inp rrGap s3As/GaAs (900k/100 A/10004)
grown along the [001] axis saturates as the concentration of 8
donors is increased. Open squares are for a one b layer with
the lines through them as a guide for the eye and the full
squares are for a structure with two b layers which saturate
slower than the former.

FIG. 4. Typical self-consistent potential (solid line)
and electronic density (dashed line) for a
Alp 35Gap. psAs/Inp rr Gap ssAs/GaAs (900'/100k/1000 A)
system grown along the [001] axis. The 6-doping layer of
concentration Ng ——2x10 cm is located at the position of
the arrow in the barrier. We have Vo —I"~ ——4't, —Vg.
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FIG. 5. The filled circles represent the channel electron
density for a structure similar to the one described in Fig. 3
with a well width of 150 A. As the reverse gate voltage is in-
creased it remains constant since the doubly occupied impu-
rity levels are being depleted. The self-consistent capacitance
of the structure (open squares) is constant. Once the voltage
starts to deplete the channel electrons, the capacitance shows
a discontinuity.

layer on the same side but closer to the well. What we
wish to test is the variation of the doping structure from
one layer to two keeping the spacer distance constant.
The addition of the second b-doping layer under the spec-
ified condition did not change the saturation value of the
channel electron density although the approach to satu-
ration is slower (Fig. 3). We found that the saturation
value did not change even when we varied the separa-
tion of the two b-doping layers provided that 8 was kept
constant. Finally, we found that the saturation was also
virtually independent of the width of the quantum-well
channel between 100 A. and 150 A. . We nave also exam-
ined a similar heterostructure grown in the [111].Figure
6 shows that we obtained a lower saturation value of the
channel density of 1.08x 10 cm

In this model we neglected the interface traps at the
Al„Gat „As/In Gaq As interface because their con-
centration is low compared to the b concentrations we
are using in our study. The channel saturation density
can also be affected by compensation effects of the dop-
ing impurities in the barrier. This effect depends on the
growth conditions and the concentration of the dopants.
If we assume that the spread of the doping impurities
in the h-doping layer is of the order of 40 A then their
three-dimensional concentration is intermediate between
two regimes identified in Ref. 31 for bulk GaAs where the
compensation efI'ects become important from one regime
to the other. We, therefore, rely on Ref. 29, which
found that for a two-dimensional impurity concentration
of 5.7x 10 cm in GaAs, compensation was not impor-
tant, to conclude that in our systems the DX centers are

TABLE III. Saturation density as a function of Al content
in the barrier.

FIG. 6. Same as Fig. 3 except the growth direction is along
the [111]axis. We observe a similar result with a much lower
value of the saturation density.

TABLE IV. Comparison between the theoretical occupa-
tion densities in each subband of the channel electrons with
th6 ones measured by Shubnikov —de Haas. The width of the
well is 150 A, Ns=3. 6x10 cm and T=1.6 K.

s (in A)

50

100 (one b layer)
100 (two b layers)

200

Expt.
N.
2 ~ 29
0.293
1.53
1.33

0.793

Theory
N,.

1.936
0.224
1.394
1.394
0.823

the main source of the saturation. This is because the
concentrations we are using are lower than this value.
Therefore the values we quote here should be considered
as upper limits for the saturation densities. In Table
IV we compare our theoretical results with Shubnikov-
de Haas measurements taken from Ref. 32 for a variety
of configuration parameters. The theoretical results are
generally in reasonable agreement with the experimental
measurement, considering that the experimental error is
about 10/p and that the remaining discrepancy may be
due to minor factors, such as interface traps and the non-
ideal surface structure, which are not taken into account
by our theory. The theory has found no change in the
density between two systems with one and two b layers
whereas experiment has found a decrease. This could
partly be due to the experimental difFiculty of control-
ling the spread of the first b layer when the growth is
interrupted to insert the second b layer and partly due
to the possibility of two-channel conduction in the one
b-layer but not in the two b-layer system.

We have also studied heterostructures composed of
other semiconductor materials. The lat tice-matched
Inp 52 Alp 4sAs/Inp 53Gap 4qAs/InP asymmetric quantum
well is of device interest. If we take Si doped
Inp 52Alp 48As to have centers, and consider a struc-
ture with the same dimensions as the structure de-
scribed above, we find a channel density saturation value

u
Ns (10 cm )

0.25
1.324

0.3
1.357

0.35
1.397 From Ref. 32.

"All occupation densities are in 10 cm
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of 1.48x10 cm, which is slightly higher than the
Alp ssGap ssAs/Inp j7Gap ssAs/GaAs system.

