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A new concept for solving the set of coupled equations of a multicomponent envelope-function
problem is presented which is based on a quadrature method for the integral equations in momentum
space. It is applicable to quite general k p Hamiltonians, considers the boundary conditions at
interfaces in a natural way, and avoids automatically any spurious solutions. The Bexibility and
potential of the method are demonstrated by a few selected examples.

I. INTRODUCTION

Because of its central importance for fundamental
physics as well as for technological applications, the elec-
tronic structure of layered semiconductor structures has
attracted much interest over the last two decades.
In theoretical studies methods based on the envelope-
function approximation (EFA) are predominant, the
reason being that the EFA allows a comprehensive de-
scription of electron and hole states. It can cope with
periodic or aperiodic geometries of quantum structures
as well as perturbations such as magnetic field, strain or
a built-in or external potential. Details of the underly-
ing crystal potential are included in terms of bulk band
structure parameters.

The simplest approach within the EFA is the ef-
fective mass approximation which assumes a single
isotropic parabolic band. It provides basic insight into
the electronic structure of inversion layers, heterojunc-
tions, quantum wells and superlattices, but it fails to
account for the subtleties which occur in semiconductor
band structure such as nonparabolicity, spin splitting or
heavy-light hole coupling. All these details of bulk band
structure can be described within the framework of k ~ p
theory. Originally developed in the early days of semi-
conductor physics, ' it has frequently been used in ap-
plications both to bulk band structure and to electron
states in layered semiconductor structures.

In position space the k p matrix Hamiltonian is
transformed into a kinetic energy operator by replac-
ing k ~ —,V', and the corresponding Schrodinger equa-
tion is actually a set of coupled di8'erential equations
for the multicomponent envelope function. The kinetic
energy operator contains bulk band parameters such as
matrix elements of momentum, band edge energies, ef-
fective masses and g factors. It is well defined and can
be regarded as parameter free once these quantities are
known, e.g. , by fitting to independent experimental data
obtained for the bulk material.

For layered semiconductor structures we face problems
connected with the inhomogeneity of the system, i.e., in-
terfaces with evanescent waves and changing band pa-

rameters. Commonly the latter is taken into account in
the EFA by considering bulk band parameters which vary
discontinuously at the interfaces. As a consequence
matching conditions for the envelope functions and their
first derivatives have to be derived from the Hermitian
form of the kinetic energy operator. The problem of
finding the proper Hermitian formulation has been dis-
cussed in the literature ' but remains a controversial
problem.

Until now no general solution to the multicomponent
envelope-function problem has been provided. Several
methods have been suggested, each of them suited for
certain problems but always requiring additional simpli-
fications. Hence the rest of this introduction is devoted to
a short review of existing approaches, outlining their un-
derlying physical approximations, limitations of validity,
and the numerical diKculties which they entail. In the
past these aspects have been mixed up to some extent.

In the bulk conduction band the eKect of nonparabol-
icity has been taken into account by explicitly consid-
ering terms up to fourth order in k. ' This yields a
simple model that has proven its worth for the conduc-
tion band in large-gap semiconductors. Furthermore, it
can easily be applied to the subband problem. Com-
monly this is done by calculating the envelope func-
tions from a standard effective mass Hamiltonian and
then nonparabolic corrections are taken into account by
first order perturbation theory. 2 ' However, diKculties
may arise when dealing with expectation values of higher
order in k = —,8, . In numerical calculations we find
that these quantities can be rather large. Using general-
ized Fang-Howard trial functions, appropriate for metal-
oxide-semiconductor (MOS) and heterostructures, one
can show analytically that expectation values of all higher
orders in k diverge. In these cases a perturbative treat-
ment is not possible.

Takada et al. studied n-inversion layers on narrow-
gap semiconductors. In an unusual approach they sug-
gested a k-dependent unitary transformation for diago-
nalizing the 6 x 6 multiband Hamiltonian (I"s, I' s) with
respect to E(k). In this way they were able to in-
vestigate the resonant character of subband states due
to Zener tunneling into the bulk valence band. Diver-
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gent expectation values of k were avoided by assuming
(k'") —(a')"

Frequently a simplified multiband k ~ p model is used
which neglects remote band contributions and the free
electron term. ' ' ' Thus it is mainly justified for
narrow-gap systems. The corresponding subband prob-
lem is actually a set of coupled first order differential
equations. By eliminating the valence band envelope
functions it can be reduced to two second order equa-
tions solely for the conduction band envelope functions
(spin up and down). However, the price to be paid is a
kinetic energy operator that has singularities due to zeros
of the effective mass as a function of energy and position.

