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This paper addresses the problem of collective-mode dispersion in the strongly coupled two-
dimensional (2D) classical electron liquid in a perpendicular dc magnetic field. The system is modeled as
a 2D one-component plasma sandwiched between two dielectric materials c& and c2. For the strong-
coupling regime I —=2e /[(e, +E2)ake T] )) I (a is the 2D Wigner-Seitz radius), our analysis —which is
carried out in the recently established quasilocalized-charge approximation [G. Kalman and K. I. Gold-
en, Phys. Rev. A 41, 5516 (1990)] with the input of-the equilibrium pair-correlation function —indicates
(i) that both magnetoplasmon and magnetoshear mode oscillations can be excited and (ii) that their
dispersion is profoundly affected by the combined presence of strong particle correlations and the exter-
nal magnetic field. The calculations cover the entire wave-number domain; typical dispersion curves are
displayed for 1 =22, 50, and 120. We make contact with well-established magnetoplasmon and magne-
tophonon dispersion calculations for the 2D Wigner crystal and with the magnetoplasmon dispersion of
the uncorrelated 2D electron gas.

I. INTRODUCTION

There is a great deal of interest in the problem of
collective-mode dispersion in two-dimensional (2D) elec-
tron systems in magnetic fields. Depending on the value
of the coupling parameter determined by the ratio of the
potential energy to the kinetic energy of the system
(I =e laktt T for a classical system, r, =ala~ for a de-
generate quantum system; a is the Wigner-Seitz radius
and an't is the Bohr radius), the system can be in the weak-
ly correlated gaseous phase, strongly correlated liquid
phase, or in the crystallized Wigner lattice state. The
definitive treatment of the collective mode structure of
the 2D degenerate electron gas in a magnetic field was
given by Chiu and Quinn' in 1974; they calculated the
magnetoplasmon oscillation frequency in the random-
phase approximation (RPA). This was followed by the
harmonic approximation calculations of Fukuyama and
Bonsall and Maradudin: these investigators considered
the 2D Wigner crystal in the quantum and classical
domains and calculated the dispersion of the magneto-
plasmon and magnetophonon excitations. The latter are
the shear waves which propagate in solids. Going
beyond the harmonic approximation, Cote and Mac-
Donald have recently calculated the collective-mode os-
cillation frequencies in the time-dependent Hartree-Fock
approximation for the quantum 2D Wigner crystal in a
strong magnetic field. Thus there is a reasonably good

understanding at the present time of the collective-mode
structure of the 2D magnetized electron system in the
limiting cases of negligible and very strong coupling.

The mode structure in the domain of the strongly
correlated liquid state, where most of the physically real-
izable systems occur, is much less understood. It is also
here that the greatest differences between the behavior of
the finite-temperature classical and the zero-temperature
degenerate quantum system is expected. This paper ad-
dresses the problem of the magnetized 2D classical elec-
tron liquid: the calculation of the dielectric response ten-
sor and collective-mode dispersion for such a system is
the primary goal of the paper.

"Classical" 2D electron systems have been generated in
the Grimes-Adams and related experiments, where the
electrons are trapped on the surface of liquid He; in these
situations the typical density (n =10 cm ) and temper-
ature (T=0.5 K) values yield Ezlk&T((l. The addi-
tion of a magnetic field does not affect the classical char-
acter of the system as long as the Landau level separation
hen, «k&T: for the temperature range quoted this al-
lows Bo,„—=3700 Gs.

The model system we propose to study is the 2D one-
component (electron) plasma (OCP) in a constant uni-
form magnetic field perpendicular to the plane of the
plasma. For complete generality, we let the OCP mono-
layer be sandwiched between two dielectric materials c&

and c2. The strength of the particle-particle interactions
in the 2D system is characterized by the coupling param-
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eter I"=—2e /[a ( e&+ E2)k~T], where a is the 2D Wigner-
Seitz radius; ma n = 1. It is well established that the sys-
tem crystallizes into a triangular lattice at I = 137+15.

