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Theory of interface-roughness scattering in resonant tunneling
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We have calculated the efFects of interface-roughness scattering on resonant tunneling through a
GaAs-Al Gaq As double-barrier structure. In our calculation we treat the double-barrier potential
exactly. The interface-roughness scattering is dealt with nonperturbatively by means of the self-
consistent Born approximation, which preserves unitarity. In the presence of scattering, the peak
current is reduced by 10+0, but not more, even though a tunneling electron may be scattered many
times while inside the quantum well. The valley current, on the other hand, is increased by several
orders of magnitude due to the scattering if the barriers are thick enough. For thin barriers, the
calculated peak-to-valley (P/V) ratios increase exponentially with the barrier thickness. At a barrier
thickness of 100 A the P/V ratio crosses over to a much slower increase, and eventually reaches
a maximum, after that the P/V ratio decreases somewhat. This qualitative behavior is in good
agreement with recent experimental results. A surprising result of this work is that nonperturbative
and perturbative calculations give practically identical results for the valley current for realistic
parameter values for the interface roughness.

I. INTRODUCTION

Molecular-beam epitaxy (MBE) has made it possible
to build artificial structures and materials such as quan-
tum wells and superlattices. The resonant tunneling
double-barrier structure (DBS) is one of the systems that
has been most extensively studied in this context. By
growing alternating layers of two semiconductors, typi-
cally GaAs and Al Gaq As, with difFerent band gaps,
on top of each other one can create a structure in which
the efFective potential felt by an electron is close to an
ideal double-barrier model potential. Thus, as a first ap-
proximation the tunneling transmission probability and
subsequently the tunnel current can be calculated by as-
suming that the tunneling is fully coherent. One applies
wave mechanics to a square-barrier model of the semicon-
ductor DBS. In such a calculation it is assumed that the
momentum of a tunneling electron parallel to the barriers
is conserved.

This type of theory does indeed reproduce the most
conspicuous feature of the current-voltage characteristics
of a DBS, namely the negative difFerential resistance be-
havior. As the bias voltage across the structure is in-
creased, the tunnel current initially increases and reaches
a peak value. If the bias voltage is further increased, the
resonant state in the quantum well, through which most
of the tunnel current passes, is pulled below the bottom
of the conduction band of the doped emitter contact.
At this point the tunnel current drops substantially and
the so-called valley current is obtained. Finally, for even
higher voltages the current increases again, either due to
resonant tunneling through resonant levels of higher en-
ergy or because the downstream barrier begins to collapse
so that field emission sets in.

The results of the simple theory described above are,
however, not in complete quantitative agreement with
experiment. Most importantly, in many cases the calcu-
lated values of the valley current are too small. This is

not surprising since a number of scattering processes that
are not present in a double-barrier model potential oc-
cur in the DBS. The electrons can, for example, interact
with the phonon modes of the DBS materials, and this
leads to important modish. cations of the current-voltage
characteristics. In this work we will treat another im-
portant process, namely the scattering of the tunneling
electrons ofF the rough interfaces between the barriers
and the quantum well. The structure grown by MBE is
not identical to an ideal DBS with perfectly fiat inter-
faces between the difFerent materials. The sharpness of
an interface can only be controlled to within two to three
atomic layers, so there will inevitably be steps and islands
etc. , on the interfaces. ' This gives rise to a scattering
potential. The elastic interface-roughness scattering as-
sists tunneling by transferring energy, from an electron's
motion perpendicular to the barriers, to the parallel mo-
tion, or vice versa. In this way an electron that enters the
quantum well with a perpendicular-motion energy that
is ofF resonance can be brought into resonance.

Longitudinal-optical (LO) phonons and interface
roughness are generally considered to be the two most
important causes of scattering in a DBS. Which one is
more important depends on the geometric parameters
and barrier composition of the DBS and the tempera-
ture. In this study we will focus on DBS's with thick and
low barriers; interface roughness is expected to cause the
most important scattering processes in these structures.
Gueret et al. ' have carried out a systematic study of
how the barrier thickness afFects the current-voltage char-
acteristics. They used DBS's with well width I =70 A,
barrier thicknesses d varying between 75 and 310 A, and
barrier height Vb =120 meV. The experiments were per-
formed at a temperature of 4.2 K. The low barrier height
has the advantage that band bending only gives small ef-
fects. The low temperature prevents LO-phonon absorp-
tion processes from taking place; there are no thermally
excited LO phonons. Phonon emission does not afFect the
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where n, is the number of roughness islands per unit
area, A; is their average area, co is the resonant energy
and bI is the change of the quantum well width L due to
a roughness island. The last factor comes from the sum
over final states, and m* is the electron effective mass.
Note that so 1/L so that 1/7„1/L . With typical
parameter values (n; =10 A 2, A; =4x 104 A.2, so —40
meV, m* =0.067mo, and bL/L =0.05), we get 7;, —0.2
ps. Thus the intrinsic lifetime is usually much longer than
the scattering lifetime and an electron will typically be
scattered many times while inside the quantum well. The
interface-roughness scattering must be treated to infinite
order in order to obtain a complete description of the
resonant tunneling in such a case.