White and Sham and Schuurmans and 't Hooft ex-
amined the solution k2(E) of the secular equation for a
multiband Hamiltonian at a Axed energy. They showed
that, if the Hamiltonian contains both the conduction
and valence band, unphysical "wing band" or "spurious"
solutions may occur. These are large imaginary or real k
vectors which in k space lie far beyond the range of va-
lidity of the corresponding Hamiltonian. Likewise they
occur in the case of single band Hamiltonians if they
contain terms of higher than second order in k. In con-
trast to many physical problems that are characterized by
differential equations we have to exclude these solutions
independently of boundary conditions. Yet the problem
is that, due to numerical instabilities, these unphysical
branches prevail in the standard numerical integration
schemes (e.g. , Runge-Kutta). This makes it impossible
to solve multiband Hamiltonians along this line.

In the case of hole subbands the degeneracy of the top-
most valence band I 8 must be taken into account by a
multicomponent formalism. When we restrict ourselves
to the Luttinger Hamiltonian spurious solutions do not
occur. But it is still a considerable task to solve the
corresponding subband problem for the four-component
spinor function %(z) by means of a numerical integra-
tion scheme since we have to fix the energy F and initial
values for 4'(zo), 0, 4'(z) ~.—.. in order to determine a
bound state. To our knowledge this ansatz has never
been realized. Instead variational procedures have been
used with differently chosen trial functions.

By using the analytical solution of the bulk secular
equation Andreani, Pasquarello, and Bassani showed
that the eigenvalue problem with the 4 x 4 Luttinger
Hamiltonian (I's) can be solved exactly in the Hat band
case. Recently Valadares and Chao and Chuang ex-
tended the approach to the 6 x 6 valence band Hamil-
tonian (Fs, I'&). However, besides the restriction to a
piecewise constant potential these Hamiltonians do not
include nonparabolicities beyond the valence band mix-
ing. We will show in Sec. V that these effects can be
substantial even for subbands in large-gap material.

In order to overcome all these shortcomings and prob-
lems that have arisen so far in solving multicomponent
EFA problems we present a concept based on a quadra-
ture method for the coupled integral equations in mo-
mentum space. Quadrature methods have proven to be
an efFicient scheme for solving Schrodinger type eigen-
value problems. ' The advantage of this method is that
it is free &om numerical difIiculties as discussed above.

Moreover, it can solve the EFA problem for quite gen-
eral multiband k. p Hamiltonians including a built-in or
external potential V in the diagonal. Proper matching
of the envelope functions at the interfaces results in a
natural way from the Hamiltonian. Bound and resonant
states can be calculated.

We demonstrate the fIexibility and strengths of our
approach by applying it to a few selected subband prob-
lems. The accuracy of the method is demonstrated first
by calculating the subband dispersion and envelope func-
tions for holes in a GaAs-Al Gaq As quantum well and
comparing these results with the exact analytical results
of Andreani, Pasquarello, and Bassani. The second ex-
ample is the self-consistent calculation of spin-split sub-
bands in an n-inversion layer on InSb based on an 8 x 8
Hamiltonian including remote band contributions. Fi-
nally we calculate the dispersion of hole subbands in a
narrow GaAs-AlAs quantum well from an 8 x 8 Hamilto-
nian in order to demonstrate nonparabolicity effects due
to coupling with conduction and split-off bands.

II. MULTIBAND HAMILTONIANS IN
MOMENTUM SPACE

The EFA originates in the k p eigenvalue problem for
the bulk band structure

) (E (o)+ b„„+ k- P„„q„k= 0.
mo

H(z) 4 (z) = F +(z).
~A

Here the N x N matrix Hamiltonian H acts on the spinor
%. We have

Here F (0) is the band edge (k = 0) energy of the nth
band, P are momentum matrix elements of band. ed.ge
Bloch functions and Q(k) = (q )(k) is the eigenvector
of expansion coefBcients for the Bloch functions at k in
terms of band edge Bloch functions. The sum over n'
is infinite, but block diagonalization is used to remove
coupling to remote bands. This leads to well-established
models like the 4x4 Luttinger Hamiltonian or the 14x14
k ~ p model ' which now contain terms of higher order
in k.

