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Diamagnetic shift and oscillator strength of two-dimensional excitons under a magnetic field
ln Inp 53Gap 47As/Inp quantum wells
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We studied magneto-optical absorption spectra of the ground-state electron-heavy-hole exciton reso-
nance in In() 53Gao 47As/InP quantum wells. As the magnetic field perpendicular to the quantum-well
layers was increased, the exciton resonance showed diamagnetic shifts and its integrated intensity in-

creased. Magneto-optical data were analyzed using effective-mass equations which include conduction-
and valence-subband nonparabolic dispersion and the wave-vector dependent transition-matrix element
with the second-order k p terms. We found that the exciton wave function for the relative in-plane
motion shrinks in real space and expands in k space due to the in-plane parabolic confinement potential
by the magnetic fields. This enhanced the integrated intensity and thus, the oscillator strength. We eval-
uated the exciton reduced effective mass, Luttinger-Kohn valence-band effective-mass parameters,
conduction-band effective mass, and a momentum matrix element between s- and p-state band-edge basis
functions.

I. INTRODUCTION

Two-dimensional Wannier excitons under magnetic
fields were first theoretically studied by Akimoto and
Hasegawa in 1967. Using two-dimensional effective-
mass equations, they calculated diamagnetic shifts and
oscillator strengths in the direct-allowed exciton reso-
nance as a function of the magnetic field. Later in 1984,
the magneto-optical effect on two-dimensional excitons
was experimentally studied by Miura and Maan using
GaAs/Al Ga& As quantum wells. Since then, the exci-
ton diamagnetic shift in GaAs quantum-well systems has
been extensively studied, ' giving us important infor-
mation on two-dimensional exciton characteristics such
as binding energy and reduced effective mass. The oscil-
lator strength of the exciton resonance under a magnetic
field, however, has received little attention. Previously,
using 10-nm Ino 53Gao 47As/InP quantum wells, we evalu-
ated the integrated intensity of optical-absorption spectra
of the electron-heavy-hole (HH) exciton resonance as a
function of the magnetic field of up to 8 T. ' (Since the
integrated intensity is evaluated directly from optical-
absorption data, we used it rather than the oscillator
strength to represent the strength of the exciton reso-
nance. ) We demonstrated that the oscillator strength,
which is proportional to the integrated intensity, in-
creased with the magnetic field due to the field-induced
shrinkage of the exciton in-plane relative-motion wave
function.

Our theoretical analyses of the magneto-optical data
left some unsatisfactory disagreements with the measure-
ments, however. The measured diamagnetic shifts gradu-
ally separated downward from the calculated curve in the
high magnetic-field region and the integrated intensity
gradually separated upward. The exciton reduced
effective mass obtained from the diamagnetic shift was
p=0.035mo —0.04mo and the mass which explained the

integrated intensity was p=0. 04mo —0.05mo, showing a
definite discrepancy (see Figs. 2 and 4 in Ref. 14). We
presumed that these disagreements were due to our sim-
ple theoretical model assuming parabolic band dispersion
and using the band-edge matrix element given by the
first-order k-p perturbation.

In this work we have studied exciton optical-
absorption spectra under magnetic fields in lattice-
matched Ino 53Gao 47As/InP quantum wells, taking into
account conduction- and valence-subband nonparabolic
dispersion and using the wave-vector-dependent
transition-matrix element with the second-order k p
term. First, we incorporate these effects to exciton
effective-mass equations which we used previously. We
evaluated three quantum-well samples with different well
widths to avoid experimental errors. We observed both
diamagnetic shifts and the enhancement of integrated in-
tensity in the ground-state electron-HH exciton reso-
nance under magnetic fields perpendicular to quantum-
well layers. We could explain both the diamagnetic shifts
and integrated intensity quite excellently for all samples,
having confirmed our previous conclusion. We evaluated
exciton reduced effective mass, Luttinger-Kohn valence-
band effective-mass parameters, conduction-band
effective mass, and a momentum matrix element between
s- and p-state band-edge basis functions.