At the same time as we treat the scattering to infi-
nite order we will also average over different roughness
configurations. This introduces a dephasing mechanism
into the calculation. It is not immediately clear that
such a procedure is valid since we are dealing with an
elastic-scattering process in a mesoscopic device. How-
ever, we argue that configuration averaging should work
when calculating an integrated quantity such as the tun-
nel current. Numerical studies by Fertig, He, and Das
Sarma indicate that the configuration-averaged trans-

valley current too much. Resonant tunneling through the
LO-phonon emission sideband of the DBS mainly plays
a role at bias voltages that are so large that the DBS has
already entered the field emission regime. The measured
peak current agreed well with what is found from a cal-
culation within the coherent picture. The valley current
was, on the other hand, many orders of magnitude larger
in the experiment than in the theoretical calculation if
only the barriers were thick enough. The experimental
peak-to-valley (P/V) ratio reached a constant value of
—20 for barriers thicker than 100—150 A. . In their pa-
pers Gueret et al. suggest that the low P/V ratios are
primarily the result of interface-roughness scattering.

On the theory side, a large number of papers treat-
ing phonon and interface-roughness scattering
and related effects ' have been published. Common
to almost all of the theories of interface-roughness scat-
tering is a perturbative treatment of the roughness. In
this paper we will calculate the effects of interface rough-
ness on resonant tunneling nonperturbatively. In a DBS
with thick barriers a tunneling electron is trapped in-
side the quantum well for a long time. For a DBS with
200-A.-thick barriers, for example, the intrinsic lifetime
of an electron inside the quantum well, estimated from
the width of the transmission resonance, is of the order
of 5 ns. The time between different scattering events can
be much shorter. If there is one resonant state in the
quantum well that is energetically accessible for the tun-
neling electron, an estimate of the scattering lifetime can
be found from the golden rule, assuming that the scatter-
ing potential is equal to the change of the resonant level
energy when the width of the quantum well is changed.
We get

mission probability gives a smoothened average of the
rapidly varying, exact transmission probability resulting
from a given roughness realization. In this context we
should mention the work by Buttiker in which he de-
veloped a description of incoherent resonant tunneling
by means of connecting the quantum well to a (hypo-
thetical) dephasing lead. Hershfield2~ has shown that
treating impurity scattering to infinite order while at the
same time averaging over configurations is equivalent to
the application of dephasing leads.

In a recent publication we reported on a non-
perturbative calculation of the effects of interface-
roughness scattering on resonant tunneling. In what
follows we will improve on the earlier calculation. The
double-barrier structure in Ref. 28 was treated by a trans-
fer Hamiltonian. This means that it is not possible to get
a very accurate description of the tunnel current at large
bias voltages. In this work we treat the double-barrier
potential exactly. Consequently the present formalism is
able to describe correctly the onset of field emission at
large bias voltage. The second major improvement is that
we will take into account the finite lateral extension of
the interface-roughness islands. In our earlier calculation
each roughness island was modeled by a b-function po-
tential. This leads to an overestimation of the roughness-
assisted contribution to the tunnel current since there is
no upper limit on the change of an electron's parallel mo-
mentum in each scattering event. Here we instead model
each island with a Gaussian potential with an effective
cutoff' at a momentum transfer of the order of h/po, where
po is the typical radius of an interface-roughness island.

The results of our calculation are in good qualitative
agreement with the experiment of Gueret et al. We find
that the peak current is not changed much when the ef-
fects of scattering are included in the calculation, but
the valley current increases by several orders of magni-
tude if the barriers are thick. Our calculated P/V ratio
grows rapidly with increasing barrier thickness d up to
d -100 A. . After that the iiicrease is slower and finally
for barriers thicker than d 200 A the P/V ratio even
decreases slightly. We have also compared the results of
the nonperturbative calculation with what one gets when
treating the interface roughness to lowest order in per-
turbation theory. The surprising result is that the valley
currents obtained &om the two different calculations are
basically identical, despite the principally very different
descriptions of the physics.

The rest of the paper is organized in the following way:
In Sec. II we develop the formalism necessary in order
to treat the interface-roughness scattering to infinite or-
der. In Sec. III we present and discuss the results of our
calculations. Section IV, finally, gives a summary.