In position space the EFA Hamiltonian is obtained
from the bulk k p matrix by replacing k ~ —,

V' and
adding the built-in or external potential V(r) on the
diagonal. The resulting eigenvalue problem is a set of
coupled partial differential equations for the multicom-
ponent envelope function %. In the case of layered semi-
conductor structures (without a lateral confinement) we
have V(r) = V(z), taking the z axis in the growth di-
rection. This makes the in-plane wave vector k~~ a good
quantum number and we obtain a set of coupled ordinary
differential equations.

In general, the finite-dimensional eigenvalue problem
reads
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H = II(')+H(')+H(')+ . . . (3a)

with matrix elements labeled. according to the band edge
Bloch functions

c, + g„„,(z),(0) (o)

( ) Ig + I tip ( )
( ) + ( )

( )
Ig (3b)

c„'„',(-'. a, )2+ -'. O, g„'„',(z) -'. a, .

c, = c, are complex constants and g, (z)(~) (~) + (v)

[g, (z)]* are complex functions which describe the posi-
tion dependence of the band parameters. When calculat-
ing bound states we may assume without loss of gener-

ality that the g ",(z) are square integrable. In quantum
wells they will be proportional to rect functions. In gen-
eral H( ) contains terms which result from the in-plane
dispersion; in addition we have band edge energies and
a potential on its d.iagonal. H( ) represents o8'-diagonal
terms proportional to momentum matrix elements mul-
tiplied by A: = —,0, and H( ) results from remote band
contributions of second order in A:, . It is straightfor-
ward to include higher orders H("), v ) 2 which occur,
e.g. , in the 2 x 2 Hamiltonian of Ref. 26. Equation (3b)
corresponds to the most commonly used Hermitian for-
mulation of the operator H; others are given in Table
I.

Now it is straightforward to change over &om position
to momentum space. A Fourier transform leads to the
integral equation

H(k) 4 (k) —= dk' C( ) b(k —k') + Q( ) (k —k') + C( ) k'b(k —k') + —(k + k') C ( ) (k —k')
2

+ C(') k" a(k —k') + kk'C(')(k —k') e(k')

=t C(k). (4)

We use A: = k for brevity. Hermiticity is guaran-
teed by the property of the integral kernel. H(k, k')
+H(k', k), where +H* denotes the complex conjugate

transpose of H. Integral kernels corresponding to other

hermitian formulations of H are given in Table I.
The appropriate boundary conditions at interfaces

emerge from the (nonunique) Hermitian formulation
which one chooses for the operator H. Hence, although
we need not deal with these boundary conditions in mo-
rnentum space, any solution 4'(k) of Eq. (4) will satisfy
them when transformed into position space. This gives a
generalization of Altarelli's interface operator method.
which at the same time considerably simpli6. es our cal-
culation.

We apply a standard quadrature method to solve Eq.
(4).4 Our ansatz is similar to the Fourier grid Hamil-
tonian method of Marston and Balint-Kurti as well as
Chao and Chuang's approach to the two-dimensional
exciton. Some numerical keypoints are discussed in the
Append. ix. A more detailed discussion will be published
elsewhere.

III. COMPARISON W'ITH ANDREANI,
PASQUAKELLO, AND BASSANI

A stringent test for the accuracy of our method is
to compare our results with Andreani, Pasquarello, and.
Bassani's exact solution of the I.uttinger Hamiltonian
in the Hat band case. Numerical values for the four-
component envelope function corresponding to the high-
est valence subband (HH1) at k~~

= 0.04 A. in the (10)
direction in a 100 A. GaAs-Gap ygAlp 2iAs quantum well
are given in Table II. In order to illustrate the rapid con-
vergence of the quadrature method we present calculated
results for 27 and 81 grid points per spinor component
(see the Appendix).