The calculation of the dielectric response tensor will be
carried out on the basis of the quasilocalized-charge
(QLC) model which was introduced in Ref. 6 and em-
ployed in Refs. 7 and 8. Ample discussion of the
justification, methodology, and limitations of the model
have been given in Refs. 6, 8, and 9. The calculation
based on the model provides the dielectric-response func-
tion and related quantities as functionals of the equilibri-
um pair-correlation function. The effect of the external
magnetic field is easily incorporated in the formalism
through the equation of motion; no modification of the
magnetic-field-free pair-correlation function is necessary
as long as the classical character of the system is main-
tained. Thus the Monte Carlo (MC) simulation' "and
hypernetted chain (HNC) calculation"' data for the
pair-correlation function used in our earlier works ' can
be employed here as well. The results of the calculations
identify two modes, the magnetoplasmon and the magne-
toshear modes, as the principal excitations of the magnet-
ized 2D electron liquid. In this respect the liquid is simi-
lar to the Wigner solid, but in contrast to solids, liquids
can sustain shear modes for finite wave numbers k )k
only. Roughly speaking, this is the result of the competi-
tion between the characteristic time of the slow diffusion
and migration of the particles from their quasiequilibri-
um positions and the oscillation period of the mode. Only
when the former is longer than the latter can the collec-
tive oscillation be maintained. This should be kept in
mind since the diffusion migration process is not de-
scribed by the QLC model.

Molecular-dynamics (MD) simulations' of the
magnetic-field-free 2D OCP confirm the existence of
shear modes in the liquid phase for I & 22 and over a re-
stricted wave-number domain. Our own recent calcula-
tions indicate that the 2D classical electron liquid can
indeed sustain shear waves at wavelengths sufticiently
short to preclude the possibility of disruption of the mode
by particle diffusion. Guided by these observations, we
concentrate in the present paper on the 1«I &I
liquid-phase domain where the "magnetoshear" mode is
expected to occur.

In addition to the collective modes proper, which are
confined to the 2D layer, one can also identify a "radia-
tive mode"' which corresponds to an electromagnetic
wave propagating in the surrounding dielectric medium
(or vacuum) and being radiated out by the collective
motion of the particles. Such a mode, strictly speaking,
has no three-dimensional analog, since it requires a sys-
tem occupying a bounded region in space; similar
scenarios for finite three-dimensional slabs have, howev-
er, been discussed. '

The plan of the paper is as follows: In Sec. II we estab-
lish the QLC microscopic-equation-of-motion basis for
the calculation of the linear response (to small external
scalar and vector potential perturbations) and dynamical
matrix. The calculation of the susceptibility and
dielectric-response tensors follows in Sec. III. The results
of Secs. II and III are applied in Sec. IV where we calcu-

late the dispersion of the magnetoplasmon and magne-
toshear modes. Conclusions are drawn in Sec. V.

II. EQUATION OF MOTION
AND DYNAMICAL MATRIX

In this section we apply the QLC methodology of Refs.
6—9 to the system under consideration. We consider a
monolayer sandwiched between two dielectric media and
pervaded by a constant, uniform magnetic field as an
OCP consisting of a 2D classical electron liquid im-
mersed in a uniform neutralizing background of positive
charge. The N electrons occupy the large but bounded
area S in the plane z =0, of a Cartesian coordinate sys-
tem; n =N/S is the areal density. The two dielectric
media are characterized by dielectric constants c, , (z )0
domain) and s2 (z (0 domain). The constant magnetic
field Bo is applied in the direction normal to the plane of
the OCP. The 2D OCP plasma frequency is given by
to ( k ) =+2m n e k Im, where —e and m are the electron
charge and mass; the wave vector k lies in the plane
z =0.

We wish to calculate the linear response to small per-
turbing scalar and vector potentials 4&(kco) and A(kco).
Here E(kco)=(icolc) A(kco) —ik4(kco) is understood to
be the external electric field acting at the interface of the
two dielectric constant media in the absence of the plas-
ma layer, but in the presence of the dielectric media. '

As a preliminary step, we derive the expression for the
dynamical matrix C(kco) that controls the dynamics of
the collective coordinates. ' ' To this end, we consider
the microscopic equations of motion describing the rapid
oscillations of the charges about their slowly drifting
quasiequilibrium site positions. Let x;„be the
quasiequilibrium site position of the ith charge and g; „(t)
the perturbed amplitude of its small excursion about x;„
(i and j enumerate particles and p, and v are 2D vector
indices; Einstein summation convention for repeated vec-
tor indices is understood). The microscopic equation of
motion for the ith particle can now be written as follows:

—mto g; „(to)+g I K; „(co)+Mi„,(co) I J.,(co)

=impasto, g„,g; (co)——g E&(qco)e
q

~, =eBO/mc is the cyclotron frequency, q„ is the per-
mutation pseudotensor. The K; (to) term contains the
effect of the longitudinal Coulomb interaction between
the particles,