II. THEORY

A. Transmission probability and the tunnel current

In this section we will calculate the tunnel current den-
sity through the double-barrier structure schematically
illustrated in Fig. 1. We will use scattering-theoretic
methods in the calculation. We do not take into account
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Lippmann-Schwinger equation (we omit the subscript k)

@(r) = @o)r) + f d r'GD)r, r')VqR(r')g(r'),

where the integration runs over all space. In this equa-
tion @0 is the electron wave function in the absence of
interface-roughness scattering satisfying

h
+ VDBs(r) —e' $0(r) = 0

z and the Green's function Go is the solution of

FIG. 1. Schematic illustration of the double-barrier struc-
ture considered in this work.

26 I 1
V' + VDBs(r) —s Gs(r, r, s) = —hl ~(r —r ),2m*

j=2e d3k hk ' T(k) [n,l. (c&) —nR(sz)],
)0 27l m (2)

any electron-electron interaction. The effects of electron-
electron interactions are considered to be relatively small
in double-barrier structures with low barriers. The mo-
tion of the electrons is governed by the double-barrier po-
tential and the interface-roughness scattering. Since we
are dealing with elastic tunneling the current density can
be found &om the standard "Landauer-type" formula,

satisfying the boundary condition of outgoing waves away
from the interface roughness. The explicit appearance of
the potential VjR in Eq. (6) poses a problem when av-
eraging over different interface-roughness configurations.
The potential can, however, be eliminated by compar-
ing Eq. (6) with its counterpart for the dressed Green's
function G in the presence of interface roughness:

G(r, r, E) = Go(r, r, s)

where e is the elementary charge and k is the wave vector
(in the left contact) of the electron impinging from the
left. We have used the GaAs value m* = 0.067mo for the
electron effective mass throughout the whole structure.
When calculating the occupation numbers in the left and
right contacts, nl, and. nR respectively, we assume that
the chemical potential differs by eU between the con-
tacts, U being the bias voltage. Moreover, we evaluate
the occupation numbers at zero temperature; we are pri-
marily going to compare with a low-temperature exper-
iment. To calculate the transmission probability T we
must solve for the electron wave function. To the right
of the DBS it is a sum of outgoing waves,

@g(r) = ) t(k, k) e'"*' e*"))')).
k'

The transmission probability is then

+ d r Go(r, r, s) Vl~(r )G(r, r, s).

(9)

From Eq. (9) we get the formal identity [1 —GOVyn]

GGO, so the Lippmann-Schwinger equation can now be
written

d r d r G(r, r, z)Go (r, r, s)go(r ).

(lo)

In this formula all effects of the interface roughness are
t

contained in G(r, r ). The introduction of the inverse
Green's function Go is thus convenient from a formal
point of view. We should point out that Go does not
appear in the final expressions for the transmission prob-
ability, etc. Since the unperturbed system is translation-
ally invariant parallel to the barriers we Fourier trans-
form the Green's functions in the x and y variables:

I

where k is the final state wave vector. The angu-
lar brackets indicate averaging over different interface-
roughness configurations. We refer to the Appendix for
the calculation of the reHection probability. The absolute
magnitudes of the wave vectors are related to the total
energy e by

G(r, r, s) =

Go (r, r, s) =

x e '~]i

d A:
(r)) —r)) ) G—1 (k

'

)p

(1la)

(l.lb)
hk2 hf2 —eU.
2m* 2m*

For a given interface-roughness configuration, described
by the potential VyR, the wave function satisfies the

The unperturbed wave function is

(i2)

where Po„(z) is the solution of the one-dimensional



48 THEORY OF INTERFACE-ROUGHNESS SCATTERING IN . ~ . 8941

Schrodinger equation

h d + VDBs(z) —s Po (z) = 0,
&(r) = dz dz

d
k~~

G(k~~ I k~~, z, z, s)

with an incoming plane wave from the left and outgoing
reflected and transmitted waves to the left and right, re-
spectively. The energy associated with the motion in the
z direction s, = c —h K, /2m* and the symbol v. denotes
the absolute magnitude of kI~. For r to the right of the
double-barrier structure the wave function of an electron
with initial momentum k can be written as

xGo (kii, z, z, s)Po„(z ).
(14)

The dressed Green's function G is the only quantity that
depends on the interface roughness in this expresssion.
The configuration-averaged value of ~t~ is found by eval-
uating the absolute square of @(r) at any point with a
z-coordinate z~ to the right of the DBS:

(llI(I ', k)l') = f «» dz2 dz3 dz4(G*(k~~, k~~ I zR, zi, s') G(k~~ I k~~, ZRI z3I s))

xGp *(k~~ I zl I z2 I s)Go (k~~ I z3, z4, s) po„(z2)ppII, (z4).