In Fig. 1 we show contour plots of the anisotropic sub-
band dispersion corresponding to Fig. 2(a) of Ref. 35.
Using a quadratic Brillouin zone integration scheme ~ we
calculate the density-of-states e6'ective mass

b(E —E(kii)) d kii
m, o 7T 2VTLQ

TABLE I. Hermitian formulations of the kinetic energy operator (cf. Ref. 24). We compare their
form in position space with the corresponding integral kernels in momentum space. For brevity we

neglect the constants c ",. The functions g, (z) are defined by [g ",(z)j = g ",(z). In the table

the index p, is used instead of v to indicate that in part the labeling divers from the order of h
cf. (ii-p). Note that (i-1) and (iii-1) are equivalent.

Position space

—.'[(-', ~.)"g.".( )+g.'".'( )(-', ~.)"]

(-'~*)"g."."'( ) (-'. ~*)"

Momentum space

(kk'). g"",'(k —k')

I dk" k".g'"', (k —k") gi"', (k" —k )
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TABLE II. Envelope function of the topmost hole subband (HH1) at k~~
= 0.04 A in the (10)

direction in a 100 A GaAs-Gap. ygAlp. giAs quantum well. We compare the exact envelope function
of Andreani, Pasquarello, and Bassani (Ref. 35) with our numerical results based on the quadrature
method obtained for 81 and 27 grid points per spinor component. The origin of the z axis is at the
center of the quantum well.

0
25
50
75

100

7.481 x 10
5.085 x 10
7.697x 10

—1.533x lo
—6.114x 10

2

Exact envelope function
0.0
1.634 x 10
1.4O5 x1O-'
3.614x 10
6.768 x 10

3

(Ref. 35)
—1.016x 10
—7.229 x 10
—2.005 x 10
—1.948 x 10
—6.837x 10

0.0
4.745 x 10
3.077 x 10
3.797x 10
3.306 x 10

0
25
50
75

100

7.480 x 10
5.O84x1O-'
7.680 x 10

—1.530x 10
—6.116x 10

Quadrature method:
9.296 x 10
1.633x 10
1.400 x 10
3.619x 10
6.772 x 10

81 grid points
—1.016x 10
—7.227x 10
—2.004 x 10
—1.955 x 10
—6.850 x 10

6.842 x 10
4.?40x 10
3.066 x 10
3.809x 10
3.317x 10

0
25
50
75

100

7.503x 10
5.098 x 10
7.895 x 10

—1.444 x 10
—5.928 x 10

Quadrature method:
1.513x 10
1.636 x 10
1.392 x 10
3.596 x 10
6.521 x 10

27 grid points
—1.017x 10
—7.228 x 10
—1.996x 10
—2.001x 10
—7.355 x 10

9.376x 10
4.728 x 10
3.O28 x1O-'
3.851 x 10
3.119x 10

which is shown in Fig. 2. By comparing Fig. 2 with Fig.
2(a) in Ref. 35 it can be seen clearly that extrema in
the anisotropic dispersion E(k~~) correspond to Van Hove
singularities in the density of states. The particular ad-
vantage of the cited k-space integration scheme is that
it correctly evaluates these integrable singularities. Thus
it is an important step in our self-consistent calculations
discussed in Sec. IV.

IV. INVERSION ASYMMETRY INDUCED SPIN
SPLITTING

Hso = a4scr (k x E). (6)

Here we want to focus on the so-called Rashba term (6)
which is the dominant contribution to spin splitting in
MOS inversion layers on narrow-gap semiconductors,

Spin degeneracy of electron or hole states is a com-
bined efFect of inversion symmetry in space and time of
the system under consideration. It can be removed by
applying an external magnetic field which breaks time
reversal symmetry. A zero-field spin splitting is possi-
ble for a finite wave vector k~~ if the system lacks spatial
inversion symmetry. In layered semiconductor structures
this can be a consequence either of the underlying crys-
tal (e.g. , a zinc blende structure) or of the geometry of
the device [e.g. , inversion asymmetry of the confinement
potential V(z)j. As far as the dispersion of electron sub-
bands is concerned the former is known to result in a
correction oc nik~~ + n2k~~ + nsk~~ (Ref. 22) while the lat-
ter in lowest order will lead to a spin-orbit term

but also, for example, in asymmetric quantum wells on
GaSb-InAs-GaSb. Originally Hs~ was introduced to
account for the inversion asymmetry of bulk semicon-
ductors with a wurtzite-type crystal. In these systems
E is a unit vector along the symmetry axis. Later
Hso was applied to inversion asymmetric semicond. uctor
microstructures. o's Here E = (O, O, E,) is an efFective
electric field that results from the built-in or external
potential V as well as &om the position dependent va-
lence band edge. The material-specific weighting factor
a46 can be determined from the band parameters of the
bulk material.