II. EXCITON EFFECTIVE-MASS EQVATIONS
IN QUANTUM WELLS UNDER MAGNETIC FIELD

The inhuence of a magnetic field on exciton wave func-
tions is determined by the ratio of the cyclotron energy of
electrons and holes, Ace, =eh'8/p, and the exciton bind-
ing energy Eb, i.e., g=h'co, /2E„, where —e is the elec-
tron charge, A is Planck's constant divided by 2~, B is the
magnetic-field strength, and p is the reduced effective
mass. ' In the low-field limit of g « 1, the magnetic field
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only perturbs exciton states, hardly changing their wave
functions. We need a magnetic-field strength for a ratio
of at least (=1. In In053Gao47As/InP quantum wells,
using IM=0. 04mo and Eb = —6.6 meV, ' we obtain g= 1

at 4.6 T. In our experiments, we applied magnetic fields
of 0—g T ((=0—1.8). We will describe exciton effective-
mass equations in quantum wells treating both Coulomb
potential energy and magnetic-field energy equally. In
the high-field limit of g))1, where electrons and holes
are under cyclotron motion and perturbation from
Coulomb interaction generates bound states belonging to
Landau levels, we can use the conventional treatment of
Landau states.

A. Diamagnetic shift

Using an effective-mass approximation, we examine ex-
citon states in zinc-blende direct-gap semiconductor
quantum wells grown on (001) substrates. The wave
function is the linear combination of the product of a free
electron and a hole state, ' ' '

A„(k„k„)~n,k, & ~m, k~ &,

where

approximation, and that of the confined-state wave func-
tion as n =m, for the interband optical transition. The
former wave-vector selection rule requires K=O, where
K is the in-plane wave vector of the exciton center of
mass.

The exciton resonance energy in quantum wells under
magnetic fields perpendicular to quantum-well layers is

E„=E~+E,'„+E~„+E„+E,
where E~ is the band gap of well materials, E,', is the
confined-state energy in the conduction band, and E& „ is
that in the valence band. Equation (5) holds if the
Coulomb interaction is weak compared with the quantum
confinement potentials, and the confined-state wave func-
tions are not perturbed. Under the z-direction magnetic
field B, the spin-splitting energy is given as E,„=+pzvB
(+ for MJ= —', and —,

' and —for MJ= —
—,
' and —

—,'),
where IM~ =eh'/2mo, v=g, /2 —3~ —27q/4 for electron-
HH exciton, v=+g, /2 —~—q/4 for electron-light-hole
(LH) exciton, g, is the g factor of the conduction-band
electron, and K and q are Luttinger-Kohn valence-band
parameters. ' Since we observed no spin splitting of the
exciton resonance (Sec. IV and Ref. 14), we neglect E, .
For parabolic band dispersion, E„ is the eigenvalue of the
following effective-mass equation':

~
n, k, &

=&0,/D e ' ' g q7', „(z„k,)u,'0
J

is the wave function of an electron and

lm, kh &=&II/De' " "g pq (zq, kh)u, 'o
J

(2)

(3)

g2 2

ieiri(m II
—

m)I ) A V
2p '

4mcp

e 3
Wenv

=Er Penv (6)

is that of a hole. Here, Q is the unit-cell volume, D is the
area of quantum wells, k, and k& are the in-plane wave
vectors, r, and r& are the in-plane coordinate vectors, z,
and z& are the coordinates in the direction perpendicular
to the quantum-well layers, n is the quantum number
describing confined states in the conduction band, m is
that in the valence band, and qr,

' „and q7h are confined-
state wave functions. The periodic parts of band-edge
Bloch functions (normalized in the unit cell) of the elec-
tron state, u J o, are primarily composed of s-state func-
tions. ' For those of the hole state, u, o, we use p-state
functions which diagonalize spin-orbit interaction in the
(J,MJ) representation. ' '