Except for the roughness-averaged product (G*G) of the dressed Green's functions all quantities in Eq. (15) can be
calculated once the double-barrier potential is known.

There are two diferent contributions, illustrated in Figs. 2(a) and 2(b), to the right-hand side of Eq. (15). The
first of these contributions come from unscattered electrons, the second from electrons that have been scattered by
the interface roughness. We now make two general assumptions about the scattering potential: (i) it is localized to a
single plane z = zo, and (ii) it is cylindrically symmetric (i.e. , the strength of the scattering potential does not depend
on the absolute orientations of the initial and final momenta of an electron). We then find

()I(I», I»)l~') = f « f « f z4 [~~ „G.*( a, i, s)Go.'*( i, 2, s)4o. ( 2)G (za, s, s)

x Go„(zs, z4, s) Pp„(z4)
+ G*, (zR, zp, s) G*„(zp, zi, s)Go„'*(zi,zz, s) po„(z2)

x A(k, kI s)G ~ (z~I zoI s)GII(zpI z3, s)Go (z3, z4, s')Pp~(z4) ].
(16)

k

(a) (b)

k

k k k

k k k

In this equation we have used the notation G„
G(k~), k~~), etc. , since all the Green's functions describe
the propagation of an electron from a particular momen-
tum, back to the very same momentum, and moreover

these Green's functions only depend on the magnitude of
the parallel momentum when the scattering potential is
cylindrically symmetric. The vertex function A(k, k, s)
describes the rate at which real scattering events from k
to k take place. To lowest order A is proportional to
the absolute square of the interface-roughness scattering
matrix element. The higher-order contributions to A take
into account multiple-scattering events. The detailed cal-
culation of A will be discussed in the next subsection [see
Eq. (26)].

To carry out the integrations over the z variables in
Eq. (16) we must relate the roughness-averaged dressed
Green's functions G, to the bare ones Go, through the
Dyson equation. When all interface-roughness scattering
takes place in the plane z = zo the self-energy Z takes
the form

k Zg)) (z z s) = 0 (E)h(z —zp)8(z —zp).

FIG. 2. Diagrammatic illustration of the calculations. (a)
Contribution to the transmission probability from unscattered
electrons and (b) from electrons that have been scattered by
the interface roughness. (c) The Dyson equation relating the
dressed Green's function to the bare one. The self-energy in-
sertion is calculated within the self-consistent Born approxi-
mation. (d) Illustration of the integral equation for the vertex
function A.

Thus we can write the Dyson equation, describing the
propagation of an electron &om momentum k back to the
same momentum via two interface-roughness scattering
events, as

G„(z,z, s) = Go„(z, z, s)
+Go„(zoI z, s) o „(s)G„(z,zo, s). (18)
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G„(z,z, s) = Gp„(z, z, s)

+Go„(zo, z, s) o.„(~)Gp„(z, zo, e)
1 —o„(s')Go„(zp zp E')

(19)

This equation is illustrated in Fig. 2(c) and it has the
formal solution

the contacts and piecewise linear across the barriers and
the quantum well. Thus both Pl,„and P~„can be ex-
pressed in terms of Airy functions in the barriers and the
quantum well and in terms of plane waves in the con-
tacts. The coordinate z& (z&) is the lesser (greater) of z

I

and z, and TV denotes the Wronskian,

The bare Green's function is easily calculated from

$1, (z&)P~ (z))
Gp~ (Z) Z ) 8') (20)

I I

lV = 4'1.~0~„—41,„0R~.

Inserting Eq. (19) into Eq. (16) and using

(21)

The wave functions Pg„and QR„satisfy Eq. (13) and give
outgoing waves to the left (L) and right (B) of the DBS,
respectively. The model potential we use is constant in we find

dz Gp„(z, z, s)Go„(z,z, s) = b(z —z )

2 2

Gp„(zR, zo, s) „„~„(~)Go„(zo,zo, s)
1 —0„(s)Go„(zp,zp&E) '1—cT (E)Gp (zp zp, s)

(22)

This result can now be inserted into Eq. (4) and subse-
quently Eq. (2) when calculating the tunnel current, but
we still must determine o'„(r) and the vertex function

A(k, k, s). This will be done in the next subsection.