In first order perturbation theory Eq. (6) results in a
spin splitting strictly linear in A;~~

Zso (k~~ ) = 6 (a4sE, )k~~ .

Using this simple formula several groups determined the
prefactor (a4sE, ) by analyzing Shubnikov —de Haas oscil-
lations of the magnetoresistance. ' However, there are
two difficulties with respect to Eq. (7).

First we find that the electric field E and hence also
(a4sE, ) depends fairly sensitively on unknown properties
of the oxide layer (efFective mass m*„and valence band
discontinuity at the interface). This is a surprising phe-
nomenon as the electron wave function penetrates only
weakly into the barrier and thus we would have expected.
the band parameters used for the oxide layer to be of
minor importance.

Secondly we must keep in mind that in an invari-
ant expansion of the conduction band Hamiltonian the
Rashba term (6) is merely the lowest order contribution
to a spin splitting induced by the inversion asymmetry of
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FIG. 2. Density-of-states e8ective mass os of holes corre-
sponding to the energy dispersion shown in ig.Fi . 1 ~this work
and Fig. 2(a) in Ref. 35.

FIG. 1. Contour plots of the anisotropic hole dispersion in
a 100 A GaAs-Al Gai As quantum well: (a) HH1 and (b)
LH1. Numbers indicate the corresponaing energies in me
measured from the valence band edge. See for comparison
Fig. 2(a) in Ref. 35.

18 (E„+V)IIso(z, k(() = +— (8)

At first sight Eqs. (7) and (8) have a striking similarity.
However, we may not simplify Eq. (8) by assuming that
the denomina ord t D = E + V —8 is approximately con-
stant. Due to nonparabolicity the dispersion 8 = F(k~~)
is almost linear for larger k~I so that D approximate y
cancels k~~. In addition, we may assume that near the in-
terface z 0 we have E„+V —Vo 0(—z) and [Vo~ ))
Hence

S(z)kii 1
Hso(z 0) = / — = / — z

independent of Vo.

V(z). Several calculations based on simplified multiband
Hami tonians ' ' ' re1

' ' ' ' revealed a spin splitting which is
linear for small k~~. But in contrast to Eq. (6) it appeared
to be almost constant for larger values of k~I. Until now
no quantitative comparison of both approaches has been
carried out. Hence it is interesting to compare the spin
splitting owing o q.to E . (6) [or (7)] with the results ob-

n that fullt d fr a realistic multiband Hamiltonian that u y
accounts for inversion asymmetry induced spin sp i ing.

As an example we show in Fig. 3(a) t e se
consistently calculated subband dispersion 8, (k ~) for an
MOS n-inversion layer on InSb with %s —— . 0= 1.06 x 10i2
cm an d % —%

(

——1.40X10 3 cm obtained with an
8 x 8 aml onlan 6) 8) 7H 'lt (I' I'" and I'") including remote band
contri utions. ur ca cu'b . 0 lculation based on the quadrature
method, allows for a penetration of the envelope function
into the oxide layer. The system was first investigated by
Marques. 12,13

For comparison we present in ig. ~b the correspond-
ing results obtained from a 2 x 2 conduction band Hamil-
tonian inc u ing ig er o1 d h her order terms in k by perturbation
theory. 2 2 The diff'erences to Fig. 3(a) are evident: T e
subband edges and the Fermi level are shifted and the
d persion curves bend downwards for larger k~~. Theispe
latter is due to the insufficiency of k terms to descri e
nonparabolicity in narrow-gap semiconductors.

The spin splitting l~)(k~~) ~'&(k~~)I is shown i»g.
3(c). For the more complete multiband Hamiltonian it is
linear for small k~~ but almost constant for larger k~t, in
gooood agreement with Refs. 10, 12, 31 and 32. In a i-
tion, it is insensi ive ot' to the values of the band parame-
ters used for the oxide layer as long as they lie within a
reasonable range. However, if we perform a single band
calculation based either on the quadrature method an
Eq. (6) or on a perturbative treatment according to Re s.