Neglecting the mixing of band-edge characters in Eqs.
(2) and (3), Eq. (1) becomes

ik .r4=—g A„(kII)e " q7, „(z, )yh „(zh )u, ou, 0,
kll

where r=r, —r, is the in-plane electron-hole distance.
This is a good approximation since the expansion
coefficient in Eq. (1), A„(k„kh), rapidly decreases as the
wave vectors increase and the exciton state consists pri-
marily of near-band-edge states [see Eq. (9) below]. In
this way, excitons are classified by their band-edge char-
acters, for example, electron-HH excitons for
u, o= ~s, 1&, u„,= ~

—'„+-,' & and u„= ~s, 1 &,

u„o=
~

—', , ——,
' &. We included the in-plane wave-vector

selection rule as k, = —k& =kll under the electric-dipole

where p=(m" '+mj) ') ' is the in-plane reduced
effective mass, rn, ll is the in-plane electron effective mass,

is the in-plane hole effective mass,
p=fr~+(z, —

z& )~]', and s is the static dielectric con-
stant. The vector potential is taken as A =BXr/2.
The envelope wave function is

—P,„(r)%,„(z, )q7i „(zh )

where P,„(r) represents the in-plane relative motion of an
electron and a hole. Since the oscillator strength of a
single-photon optical absorption is proportional to
IP,„(0) (Refs. 22 and 23) and only s-state excitons are al-
lowed in direct transitions, we take the linear combina-
tion of the hydrogenic and harmonic-oscillator s-state
wave functions'

2 2
(r) =&2/7r —e " +—eex

where A, , g, a, and b are variational parameters. Three of
them are independent, and are determined to minimize
exciton energy. While the hydrogenic function describes
exciton states at zero field, ' the harmonic-oscillator
function becomes dominant as the magnetic field in-
creases. ' The expansion coefFicient describing exciton
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states in Eq. (4) is the Fourier transform of the in-plane
envelope wave function, and is given as

An(k~~)= —fd re " P,„(r)
D [HLK+ V(z)I4x4 jV'4xi =Eh n~4xi (14)

formed by the top-most HH and LH valence-band edge
bases, i.e., I —,', +—,') and

l
—'„+—,'). The effective-mass equa-

tion of (001) quantum wells is given by

=2'/D 2A,a —g kII/'4
+qbe

(1+k'A.')' ' (9) where

Eh, n Eh, —n+Ej', (nk~~» (15)
For s-state excitons under a magnetic field perpendicular
to the quantum-well layers, Eq. (6) becomes

Er env
I a

2p Qr2 r Br

e2

2+2
+ r'g).

Sp
(10)

which is proportional to the square of the magnetic field.
To include the effect of nonparabolic band dispersion

in the calculation of the exciton resonance energy, we re-
place the kinetic-energy term by the summation in k
space as

1

2m. Qr2 r Br

EI'. (k,~) I ~.(k„)l' (i =e,"),
kll

(12)

where E,"„(k~~) is the in-plane dispersion in the conduc-
tion band and EJ „(k~~~) is that in the valence band. We
can then obtain the in-plane electron and hole effective
masses from Eq. (12), and thus, the reduced effective mass
of excitons for a given band dispersion. E, can be calcu-
lated as a function of the magnetic field by Eq. (10).

In-plane conduction-band nonparabolic dispersion
originates primarily from the first-order direct k p in-
teractions between s- and p-state eight band-edge
bases. ' Due to the upward shift of electron energy un-

der quantum confinement, the in-plane effective mass at
each subband increases as the well width decreases. Ac-
cording to Bastard, Brum, and Ferreira, we calculated
conduction-band energy

E, „=E;„+E (13)

from the mass at the bulk band edge m I- .
6

To describe valence-band dispersion, it is well known
that second-order indirect k.p coupling must be taken
into account. ' ' Since in InQ53GaQ47As excitons' hole
energies are a few meV, much smaller than the zone-
center spin-orbit splitting energy of about 350 meV, we
use the Luttinger-Kohn 4 X4 Hamiltonian matrix '