K; „(co)=—g q„q„S ~
""

q E(qco)

X I e ' 1 —5; e 'nq N+5;.6qI

(2)

while the M;~(co) term originates from the transverse re-
tarded electromagnetic interparticle interaction,
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(qc /co)' —E(qco)

P (qco)=Qq —(e co /c ) (m =1,2)
(4)

is a consequence of the required exponential decay' (with
increasing distance from the z =0 plane) of all elec-
tromagnetic field quantities: it is the well-known feature
of the 2D geometry that the p & 0 condition guarantees
this behavior. ' ' The mean dielectric constant

pi(qco)E2+p2(qco)E&
E(qco) =

p, (qco)+ p2(qco)

portrays the presence of the dielectric materials. '
The calculation of the dynamical matrix C(kco) from

Eqs. (1)—(3) is carried out by further implementing the
QLC procedure of Ref. 6. We obtain

The wave vector q lies in the plane z =0, P(q) =2~e /q is
the Fourier transform of the 2D Coulomb potential
P(r)=e /r (r is the distance in the plane z =0); the un-—iq.x.
perturbed ("base" ) microscopic density n =g e

depends on the xj coordinates of the random sites. The
appearance of

2P, (q~)P, (q~)
p(qco) =

p, (qco)+ p2(qco)

I

are, however, relativistically small and are therefore dis-
carded in another paper of ours.

The frequency dependence of D(kco) is a consequence
of the P(qco)/F(qco) factor in Eq. (7). It is not difficult to
show that, within the domain of nonrelativistic approxi-
mation, one can replace P(qco) by q, e(qco) by
E-=(E,+Ez)/2, and lift the restriction on the q summa-
tion. Thus D becomes frequency independent and, not
surprisingly, turns out to be the D(k) of Ref. 8, screened
by the substrate mean dielectric constant E. The
knowledge of the dynamical matrix enables one to derive
the dispersion relation for the collective modes. One ob-
tains

Det I
co'I —C(kco) I

coz —co (k) DL (k)+
k E(kco)

X . co —co (k) Dr(k)—
(kc/co) —e(kco)

co co —0.2 2—

C„(kco)=co (k) L„,(k) P(kco)
kE(kco)

P(kco)
k [(kc/co) —e(kco) j

+D„(kco) Q„—(kco)
' i coc,o—

&„,(q)=&„, q„q, /q and—L„(q)=q q, /q are nota-
tionally convenient transverse (T) and longitudinal (L)
projection tensors in the two-dimensional plane. The first
two terms in (6) represent the effect of the average RPA
field on the dynamics. The important correlation-
induced Coulomb part of the dynamical matrix D(kco)
(with both longitudinal and transverse elements) is

D .(kco) = g L„.(q) Ig ( lk —
ql ) —g (q) I

E(q~)

where g(lk —ql) and g(q) are Fourier transforms of the
equilibrium pair-correlation function. The correlation-
induced electromagnetic part Q(kco) consists also of lon-
gitudinal and transverse contributions,

Q„„(kco)= g T (q) g(lk ql) .
k~ q) g, (qc/co) —E(qco)

III. SUSCEPTIBILITY
AND DIELECTRIC RESPONSE TENSORS

e(kco) =F(kco)I+2m.P(kco)g(kco) . (10)

g(kco) portrays the response of the average first-order
current density response j(kco) to the total (external plus
induced) electric-field perturbation.

The calculation of g(kco) is carried out by deriving the
QLC equation of motion for j(kco) according to the pro-
cedure of Refs. 8 and 9 and comparing with the appropri-
ate constitutive relation. ' Choosing k=(0, k), we obtain

2

g'(kco) = — b, '(kco)

where

More detailed information on the properties of the sys-
tem can be gleaned by studying the susceptibility and sur-
face dielectric response tensors.