8 and E . (7) [Figs. 3(b) and 3(c)], we obtain a spin
splitting that is linear all over the range [ o, ~] an a
depends strongly on the band parameters used for the ox-
ide layer.

b look-Both aspects can be understood qualitatively y oo-
ing at a simplified 6x6 Hamiltonian (I's, I's) that neglects
the spin sp i -o an1 t- fI' b d I'" remote band contributions,
and the free electron term. After eliminating the valence
b nd envelope functions we obtain a spin dependent terman e

13,31in the conduction band Hamiltonian
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The spin components t;t(k~~) with the lower energy
have their minima shifted slightly away from kI~ ——0 so
that we obtain a "ring of minima" in the k~~ plane. To
elucidate this point we have magnified the dispersion of
the lowest subband in the vicinity of k~~

——0; see the inset
of Fig. 4. Although the scale of the enlargement gives the
impression that this effect is insignificant, it results in a
marked Van Hove singularity in the density-of-states ef-
fective mass shown in Fig. 4. Van Hove singularities are
the more pronounced the lower the dimensionality of the
system under investigation. Therefore in bulk material
the ring of minima is almost invisible in the density-of-
states whereas in two-dimensional (2D) systems the sin-
gularities might be detectable in certain experiments.

V. HOLE SUBBANDS IN GaAs-AIAs QUANTUM
WELLS
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k ii ()( '
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A detailed knowledge of the single particle states in lay-
ered semiconductor structures is a basic prerequisite for
describing more advanced topics like optical transitions
and excitons. Electron-hole pairs forming an exciton are
the lowest lying excited states in semiconductor quantum
wells. Since the pioneering work of Dingle, Wiegmann,
and Henry they have been observed in many optical
experiments.

In quantum wells the confinement in growth direction
removes the fourfold degeneracy of the topmost valence
band I'8 so that in absorption and photoluminescence ex-
citation spectra we obtain a heavy hole —light hole (HH-
LH) splitting of the exciton energy. Since many of these
experiments are carried out on large-gap semiconductors
(GaAs-Al Gaq and GaAs-AlAs) the splitting is usu-
ally explained within the framework of the 4 x 4 Lut-
tinger Hamiltonian. By means of the quadrature method
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0.03—

0
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I
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C)

~ 0.02—E
E

0.01—

107.0

106.5
3

FIG. 3. Self-consistently calculated subband disper-
sion E, (k~~) for an MOS n-inversion layer on InSb with
Ns = 1.06 x 10 cm and ~N~ —No

~

= 1.40 x 10 cm
(a) obtained with an 8 x 8 Hamiltonian (I"s, I's, and I'7) by
means of the quadrature method and (b) derived from a 2 x 2
Hamiltonian (I"s) that accounts for nonparabolicity and spin
splitting in a perturbative way; cf. Refs. 22 and 28. (c) shows
the spin splitting ~E,t(k~~) —E,g(k~~)~ of the lowest subband
extracted from Fig. 3(a) (solid line) and Fig. 3(b) (dashed
line) .

0 I

100 150

E (meV)

I I

200 —2 0

k i( (10 )( )

106.0

FIG. 4. Density-of-states e8'ective mass corresponding to
Fig. 3(a). Note the pronounced Van Hove singularities at the
subband edges. The inset shows the dispersion of the lowest
subband in the vicinity of kt~ = 0 [magnified from Fig. 3(a)].
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we can easily compare the hole dispersion curves and
in particular the HH-LH splitting derived from the Lut-
tinger Hamiltonian with those obtained from more com-
plete multiband Hamiltonians. It is well known that if
we consider explicitly the oK-diagonal k - p coupling be-
tween conduction and valence bands we obtain an energy
shift of the subband edges f, (k~~ = 0) and nonparabolic
dispersion curves 8; (k~~). These effects are the more
pronounced the lower the fundamental gap Eg and the
narrower and deeper the quantum well. We note that
the latter two conditions yield envelope functions that
are widely spread in k, space.