B. Calculation of the self-energy
and the vertex function

In order to get results that preserve unitarity it is es-
sential to employ the same kind of approximations in
both the self-energy and vertex-function calculations.
Here we use the self-consistent Born approximation
(SCBA). A diagrammatic illustration of the self-energy
is given in Fig. 2(c). The vertex function is calculated in
Fig. 2(d). The SCBA is a multiple-scattering formalism.
An electron can undergo any number of scattering events
while it is in the quantum well. However, the interac-
tion with an interface-roughness island is treated to low-
est order at each encounter. It is fairly straightforward
to generalize the SCBA to take into account scattering
to all orders at each encounter with a roughness island.
This corresponds to the coherent-potential approxima-
tion (CPA). Common to both the SCBA and the CPA
is that they do not account explicitly for interference ef-
fects between difFerent roughness islands. All Feynman
diagrams with crossed interaction lines are neglected. So-
called maximally crossed diagrams are known to de-
scribe coherent backscattering. This effect has been stud-
ied in the context of an optical Fabry-Perot cavity (reso-
nant tunneling of photons) by Berkovits and Feng. We
think it is safe to neglect this effect in the present cal-
culation. The maximally crossed diagrams give strong
scattering &om k~~ to —

k~~) but this should not change
the tunnel current substantially. Coherent backscatter-
ing can in any case not bring an off-resonant electron into
resonance since it does not change the parallel-motion ki-
netic energy.

V(kii) =
po 2' —svpcos~ 2~ V &( pp)

Kpp

(23)

Here Vb is the barrier height and J~ is an ordinary Bessel
function. In reality the different islands have different
sizes and difFerent shapes. It is therefore reasonable to
keep only the central peak (around v. = 0) of the above

Turning to the detailed calculation we first have to de-
cide what scattering potential to use. In the experiment
the interface-roughness consists of islands of barrier ma-
terial penetrating into the quantum well or vice versa.
Typically these islands have a radius pp 100 A and their
height 6; corresponds to one to two atomic layers. ' The
height is small compared with the width of the quantum
well, so we can replace the island's extension perpendic-
ular to the barriers with a delta function h, b(z —zp),
where zp is the location of the downstream inner wall
of the quantum well. We choose to place the interface
roughness at one single interface. The primary reason for
this is that the interfaces of MBE-grown heterostructures
are different depending on in which order the layers are
grown. The interface one gets when growing Al Ga~ As
on top of GaAs has considerably larger islands than in
the opposite case and is therefore more efFicient in assist-
ing resonant tunneling. We place the roughness on the
downstream wall because it has larger effect there when
the DBS is biased. The difFerence between the two sur-
faces leads to an asymmetry in the current-voltage char-
acteristics which has both been observed experimentally
and found in earlier theoretical calculations. If we fur-
thermore assume that the interface-roughness islands are
circular in shape with a radius pp, consistent with the
typical island area A, = vrpz, the Fourier transform of
the potential in two dimensions is (for an island centered
at the origin)
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potential. We do this by approximating V(kll ) by a Gaus-
sian function

V(kll ) A.,Vge (24)

where o. = 0.15pp (see Fig. 3). As is seen from Eq. (24)
the eÃects of the interface-roughness scattering vanishes
both when A, ~ 0 and when A, ~ oo. Islands with a
radius pp 75 A. are the most efficient in increasing the
valley current by assisting resonant tunneling through the
DBSs we are going to consider. We find this by optimiz-
ing n, lV(kll)l while keeping the coverage n;A; constant
(recall that n, is the areal density of interface-roughness
islands) and assuming that the momentum transfer cor-
responds to 30 meV (= h r2/2m*).

We can now calculate o„(e) and A(k, k, e). The
Fourier transform of the scattering potential from a
roughness island away from the origin carries a phase
factor. Thus, when roughness averaging only products
V(kll)V( —kll) = IV(kll) I

give nonzero ~~~~lt~. From the
insertion in Fig. 2(c) we get the following expression for
the self-energy:

cylindrically symmetric. Equation (25) has to be solved

by iteration since the Green's function appearing in the
integral itself depends on cr„(e).

The integral (Bethe-Salpeter) equation for A(k, k, e)
illustrated in Fig. 2(d) becomes

A(k, k, e) = n;h'IV(kll kll)l

+n, h,' l', IG„(z., z. , e) I'
27r 2

x IV(kll —
kll ) I A(k, k, e).

(26)

Once again thanks to the cylindric symmetry of the scat-
tering potential, A only depends on the absolute magni-
tudes of k and kII and their relative angle. In the calcu-

II

lation of the tunnel current we can thus let kII point in
the x direction. Moreover, in order to calculate the trans-
mission probability T(k) it suffices to know the angle-

averaged vertex function A(K, v, e) defined by

o„(e) = n, h, IV(vx —kll)l G„(zp, zp, e). (25)
I 1

A(K, K, e)
27'

d&pA(K [x cos(p) + y sin(y)], Kx, e').