In a recent publication, ' a two-dimensional phenome-
nological electrodynamics has been worked out entirely
in terms of field quantities defined inside the electron
monolayer. Within this strictly 2D framework, the full
surface dielectric-response tensor e(kco) can be construct-
ed in terms of the 2D total (or "screened") susceptibility
tensor g'(kco) of the plasma monolayer and in terms of the
surrounding dielectric media

(8)

Both the longitudinal and transverse elements of Q(kco) A„(kco)=co 6„pco( )Dk„(k) i+—co,co (12)
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The eigenfrequencies co(k) can then be determined from
the dispersion relation

2

2

co (k) =co, +co~(k) 1+Dr (k)+DT(k)
co, +co (k)

Det . kc T(k) —e(kco) =0 . (13) (16)

IV. COLLECTIVE MODES

The unrnagnetized 2D OCP can support two collective
excitations. ' The longitudinal plasmon mode' is rnain-
tained by the average field and, although modified by
correlations, is already present in the weakly coupled gas.
The transverse shear mode is induced by correlations and
therefore it manifests itself in the strongly correlated
liquid or crystalline lattice only. The presence of the
external magnetic field does not alter this general
scenario, though it strongly modifies the dispersion of the
modes as shown both in the RPA calculation of the elec-
tron gas' and in the case of the Wigner lattice. Here we
derive the dispersion relation for the strongly coupled
electron liquid and bridge the gap between the two ex-
treme situations. Recent quantum-mechanical calcula-
tions for the strongly magnetized 2D electron liquid oc-
cupying the lowest Landau level only have provided
quite similar results.

In addition to the collective modes proper, which de-
cay exponentially away from the layer, the magnetized
2D OCP can support —in contrast to the unmagnetized
2D OCP —a radiative mode which corresponds to an
electromagnetic wave propagating in the surrounding
dielectric medium and being radiated out by the collec-
tive motion of the particles.

Our calculations are based on the dispersion relation
(13) or, equivalently, on the dispersion relation (9).

A. Magnetoplasmon mode

In a very good approximation (as discussed below) the
quasistatic condition kc &&co can be adopted for both
modes. In the domain of its validity, Eq. (9) simplifies to

Ico —co~(k)[1+DL (k)]] I co co (k)DT—(k)] =co,co2

(14)

with the magnetoplasmon solution

where DL (k~O) and Dz.(k~O) are O(k) terms and are
to be expressed in terms of the correlation energy per
particle (see Refs. 7 and 8). At I = I =137+15, the 2D
classical electron liquid freezes into a triangular lattice
and the total static ground-state energy per electron is
E,(I )= —1.106le /aE. ' When this is introduced as
the correlation energy into (16) via Eqs. (17) and (18) of
Ref. 8, the resulting expression for the long-wavelength
rnagnetoplasmon oscillation frequency is in near-perfect
numerical agreement with the Bonsall-Maradudin result
for the 2D hexagonal Wigner lattice.

Equation (16) has been cast in the form that clearly
shows the difference between the correlation contribu-
tions to the (magneto)plasmon mode in the magnetized
and unmagnetized situations. For B0=0, the 0 (k ) con-
tribution in Eq. (16) originates from DI (k) only, while
for any B0%0, it is generated by the combined
DL (k)+DT(k) resulting in a maximum 20% drop in the
coefficient of the k terms in Eq. (16). This effect could
provide a clear observable signature distinguishing the
correlationally induced coefficient from those originating
from other sources (finite layer width, impurities, etc.).

We have calculated Dl (k) and DT(k) and then co(k)
from Eq. (15) using MC g(r) data from Refs. 10 and ll
and HNC g(r) calculations from Ref. 11. Some caution
should be exercised, however, in using the HNC data for
small k (ka (1) values, since the HNC results (without
additional bridge diagram corrections) are quite
unreliable in this domain. The resulting mag-
netoplasrnon dispersion curves are displayed in Figs.
1 and 2 for I =22, 50, 120 and co, /co0=0, 0. 1, 1.0[co0
= (2m.e n /ma E )

' ]. The zero-magnetic-field case
(plasmon dispersion) has already been analyzed and dis-
cussed in some detail in Ref. 8. The magnetoplasmon
dispersion, similarly to the plasmon dispersion, develops
a maximum and then exhibits oscillations which originate
from the short-range order in the correlated liquid. As k
increases beyond the long-wavelength domain described
by Eq. (16), co(k) increases to its maximum and thereafter
descends through a series of oscillations to the asymptot-
ic value

co (k)= —,'Ico (k)[l+Dl (k)+DT(k)]+co, ]

+ —,'( Ico (k)[1+Dr (k)+DT(k)]+co, J

—4co (k)D (kT)[1+D (kL)])'~~; (15)

co(k~ ~ )=co„+—= —,
' Ico, ++ad, +4co', ],

co„=co0f(l ),
f(l )= — I dqq g(q),4~ 0

(17)

co&(k)=—co&(k)/E and e =—(si+E2)/2. In the absence of
particle correlations, DL =DT=0 and Eq. (38) reduces to
the RPA expression co (k) =co (k)+co, reported by Hor-
ing and Yildiz. '

To see in detail the effect of the strong particle-particle
correlations on the magnetoplasmon dispersion, we con-
sider first the long-wavelength domain m, a/c «ka «1.
Equation (5) then further simplifies to

f(I &90)=0.411 .