The system we consider is a 42 A. GaAs-A1As quantum
well. Recently Hayden et al. used resonant tunneling
spectroscopy in high magnetic fields to experimentally
probe its hole dispersion curves. When they plotted the
voltage position of the peaks in the tunneling current
as a function of in-plane magnetic field, they observed
a striking similarity to the dispersion curves calculated
with the Luttinger Hamiltonian. A critical discussion
of their interpretation of the experimental data will be
published elsewhere.

In Fig. 5(a) we compare the hole dispersion curves de-
rived by means of the Luttinger Hamiltonian (I's) with
those from a 6 x 6 Hamiltonian that explicitly contains I'8
and the lowest conduction band I's (for clarity the axial
approximation is used; we found that in the case consid-
ered here anisotropy is negligible). We notice that the
LH states are shifted by an amount that is of the same
order of magnitude as the binding energy of a quantum
well exciton. This holds even for the topmost LH state
where nonparabolicity is expected to be least important.
However, at k~~

——0 there is no k p coupling between HH
states and I'6 so that HH subbands remain unaffected.

The spin-orbit splitting in bulk GaAs is 4 = 341 meV,
i.e. , the bulk spin split-off (SO) valence band I'7 lies well
within the energy range depicted in Fig. 5(a). The exten-
sion of our envelope-function Hamiltonian with respect to
I'7 thus has a much stronger eKect than I'6. Our results
are presented in Fig. 5(b). HH states are still fully decou-
pledatk~~ =Osot att esu ban e gest, (k~~ =0)
agree with the values derived from the Luttinger Hamil-
tonian (I's). LH states, on the other hand, are shifted
considerably and new subbands appear. In particular,
the order of LH2 and HH3 is reversed with the conse-
quence of a change in curvature of these subbands. Again
the explicit consideration of the I'6 band modi6es the re-
sults as already seen in Fig. 5(a). In addition, it may
change also the dominant k~~

——0 spinor component, e.g. ,
for LH3 (SO2) in Fig. 5(b).

We conclude that the explicit consideration of the off-
diagonal k . p coupling between conduction and valence
bands can significantly change the subband states in
quantum structures even of large-gap semiconductors. In
particular, we may not restrict ourselves to the 6 x 6
Hamiltonian (I's, I'&) as done recently by Valadares. It
can be seen from Fig. 5 that the inBuence of I'7 and I'6
on the topmost LH subband in part compensate each
other so that an accurate calculation of HH-LH splitting
must include both I 7 and I'6. Detailed consequences for
exciton states will be considered in the future.

VI. CONCLUSIONS
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FIG. 5. Hole subband dispersion of a 42 A GaAs-A1As
quantum well calculated by means of difFerent multiband
Hamiltonians: (a) I's (I uttinger Hamiltonian, dashed lines),
I's and 16 (solid lines); (b) I'z and I r (dashed lines), Fz,
I'z, and I'6 (solid lines). The labeling of dispersion curves
corresponds to the dominant spinor component at k~~

——0.

We have presented a new approach to the solution
of multicomponent envelope-function problems which is
based on a quadrature method for the integral equations
in momentum space. The important advantage is that it
can be applied to arbitrary N x N Hamiltonians including
self-consistent potentials of quite general profile whereas
in previous work these Hamiltonians had to be simplified
in order to obtain a numerically tractable model. Thus
we can clearly appraise the accuracy and range of valid-
ity of the simplifications used in previous publications.
We have demonstrated the power of our method in ap-
plications to such different problems as (i) a quantitative
comparison with the exact analytical results for a rect-
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angular quantum well, (ii) self-consistent calculation of
spin-split electron subbands in an MOS inversion layer
on InSb, and (iii) hole subbands in a narrow GaAs-A1As
quantum well.

Finally we want to remark that our ansatz can be
readily transferred to other Schrodinger type eigenvalue
problems. In particular, it is straightforward to include a
quantizing magnetic field perpendicular to the interfaces.
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APPENDIX: NUMERICAL SOLUTION
OF EQ. (4)

We apply a standard quadrature method to solve Eq.
(4). Quadrature methods are based on the idea that
we seek to replace the calculation of an integral I
J' dz f (x) by the calculation of a finite sum of the form

m

) (na) f (
(rn))

j=1
(Al)

dx'k(z, x') @(x') = Ag(x)

We make x and x' discrete so that the integral kernel
k(z, z') becomes a finite matrix. In this way we obtain a
matrix eigenvalue problem (Nystrom's method4 )

) ~ (Tn) k( (rn) (Tn)) q( (1n)) p @( (Tn))

j=1
(A3)

which can be solved numerically. It is straightforward
to extend these formulas so that we can treat a set of
coupled integral equations.