We have taken the parallel momentum of the electron to
point in the x direction; the self-energy does not depend
on the direction of k because the scattering potential is

Applying the angular-averaging procedure to the Bethe-
Salpeter equation with the potential in Eq. (24) yields

I2
A(K, K, e) = n;h; A, V~ e (" +" lIp(4nr K,)

II II&max f2 II 2
+n, h; A;Vi, e (" +" lIp(4nr r ) G„(zp, zp, e)l A(K, r, e),

27t
(28)

where Io is a modified Bessel function of the first kind.
We have introduced a truncation of the basis set at a
maximum parallel kinetic energy e „= h r2 „/2m*.
The states that are removed in this way have no practical
importance for the tunneling; the only thing that is im-
portant to keep in mind is that the same truncation must
be made when calculating the self-energy in Eq. (25).
The truncation of the basis set simplifies the solution of

M

A(r. ', K,, e) = ) A, , (e)

xT, , (h'K"/m*e .„—1)

xT, , (h, '~'/m*e ..—1), (29a)

the integral equation; it becomes termwise separable if we

expand A and the potential from an interface-roughness
island in double sums of Chebyshev polynomials:

0.8

0.6
e-"("' "+' lI(p4~~'~)

0.4

0.2

M

) v, ,T, , (h, 'K"/m*e .„—1)

—0.2

xT, , (h'r. '/m*e . —1) . (29b)

0 1 2 3 4 5 6 7 8

FIG. 3. Comparison between the functions describing the
interface-roughness potential in Eqs. (23) and (24).

In the actual numerical calculations we used e =100
meV and M =15. The coefFicients v . . can be calculated

2 2
once and for all for a given value of o.. The explicit
expression is
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(2 —8I. i)(2 —SI,i)
¹

1V

x ) exp —2n 2 "((, +(i+2)
l, l =1

where

(~(l —2) 5
(I =cos

i N

(30)

ues. The barriers are d =70 A. thick and Vb ——120 mev
high in this calculation. The quantum well is L =70 A
wide. We use quite narrow barriers in order to be able to
compare the transmission probabilities in the same fig-
ure. The transmission peak is fairly sharp when there
is no scattering present. The peak value is less than 1
because the DBS is biased with U =70 mV and thus
asymmetric, so perfect transmission cannot be obtained
for any energy. The transmission resonance is suppressed
and broadened when interface-roughness scattering is in-
cluded in the calculation. When the initial parallel mo-
mentum of the electron equals zero we get an asymmetric
transmission resonance. In this case the parallel-motion
energy must increase in the scattering events that assist
resonant tunneling. This is only possible if the electron's

II IIm8x g dg

2' ~
G„(zo, zo, s)

~

xT hv. mc

XTl y A K m 8 —1 (32)

We used N =50 in this calculation.
Solving the integral equation now reduces to determin-

ing the coefficients A. ~ . (s). If one inserts Eqs. (29a) and

(29b) into Eq. (28) and calculates the matrix elements

0.25
(a)

0.2—

0.15—

0 1

0
0.05—

2
0

—0.05—

and the matrix product
—0.1 I I I I I I

0 2 4 6 8 10 12 14 16
Electron energy z, (meV)

it is found that the coeKcients A . . satisfy

A matrix inversion yields

(84)

A, (s) = n;h, A;Vb v, , +n, h; A;VI, ) Q, , (s)Ai, (s).
10

C00
10 4

Q

E 1P
—6

I I I I I I I I

S0A

70 A

901
120 A.

A, , (s) = ) [[1—n;h; A, Vi, Q] 1], ,n, h, A, Vs vi,

(35)
1P

—8
200 A.

I

0 2 4 6 8 10 12 14 16 18
Electron energy E'~ (meV)

Now we insert Eq. (22) into Eq. (4). Since A is the only
quantity entering the expression for (~t~ ) that depends

I

on the direction of k, the angular integration transforms
A(k, k, s) into A(K, K, s). From then on the knowledge
of the coefficients A I (s) makes it possible to calculate
the transmission probability and the tunnel current.

III. JESUITS AND DISCUSSION

Figure 4(a) shows how the scattering changes the
transmission probability of an electron as a function of
its initial z-motion energy e . The interface roughness is-
lands have area A, = 4x10 A and their height is h, =
5 A. , which corresponds to almost two atomic layers. The
areal density of islands n; is 10 A 2, i.e. , 40/o of the
interface is covered with islands with these parameter val-

FIG. 4. The transmission probability of an electron as a
function of its initial "z-motion energy. " (a) The DBS has 70-
A.-thick barriers and a 70-A-wide quantum well. The barriers
are 120 meV high and the bias voltage is 70 mV. The dot-
ted curve gives the transmission probability with no interface
roughness present. In the other calculations the downstream
inner wall of the quantum well was covered by roughness is-
lands. The areal density of islands was n, =10 A, each
island had area A, =4 x 10 A, and height h, =5 A. The thin-
line curves give T, and B—1, of electrons with initial "parallel"
kinetic energy c~[

——0. The thick curves have been calculated
with an initial a~I =3 meV. (b) Transmission probability on a
logarithmic scale for a DBS with the same interface-roughness
parameter values as in (a). The DBS is also the same except
for the barrier thickness which is varied as indicated to the
right of the curves. The initial c[[ is zero.
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is larger than the resonant level energy. One therefore
gets a sharp edge on the low-energy side and a long tail on
the high-energy side of the resonance. We also see that
the peak position is shifted towards lower energy. The
real part of the self energy is negative since the k~~

——0
state is only coupled to states of higher energy by the
interface roughness. With a finite initial parallel mo-
mentum the transmission resonance is more symmetric
and less shifted towards lower energy.