For a given I value, the oscillations become more and
more suppressed as the applied magnetic field is in-
creased. The asymptotic formula (17) is quite remarkable
as it is completely different from the k ~ 0c RPA
behavior [co(k ~~ )~~ in the "hydrodynamic" RPA
description]. It is not difficult to show that co„+ is pre-
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cisely the higher of the two gyration frequencies of an
isolated particle in a magnetic field surrounded by a disk
of neutralizing background charge density, which for
I & 90 is not distinguishable from a uniformly distributed
one: this provides the 0.411 coefficient in (18) [cf. a simi-
lar discussion in Ref. 8, Eq. (37)].
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FIG. 2. Dispersion of the magnetoplasmon mode (upper
three curves) and magnetoshear mode (lower three curves) for
co /co =0. 1 and I =22.36, 50, and 120 calculated from Eqs.Cc) COO—

(14), (15), (38), and (52).
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and at k —+ (x) is right circular, i.e., agreeing with the ro-
tational sense of the electron in the magnetic field. For
finite k values the polarization picks up a longitudinal
component.

In the strong-field limit, the magnetoplasrnon oscilla-
tion frequency
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FICx. 1. Dispersion of the magnetoplasmon mode [curves (a)
and (b)] and magnetoshear mode [curves (c), (d), and (e)] for
I =22.36, 50, and 120 calculated from Eqs. (14), (15), (38), and
(52). The boundary longitudinal plasmon and transverse shear
modes are also shown for zero magnetic field.

(20)

is determined by the intersection between the light

results from Eq. (IS) for all ka ))co,a/c. This is identi-
cal to the long-wavelength result reported by Bonsall and
Maradudin and is also quoted as Eq. (36b) in Ref. 4.

The "strong-magnetic-field" limit should be under-
stood with the condition kz T »Ace, in mind, which en-
sures the classical behavior of the system. Thus, for both
conditions to be satisfied Ace, has to be bracketed between
%coo and k~T. In combination with the I &&1 relation
this sets an upper limit on the density, which is, however,
not too severe: with n &3X10 cm, all the above-
mentioned conditions can be simultaneously satisfied.
However, on physical grounds, one should expect that in
the opposite limit, k&T«Ace„when only the lowest
Landau level is occupied with a low filling factor but the
temperature is above its melting value, exchange effects
are negligible and our formalism still holds, with an im-
portant caveat, though: it would be unjustified to use the
classical static (8-independent) pair-correlation function
for the determination of D(k). Thus such a calculation
would become feasible only when the correctly calculated
or computed quantum pair-correlation function for the
strongly magnetized, strongly coupled 2D electron liquid
becomes available.

We complete the analysis of the magnetoplasmon mode
by examining the domain ka « ka, where the boundary

2 1/2
e abc E ~c

ka = 1+ 1+2
amc c e coo
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line co =kc and the ka & 1 nonretarded (c~ ~ )

magnetoplasmon dispersion curve generated from
Eq. (15). Taking co, /coo=0. 1 —1, we see that the
domain is always very narrow since, for classical
electrons trapped on the free surface of liquid
helium, ka =(co, /coo)(2e /amc )' =10 (co, /coo)n '

=(0.13—1.3) X 10 at a typical areal density n =3 X 10
cm realized in the Grimes-Adams experiment. In this
domain the physical requirement Pi(kco) &0, Pz(kco) &0
dictates that for E, , &e2, co~kc/QEi from below as
k ~0. Consequently, P, ( k co }&&Pz( k co )

-=k+1 —Ei/E i,
p(kco) =2p, (kco), and K(kco) =E„resulting in the magne-
toplasmon oscillation frequency

co(k ~0)=
~ 1 —2

kc ka

QE i ~181

'2

+ka, Se

amc

DL (k~O)
E, )A. )

2 (21)

CO
C+
2amc c.i

Se
2

with coo=2~ne /ma Equat. ion (21) is reported here for
the first time, but, except for the negligibly smaH
correlation-induced correction proportional to DL, it
amounts to a restatement of the light-line limit reported
by Chiu and Quinn' and Bonsall and Maradudin and is
included primarily for the sake of completeness.