The procedure outlined above is well-established for
the case of integral equations like (A2). But the integral
equations (4) difFer f'roin the "usual" Fredholm equations

which approximates the integral. The quantities m-

are called the weights of the quadrature rule (Al). A
sequence (I ) of quadrature rules represents a quadra-
ture method. Riemann sums are a well-known example
for a quadrature method. They result from a sequence
of partitions P = (p. : a = p0 & pi

p i &p =b) withiU =p —p i andthegrid
points x . are chosen such that p 1 & x . & p . By
varying the number of grid points m one can easily check
the accuracy of the numerical results.

The idea of Eq. (Al) can be applied to eigenvalue in-
tegral equations of the form

(A2) for two reasons. Firstly the domain of integration is
infinite and secondly our integral kernel is an unbounded
operator. Thus it is not possible to prove convergence of
the quadrature rules in the usual way. ' To the best of
our knowledge little research has been published on this
class of integral equations.

The range of validity of the commonly used k.p Hamil-
tonians is restricted to ~k~ && 2~/a (0, is the lattice con-
stant). Accordingly we are interested in those solutions
of Eq. (4) that fall off rapidly outside a small interval
centered about II. = 0. Thus the use of the finite section
approximation is justified in which the limits of inte-
gration are replaced by finite numbers. In the case of
Wiener-Hopf and related integral equations it has been
shown that the approximate solutions converge uniformly
on every finite interval. On the finite domain of inte-
gration the integral operator is compact and the quadra-
ture method yields eigenfunctions in the space 8 when
(A3) is diagonalized. Wing band and spurious solutions
correspond to large ~k~ values far outside the domain of
integration that we use in the Rnite section approxima-
tion. Therefore these unphysical solutions do not occur
in our approach.

Even in those cases where unphysical solutions are im-
possible (e.g. , when we restrict ourselves to the 4 x 4
Luttinger Hamiltonian ) we find that the finite section
approximation is more suitable than mapping the infinite
domain of integration onto a finite interval by a transfor-
mation of variables because in many applications we want
to change between position and momentum representa-
tion by means of a discrete Fourier transform. Therefore
the quadrature rules have to provide the eigenfunctions
on a set of equidistant grid points.

The situation is somewhat dificult if in H we include
higher order terms p ) 1 from Table I. For abrupt in-

terfaces, i.e. , in case of quantum wells g "„,(k —k') oc

sin[i(k —k')/2]/(k —k') (here l is the width of the quan-
tum well), only the kernels p, = 1 remain finite when the
integrand tends to infinity. The divergence for p & 2
is intimately related to the argument used by Morrow
and Brownstein 4 to rule out the Hermitian form (i-2)
of Table I. One can show that at an abrupt interface
an envelope function corresponding to (i-2) must have
a b-function-like integrable singularity. As of yet we do
not know whether from a mathematical point of view
the eigenvalue problem Eq. (4) is well defined for abrupt
interfaces and arbitrary kernels p ) 1.

A numerical check of convergence is possible if we con-
sider analytically solvable models such as the Luttinger
Hamiltonian in the fiat band case (see Sec. III). We find
that we can easily obtain numerical results of arbitrary
accuracy if we sufBciently increase the number of grid
points m, which define the quadrature rules (see Table
II). In so doing the energy eigenvalues converge even
faster then the eigenfunctions.

The Dirac notation provides a slightly diferent view
on our method, thus emphasizing its generality. We can
expand the eigenvalue problem II ~g) = E ~@) either in
terms of the complete set of position eigenstates (~r))
(which in numerical calculations is the more usual ap-
proach)
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(A4R)

dk' (k]H]k') (k']vP) = F (k]vP). (A4b)

or in terms of the likewise complete set of momentum
eigenstates (~k))

We may choose either representation depending on which
is more convenient for the evaluation of matrix elements
of H. In both cases we will approximate the eigenvalue
problem by considering only a finite number m of matrix
elements. Thus both approaches converge equally well if
m is increased.
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