C. Parabolic quantum well

To demonstrate the range of applicability of our
method to heterostructures, we studied a parabolic well
of Al Gaq As where x was varied from 0 at the cen-
ter of the well to 0.2 at the wall in such a manner to
produce a parabolic well. For simplicity we used the
one-band model. The width of the well was taken to
be 2000 A. . Two symmetric barriers of Alp sGap 7As and
width 2250 A were placed on either side of the well with
a doping of density 3x10 cm and width 50 A. placed
200 A from the well. For this parabolic well, we took a
linear interpolation for the band gap of Al Gaq As, a
conduction-band offset of 60'%% of the band-gap difference
and a temperature of 4.2 K. Figure 7(a) shows our self-
consistent potential and density for a parabolic quantum
well and Fig. 7(b) for a parabolic quantum well with a
superimposed superlattice with an Al mole fraction dif-
ference of 0.1 between the well and the barrier. In this
calculation we allowed both the mass and the dielectric
constant to be position dependent. Figures 8(a) and 8(b)
show the capacitance per unit area versus applied volt-
age calculated by the method of Sec. III corresponding to
the two parabolic wells. The smooth capacitance curve
of Fig. 8(a) shows the absence of structure due to emp-
tying out of subband occupations, contrary to the in-
terpretation of the observed structures in Ref. 15. The
steplike changes in the capacitance curve in Fig. 8(b) for
the quantum well with a superlattice supports the inter-

o 3.5

C3
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00
00

O000
00

2.5
0

I I I I I I I I

0
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0
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v, (v)

0
0
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OOOOOQ

0
0

0
0
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I I I I I

pretation of Ref. 16 that these structures are reflections
of the spatial inhomogeneities in the electronic charge
density.

FIG. 8. Self-consistent capacitance vs voltage curve for the
parabolic quantum well (a) and for a parabolic quantum well
with a superlattice superimposed. The curve in (a) is smooth,
similar to the 8-layer curve for b-doped GaAs of Fig. 2, but the
curve in (b) presents steplike changes due to the superimposed
superlat tice.
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FIG. 7. Self-consistent conduction-band-edge profile (solid
line) and density (dashed line) for a parabolic quantum well

(a) and for a parabolic quantum well with a superlattice su-
perimposed (b).

V. DISCUSSIONS

In order to have the capability to study the depen-
dence on the configuration of an electronic structure in a
semiconductor heterostructure as a guide for device de-
sign, we have presented a theoretical model of suKcient
flexibility and accuracy. The flexibility is shown by its
applicability at any temperature and by the actual com-
putation on three different classes of structures of III-V
compounds, two of which include b layers and one digi-
tal alloys. The accuracy necessary is achieved by using
the two-band effective-mass approximation, by including
strain effects due to lattice mismatch, by adopting the
deep donor level model for the DX centers when nec-
essary, and by treating changes due to the variation of
gate-voltage analytically.

Study of the specific cases leads us to a number of con-
clusions of importance for device applications of the het-
erostructures. Perhaps the foremost is that inclusion of
the deep levels of the DA centers leads to a prediction of
channel electron-density saturation as the b-doping layer
concentration is increased with a characteristic disconti-
nuity in the capacitance versus voltage curve. %'hile it
is obvious that deep level donors will prevent complete
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ionization of the donors, it is not clear a priori whether
the channel carrier density will increase with the doping
density or whether it will saturate. We have given satura-
tion density values which can be tested experimentally.
The limit of carrier density of a few times 10 cm
puts a limitation on improving device performance in this
direction. We are exploring ways in collaboration with
experimentalists both to confirm the saturation effect
due to DX centers (in contrast to other causes) and to re-
move such limitations by placing the DX centers in a thin
layer of a compound with no DX centers. A number
of phenomena which arise will be reported elsewhere.
Another direction to attempt to raise the carrier density
is to change the b-doping structure. A heterostructure
with two b layers on the same side with the same spacer
distance from the well as one b layer is shown to yield the
same saturation density. Three b layers begin to behave
like uniform doping.

Analytic formulation of the capacitance leads to re-
liable calculated differential capacitance dependence on
gate voltage. Thus, theory is able to help show that
structures in the C-V curves refIect spatial charge inho-
mogeneities but not the emptying of electron subbands.

The easy applicability of our model to a wide range of
III-V semiconductor heterostructures provides the pos-
sibilities for innovative designs and for new studies of
the electronic properties. In addition to the above-
mentioned collaboration with experimentalists to explore
the theoretical consequences of placing the doping lay-
ers in an environment free of DX centers, we have ex-
plored the theory of using superlattices as elements of
the heterostructure and we have started a collabora-
tion to understand the electron-spin transport across a
Schottky barrier built on heavily doped silicon " and to
understand the theoretical basis of the b-doped Ohmic
junction.
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