B. Magnetoshear mode

co (k}
X 'co 1+

k c
co (k)DT(k) '—=co co, . (22)

In calculating the shear mode oscillation frequency from
(22), we consider the two domains k c «co~(k)
[i.e, ka «2e /(amc E)] and k c &)co~(k) [i.e. , ka
)&2e /(amc E)].

In the ka «2e /(arne s) wave-number domain,
which, as discussed above, is quite negligible, Eq. (22) fur-
ther reduces to the magnetoshear mode oscillation fre-
quency

co (k) —=co (k) = co (k)
DT(k) .

co (k)
CO +

k c

(23)

When there is no applied magnetic field (co, =0), Eq. (23)
becomes identical to the ka «2e /(arne )e shear mode
result reported in Ref. 8. Both with and without magnet-
ic field in the k —+0 limit, co-k, but the magnetic

For the case where c.i =a.2, it can be rigorously demon-
strated a posteriori [by numerically solving (9)] that the
magnetoshear mode oscillation frequency co(k) always
satisfies the condition kc »co(k). On physical grounds
this condition should prevail for e,&E2 as well. Thus
for the magnetoshear mode, Pi(kco) = k, Pq(kco) =k,
E(kco) =K=(ei+ E2)/2, and Eq. (9) simplifies to

Ico —co (k)[1+DL(k)]]
T

—
—,'( Ico (k)[1+Dr (k)+Dr(k)]+co, ]

—4co (k)DT(k)[1+DL (k)])'

In the long-wavelength domain 2e /(amc F) «ka «1,
Eq. (24) further simplifies to

co (k}DT(k)
co (k)=

co, +co~(k)
(25)

where DT(k~0) is expressed in terms of the correlation
energy. Equation (24) and the correlation energy formu-
las quoted in Ref. 8 provide a complete description of
long-wavelength magnetoshear mode dispersion in the
classical 2D electron liquid. In the crystalline phase, sub-
stitution of the total ground-state energy per electron
E,(I ) = —1.1061e /aE into (25) via Eq. (18) of Ref. 8 re-
sults in a magnetoshear mode oscillation frequency which
is in near-perfect numerical agreement with the Bonsall-
Maradudin low-k result for the 2D hexagonal Wigner-
lattice.

Equation (25) is written again in the form that clearly
shows the profound effect of the magnetic field on the
dispersion of the magnetoshear mode. In the absence of a
magnetic field co(k~O) has the acoustic, -k, behavior.
In the presence of the magnetic field, however,
co(k ~0)-k ~ . This is in agreement with the behavior
of the 2D Wigner lattice and with the results of Ref. 4.
Our numerical calculations of the magnetoshear mode
frequency from (24) are displayed in Figs. 1 and 2, for
I =22, 50, 120 and co, /coo=0, 0. 1, 1.0, 5.0. Oscillations in
the magnetosh ear mode dispersion, induced by the
short-range order, set in at some point beyond the long-
wavelength domain ka (1 described reasonably well by
Eq. (25). As k~ ~, the magnetoshear mode oscillation
frequency reaches the asymptotic value

co(k ~~ ) —co~ =
& I +co~+4co+ co~ j (26)

where co, is defined in (18). co„ is now the lower of the
two gyration frequencies of an isolated particle in a mag-
netic field surrounded by a disk of neutralizing back-
ground charge density.

The polarization of the magnetoshear mode is trans-
verse linear for k~0, becoming elliptical for finite k,
turning into left circular as k —+ ~.

The separation of the asymptotic limits of the
magnetoplasmon and magnetoshear modes 5~
=co + —co =co, . Even though this is a correlational
effect, once the correlations are strong enough, it be-
comes evidently independent of the coupling parameter
and of the electron density. As such, this phenomenon

field reduces the phase velocity by a factor
(I+Boa /4e /a)' . Equation (23) also reveals that the
magneto shear mode is suppressed by high magnetic
fields. The calculation which follow show that this is, in
fact, true for ka »2e /(amc s) as well.

For the domain of real interest ka »2e /(arne s), Eq.
(22) reduces to Eq. (14) with magnetoshear mode solution

coi(k) =
—,
' Ico (k)[1+DE(k)+DT(k)]+co, J
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offers a characteristic, possibly observable, signature for
the correlational dispersion.