In Fig. 4(a) we also display two plots of R —1, where
R is the reflection probability. We see that these curves
are the mirror images of the corresponding curves for the
transmission probability. This shows that the calculation
gives results that preserve unitarity (R + T = 1). Nu-

merically R+ T differs from 1 by less than 10 in our
calculations.

If the barrier thickness is increased it becomes, in an
average sense, more dificult for an electron to tunnel
through. This changes the no-scattering and scattering
transmission probabilities in different ways. The width
of the sharp peak in the no-scattering case decreases
with increasing barrier thickness. This is due to the fact
that the electron's intrinsic lifetime in the quantum well
increases. The transmission probability with interface-
roughness scattering present, on the other hand, gets
more and more suppressed while its width, which is pri-
marily determined by the scattering lifetime, does not
change too much. This is shown in Fig. 4(b).

In Fig. 5 we compare the tunnel current through a DBS
with thick barriers with and without interface-roughness
scattering. In this calulation the barrier thickness was
d = 250 A. , the well width was L = 70 A, and the Fermi
energy of the electron gas in the doped emitter contact
was taken to be E~ ——15 meV. The parameter values
for the interface roughness are the same as those used
in Fig. 4. On the linear scale in Fig. 5(a) we see that
the peak current is reduced by about 10% when allowing
for scattering. The peak is at the same time somewhat
broadened. We can explain this behavior by taking a look
at Fig. 4: A tunneling electron is scattered many times
while inside the quantum well. The net effect of this is
that the spectral strength associated with the resonant
level in the quantum well is redistributed from a very
sharp peak to a broad but suppressed resonance. The
tunnel current is, however, an integrated quantity and it
does not change much even if the underlying transmis-
sion probability changes as long as the broadening of the
resonance is not larger than the width of the energy dis-
tribution of the incoming electrons. These results are in
general agreement with the conclusions drawn from early
phenomenological models.

In Fig. 5(b) the tunnel current is plotted on a logarith-
mic scale. Here we see that the valley current increases
by several orders of magnitude when interface-roughness
scattering is included in the calculations. The current
density has been calculated using two different values
for the areal density of roughness islands. The higher
value of n; was basically chosen in order to account for
other scattering mechanisms (roughness at other inter-
faces, alloy scattering, etc.) in an approximate way. We
see that increasing the number of scatterers by a factor
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FIG. 5. The current-voltage characteristics of a double-
barrier structure with d =250 A. , L =70 A, and Vb =120
meV, at zero temperture on (a) a linear scale and (b) a loga-
rithmic scale. The Fermi energy of the electron gases in the
doped contacts is 15 meV. The parameter values for the in-
terface roughness are the same as in Fig. 4, except for the
areal density n, of roughness islands which is given next to
the curves.

of 2 gives a corresponding reduction of the P/V ratio.
It is worth noticing that both the general shape of the
current-voltage characteristics and the P/V ratio in this
latter case begins to resemble the experimental results.

We have also performed a calculation in which the in-
terface roughness is treated to lowest order in perturba-
tion theory. This is the approximation used by Leo and
MacDonald. The at first surprising result is that the
perturbative and nonperturbative calculations give val-
ues of the valley current that are practically identical (the
difference is less than 1%). In the perturbative calcula-
tion electrons are scattered into a very sharp resonance,
while in the nonperturbative case they are scattered into
a broadened resonance. The integrated spectral strength
of the resonance is, however, basically the same in both
cases. Moreover, the very first scattering event is the
all important one. It must bring the electron close to
resonance. This can be understood from the following
reasoning: With the parameter values given in Pig. 5,
an electron entering the quantum well at a 130-mV bias
is off resonance by -30 meV. Thus the uncertainty rela-
tion allows the electron to stay in the quantum well (in a
virtual state) for 0.02 ps. This is considerably shorter
than the scattering lifetime and one cannot expect more
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than one scattering event to take place in that time span.
This explains why the perturbative and nonperturbative
calculations give nearly equal results for the valley cur-
rent.