The third term in Eq. (10) is the diamagnetic energy
term. The third term in Eq. (6), the Zeeman term, does
not affect s-state excitons' and is omitted in Eq. (10). If
we treat the magnetic field as a perturbation for exciton
states in the low-field limit and use the hydrogenic wave
functions in Eq. (8), Eq. (10) gives a diamagnetic shift of

b,E„=3e A, B /16@ (low-field limit),

HLz is the 4 X4 matrix including Luttinger-Kohn
efFective-mass parameters (y„y2, and y3), V(z) is
confinement potential for degenerate HH and LH states,
I4~4 is the 4X4 unit matrix, and cp4» is a row vector
with Pz „(z,k~~) as components. Since, at k~~=0, the non-
diagonal terms in Eq. (14) disappear, each subband-edge
energy and confined-state wave function can be calculat-
ed only by the diagonal terms. At points away from the
zone center, the increasing nondiagonal terms mix the
subband states, making dispersion very complicated.

The 4 X4 Hamiltonian can be separated into two
equivalent 2X2 Hamiltonians by a unitary transforma-
tion. ' We calculated valence-subband dispersion by
numerically diagonalizing the kII-dependent 2X2 matrix
using the differentia1 method under the following approx-
imations. First, we let y2=y3=y for all matrix elements.
This corresponds to neglecting warping and assuming
completely spherical dispersion in the bulk valence band.
The dispersion calculated under such a spherical approxi-
mation or axial approximation (neglecting only in-plane
anisotropy) keeps essential band structures under inter-
subband mixing. Second, we use common
Luttinger-Kohn parameters in both well and barrier lay-
ers. This is also a good approximation in type-I quantum
wells, such as Ino $3Ga047As/InP, as long as well and bar-
rier layers are relatively thick and eigenstates are well lo-
calized in well layers. By the latter approximation,
boundary conditions that y2x, and II2&&2y2» are con-
tinuous at interfaces are automatically satisfied in the
differential method, where cp2x, is a row vector for
transformed bases and H2~2 is the matrix obtained by in-

tegrating the unitary-transformed Luttinger-Kohn Ham-
iltonian across the interfaces. In Sec. IV, y1 and y are
determined to explain measured HH-LH splitting ener-
gies and the ground-state electron-HH exciton diamag-
netic shifts.

B. Oscillator strength

m.e A

cn„cQmQ

using the oscillator strength of

(16)

'(k„)P,„(e,k'„')
1 2

mQE, „D
II

where c is the speed of light, n„ is the refractive index, cQ

Based on time-dependent perturbation theory, the in-
tegrated intensity of one-photon optical-absorption spec-
tra of exciton resonance in quantum wells is written
as14, 16, 18,34
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X (0,' „(z,k(()pq „(z,k~() )

Neglecting interband mixing, Eq. (18) reduces to

P„(e,k~~)=(u, oe p u, o)(q, „lq„„)
=M (e, k„)M(y, „~yz „)

(18)

(19)

For electron-HH exciton transitions under TE-mode in-
cident light, i.e., the polarization vector e is perpendicu-
lar to the z direction, the polarization- and wave-vector-
dependent term M&w is given as

3(l+cos 8)
qw (20)

where cosg=k, /Qk, +k~~ and we take k, =net/L~.
On the basis of the k.p perturbation approach, ' the
transition-matrix element in bulk materials M is given

36

M =moP /6

12 mr
6

1+D' ' E~«~+~&)
mo E~ +26~ /3

(21)

where I' is the momentum matrix element between the s-
and p-state function defined as P = (S~pj ~j ) /mo (j =X,
Y, and Z), b, „ is the spin-orbit splitting energy of well
materials, and D' is the contribution of the second-order
k p perturbation. In Eq. (21), D' is often neglected. In
Sec. IV we will show that we should take into account D'
to properly explain the integrated intensity of exciton res-
onance spectra.

If we neglect the wave-vector dependence of the
transition-matrix element and substitute Mow(e, O) at any
k~~, the summation in k~~ space in Eq. (17) can be done
analytically. Then, using the real-space wave function,
Eq. (17) becomes

2P„(e,O)

moE, „
(22)

where the factor of 2 represents the degeneracy due to
spin. The oscillator strength is proportional to the prob-

is the permittivity of a vacuum, and P„(e,k~~) is the
transition-matrix element.