The magnetoshear mode oscillation frequency becomes
more and more suppressed with increasing magnetic field.
In the strong-field limit (understood with the proviso stat-
ed in the discussion of the magnetoplasmon mode) the os-
cillation frequency

co (k)
co(k) = QDT(k)[1+Dl (k)]

~e

results from Eq. (24) for all ka »2e /(amc E). Both the
k~0 and the strong-field limits are in agreement with
the long-wavelength magnetophonon dispersion reported
by Bonsall and Maradudin and are also quoted in Ref. 4.

The zero-magnetic-field case (co, =0) corresponding to
the transverse shear mode has been extensively analyzed
in Ref. 8.

No attempt has been made in this paper to analyze the
damping of the two modes discussed, yet some inference
can be drawn as to the expected features of the damping
from our earlier studies of the longitudinal and trans-
verse modes of the unmagnetized 2D electron liquid,
based on the combined QLC mean-field theory approach.
Both the longitudinal plasmon mode and the transverse
shear mode undergo Landau damping in the large wave-
number domain. The critical wave number beyond which
the mode practically ceases to exist is a monotonically in-
creasing function of I: for I =50 and 120 the respective
maximum k values are ak ',„(I =50)—=2. 8 and
ak i",„(I = 120)—=3.5 for the plasmon and
ak'";„"(I =50)—=5.0 and ak'";„"(I =120)—=8.0 for the
shear mode.

The magnetic field has a profound effect on the Landau
damping mechanism. Since it inhibits the free motion of
particles along the wave, only collision-assisted motion
can result in the Landau damping required resonance be-
tween the particle velocity and the phase velocity of the
wave. Thus one would expect a substantial reduction of
the Landau damping for high wave numbers with a con-
comitant increase in the maximum k value. As a result,
the observation of the high-k behavior of the dispersion
(oscillatory approach to the asymptotic value), masked by
Landau damping in the magnetic-field-free situation, may
become observable.

A further effect of the magnetic field on the Landau
damping mechanism is via the changed polarization of
the waves. The appearance of a right-circular component
in the polarization makes it possible for quasistationary
electrons to resonate with the wave and to give rise to cy-
clotron damping when ~=co, . Only the magneto-
plasmon mode has the right polarization to be a candi-
date for being affected by this mechanism: its frequency,
however, always exceeds co, . Nevertheless, in the full ki-
netic treatment, ' resonances with the ensuing cyclotron
damping also develop at integer multiples of the cyclo-
tron frequency, '

co =n co, . For weak enough magnetic
field, damping in the vicinity of these harmonics may
affect the rnagnetoplasmon; but for strong fields
(co, -coo/2), as it is clear from the inspection of Figs 1

and 2 that, at most the second harmonic could come into
play.

In addition to the high-k Landau damping, the
magnetic-field-free shear mode is also damped at low-k
values, and extinguished as k~0, by diffusional damp-
ing. We have estimated and inferred from MD data'
ak;„(I =50)=0.64 and ak;„(I =120)=0.21. In the
magnetized situation the magnetic field hinders the
diffusion of the particles across the Beld: only collisions
and electric-field fluctuations make it at all possible.
Thus, similarly to the case of Landau damping, it is ex-
pected that the nonpropagating k region is diminished,
with the k;„value being reduced, making it possible to
observe low-k magnetoshear modes in the liquid phase.

C. Radiative mode

The interaction of the plasma layer with a propagating
electromagnetic mode results in a radiative mode. Such a
mode is characterized by complex values of P(kco)=3/k —(co /c ) [cf. Eq. (4)] and of co, for a real value of
k. (We consider here only the si =F2=1 situation. ) Set-
ting co= co' +i co",P= —i(q'+iq"), the choice of co" &0
entails q" (0, i.e., the wave e ' ' ~' decays in time,
while it appears to grow in the z direction. To obtain the
desired dispersion relation one looks for a solution of Eq.
(9) satisfying co'&kc, co" &0. One finds for long wave-
lengths up to 0 (k ),

(ka) 1 cof
co —co ' 1 +——

2+ 2 8 2
c t C

(ka) 1—imt - 1+0- +-
CO + CO

3' co
(kc)

( 2+ 2)3

CO', —3~2t
(ke) - (28)

(~2 +~2)3

co (k)
[Dr (k —+0)+DT(k~0)]

2(ka)

1 PE, (I )

8 r (29)