To get considerable differences between the results of
the two calculations one must use unrealistically large
parameter values for the interface roughness, so that the
width of the transmission resonance in the SCBA calcu-
lation becomes comparable to the difference between the
valley and peak voltages. When this happens the per-
turbative calculation gives too large values for the valley
current compared with the correct value.

It is particularly interesting to compare the calculated
peak-to-valley ratios with the ones that are found from
experiment. In Fig. 6 we have plotted our calculated P/V
ratios as a function of barrier thickness. The parameter
values describing the DBS are taken from the experiment
by Gueret et al. We see that the P/V ratio increases
exponentially to begin with, but at d 100 A. it starts to
level ofF and then reaches a maximum at d 180 A. For
even thicker barriers the P/V ratio decreases somewhat.

The exponential increase goes on as long as the intrin-
sic lifetime of an electron in the quantum well is shorter
or comparable to the scattering lifetime. When this does
not hold true any longer the P/V ratio levels off. Taking
a look at Fig. 4(b) we see that the transmission proba-
bility through the three DBS's with the thickest barriers
only differ by a constant factor (on the high-energy side
of the peak). Thus the same crossover is seen also in
this figure at d =100 A. , and the underlying reason is
that the intrinsic width of the transmission resonance
becomes negligible in comparison with the scattering-
induced broadening.

The decrease of the P/V ratio for barriers thicker than
d =200 A is caused by the difFerent looks of the barriers
at the two different voltages. With "valley voltage" the
barriers are more tilted and therefore a bit more trans-
parent than in the "peak voltage" situation. This causes
the decrease in P/V ratio. This efFect is thus not directly
connected to the interface-roughness scattering.

I I I

Gueret et al. found the same qualitative behavior of
the P/V ratio as a function of barrier thickness in their
experiment. Quantitatively their measured maximum
P/V ratio was 20. We see that with n, =2x10 s A.

the theoretical P/V ratio is a factor 3—4 larger than the
experimental value. The DBS has in total four differ-
ent interfaces. The perturbative calculation by Leo and
MacDonald showed that also the outer interfaces of the
DBS give considerable contributions to the valley cur-
rent. This result, in combination with our finding that
perturbative and nonperturbative calculations give ba-
sically the same valley current, may indicate that it is
justified to use even higher values for n, than 2 x 10

In any case our calculation shows that inter face-
roughness scattering can explain the qualitative behavior
of the P/V ratio as a function of barrier thickness in a
low-temperature experiment. As for the magnitude of
the maximum P/V ratio we find that it can be reduced
to -50 with realistic parameter values for the interface
roughness.

IV. SUMMARY

In this paper we have presented a calculation of the
effects of interface-roughness scattering on resonant tun-
neling. We have treated the interface-roughness scatter-
ing to infinite order by means of the self-consistent Born
approximation. The results show that the scattering does
not change the peak current through the structure very
much. The valley current, on the other hand, can, in
the case of a DBS with thick barriers, increase by sev-
eral orders of magnitude. When studying the calculated
peak-to-valley ratio we find that it grows exponentially
with increasing barrier thickness up to 100-A-thick bar-
riers. After that the increse is slower, and eventually a
maximum is reached at a barrier thickness of about 200
A. This is in good qualitative agreement with experi-
ment. Finally, another important result of this work is
that the valley current found from a calculation in which
the interface-roughness scattering is treated by lowest-
order perturbation theory is practically identical to the
valley current found from a non-perturbative calculation.
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FIG. 6. The peak-to-valley ratio of the tunnel current
through a DBS as a function of the barrier thickness. The
areal density of scatterers is given in the Ggure, the rest of
the DBS and interface-roughness parameters are the same as
in Fig. 5.

APPENDIX

In this appendix we give the expressions for the reflec-
tion probability of an electron. To the left of the DBS



48 THEORY OF INTERFACE-ROUGHNESS SCATTERING IN ~ 8947

the electron wave function can be written as

I I

(r) I s *
[~

I'~~~ + ) (k k)
—ak z I

~~

I'~~

k'
(A1)

This means that the re8ection probability in analogy
with Eq. (4) can be written as

I

&(k) = ).k'(lr(k k)l').
k'

(A2)

Note that both k and k refer to the left-hand side of the
DBS in this case. We thus have ~k~ = ~k ~. The quantity
(~r(k', k)

~ ) is given by an expression analogous to Eq.
(22),

Ptc('I Pl ) A(k' k )y ( )
K() Prc(ol Pl ) P ( )1 —o.„(e)Gp„(zp, zp, e)

' ' "
1 —0 (e) Gp (zp, zp, e)

i.e. , the rejected wave function has been evaluated at z = 0. The self-energy and vertex function should be calculated
in the same way as when calculating the transmission probability.
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