The frequency

2rce n

kc

is always much smaller than co, (co, /co, =Boa /2e).
We see that only the magnetoplasmon gets converted

into a radiative mode. The rnagnetoshear, because of its
low phase velocity, does not couple to the electromagnet-
ic radiation. The radiative mode describes a process
through which energy is radiated out from the system.
As a result, the mode is damped in time and appears to
be growing in space (away from the plane), since the more
distant position of the wave train was radiated out at an
earlier epoch. The appearance of the radiative mode, by
itself, is not a correlational effect: the O(1) and O(k )

where the coefficient d (d &0) originates from the small-k
expansions of DI (k) and DT(k) [cf. Eqs. (17) and (18) of
Ref. 8]:
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terms in (28) can be obtained from RPA calculations. In
contrast, the leading k dispersion comes entirely from
correlations and is negatiUe while the correlation indepen-
dent k dispersion is positive. Thus the measurement of
the very long-wavelength dispersion in the radiative
mode should provide another possible observational sig-
nature of the strong correlations in the 2D electron
liquid. The co') kc, i.e., k &cu, /c, condition means that
the radiative mode survives only in the very-long-
wavelength [ka ~ 10; cf. the discussion following Eq.
(20)] domain; but this is precisely the domain of interest
from the point of view of probing the system through op-
tical experiments.

V. CONCLUSIONS

In this paper we have calculated the dielectric-response
tensor and collective-mode dispersion for a strongly cou-
pled 2D classical electron liquid in a magnetic field. We
have shown that the magnetoplasmon mode, already
present in the uncorrelated electron gas, ' is substantially
modified by the strong electron-electron correlations. We
have identified the magnetoshear mode, as a new excita-
tion in the liquid state, maintained by strong particle
correlations. We have also determined the existence of a
radiative mode, characteristic to the magnetized situa-
tion, whose dispersion is governed largely by correlations.

In Secs. II and III, we calculated the dynamical matrix,
and susceptibility and dielectric-response tensors
in the quasilocalized charge approximation. In Sec.
IV we then calculated the dispersion of the magneto-
plasmon and shear modes at strong coupling
[I =e l( aEk~T)) 1)] and over the entire wave-number
domain. The resulting dispersion curves (Figs. 1 and 2)
and the mode oscillation frequencies given by Eqs. (15),
(16), (24), and (25) coupled with the Ref. 8 liquid state
formulas for DL (k) and DT(k) show how the collective-
mode dispersions are affected by particle correlations and
the interplay between the latter and the applied magnetic
field. Qualitatively this can be summarized as follows: (i)
Both collective modes exhibit an oscillatory dispersion
caused by short-range order. (ii) For ni, /coo~0. 1, the os-
cillations become more pronounced with increasing I;
for co, /Bo) 1, the dispersion is essentially unaffected as I

increases beyond 50. (iii) For a given value of I the
oscillations —and, indeed, the magneto shear mode
itself —become more and more suppressed as cu, /coo is in-
creased. (iv) There is a qualitative diff'erence in the
coefficient determining the slope of the magnetoplasmon
dispersion curve [Eq. (16)] as compared with the
coefficient of the slope of the ordinary plasmon, even for
very weak magnetic fields. (v) For high-k values (k ~ ~ )

the magnetoplasmon and the magnetoshear frequencies
approach co + and cu, respectively, the gyration fre-
quencies of an isolated charge in a neutralizing 2D back-
ground; the cu + —~ separation is always ~„ ir-
respective of the values of the other parameters of the
system. (vi) The polarization of the magnetoplasmon is
right-circular both for k ~0 and for k —+ ~, it picks up a
longitudinal component for intermediate k values. The
polarization of the magnetoshear mode is transverse
linear for k ~0, changing into left circular as k increases.
(vii) We expect that both Landau and diffusional damp-
ings of both of the modes are substantially lower than
those of their magnetic-field-free counterparts. As to the
radiative mode, its main features are that (i) its frequency
is in the vicinity of ~„(ii) it is weakly damped, with a
damping of the order co, ; and (iii) its dominant k disper-
sion is determined entirely by the correlation energy of
the system (should, however, one include thermal disper-
sion in the formulation of the dielectric function, other,
kinetic-energy-related k contributions would probably
also occur).

It is hoped that the theoretical predictions of this pa-
per will motivate both molecular-dynamics simulations
for the magnetized 2D OCP and new laboratory experi-
ments on 2D electron monolayers on the surface of liquid
helium, with the addition of a constant magnetic field
normal to the surface.
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