Using Eqs. (2) and (3), the transition matrix for the in-
terband optical transition is given as

P,„(e,klan)= ~ (u,', ~e p~u,', )

ability of finding an electron and a hole at the same
site 22& 23

III. EXPERIMENTS

%e grew three multiple quantum wells with
Ino 53Gao $7As well layers and InP barrier layers on (001)
InP substrates by metal-organic vapor-phase epitaxy.
The number of well layers is 20. The growth temperature
was about 600'C. First, we grew a 100-nm undoped InP
buffer layer on an InP substrate, and then formed the
multiple quantum wells. The background electron con-
centration is around 1 X 10' cm . The In, Ga, As, and
P sources were trimethyleindium, triethylegallium, ar-
sine, and phosphine. The carrier gas was Pd-diffused
high-purity hydrogen, and the growth rate was about one
monolayer per second.

The well and barrier layer thicknesses, L and Lz,
were determined by transmission electron microscopy.
Using the lattice image of InP layers to calibrate the
scale, we measured and averaged the thickness of each
layer. The composition of In, Ga„As well layers was
exactly determined from the (004) x-ray diffraction angle
of quantum wells using the composition dependence of
the stiffness and lattice constants. The thickness and the
composition of the three samples are (i) L =13.6 nm,
L&=9.5 nm, and x=0.463, (ii) L =10.0 nm, L&=9.6
nm, and x =0.467, and (iii) L =6.3 nm, Lz =9.4 nm,
and x=0.465. Since the lattice-matching condition to
InP is x =0.468, these samples are lattice matched within
0.1% and we write the composition as Ino 53Gao 47As.
Strictly speaking, however, the slight lattice mismatch is
accommodated as a homogeneous tetragonal distortion
and these samples receive biaxial compression. This biax-
ial strain is expected to split HH and LH band edges by
1.6 meV in 6.3-nm, 0.6 meV in 10.0 nm, and 2.5 meV in
13.6-nm quantum wells (Table I), and is considered in the
analysis below.

Magnetic fields of up to 8 T were applied perpendicu-
larly to the sample using a split-coil superconducting
magnet immersed in pumped liquid helium. A beam
from a halogen lamp dispersed by a 0.32-m single-pass
monochromator was focused onto the sample. The light
transmitted through the sample was detected by a PbS
detector using a conventional lock-in technique. The po-
larization vector is parallel to the quantum-well layers.
The ratio between the light intensity transmitted from a
sample I, and an InP substrate I2 was normalized to one
at an energy below the absorption edge. The optical ab-
sorbance of one quantum well was determined by

TABLE I. Well width L, barrier width L&, composition x of In& Ga As wells, splitting energies
between 1e-hh and 1e-lh exciton resonances AEh&, and the calculated strain contribution to the splitting

~Estrain

Sample

I
II
III

L
(nm)

13.6
10.0
6.3

(nm)

9.5
9.6
9.4

0.463
0.467
0.465

hE
(meV)

14
22
51+3

~Estrain
(meV)

2.5
0.6
1.6
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«Ow =(1/X)ln(I2/I, ), where N is the number of wells
and Lqw =L +Lz.

Material parameters used in the calculations are
v=13.9c.o, E~ =0.75 eV, E~ =1.35 eV, A~ =0.37 eV,
6~=0. 1 eV, V, =0.24 eV, V = —0.36 eV, V&= —0.09
eV, mi- =0.044mo, and n„=3.5. Here Ez and Ez are

6

the band gaps, Az and bz are the spin-orbit splitting en-
ergies, 3 indicates well material, B indicates barrier ma-
terials, V, is the conduction-band offset, V is the offset of
valence-band maximum, and V& is the offset of the split-
off band. According to Bastard, Brum, and Ferreira,
the signs of V„V, and V& are positive when the band-
edge energy of each is higher in the barrier materials, i.e.,
V, )0, V (0, and V& &0 in type-I quantum wells. We
assumed that 40% of the band-gap difference between
Inp and In& 53Gao 47As is in the conduction band.
Lawaetz calculated Luttinger-Kohn parameters for a
wide variety of III-V and II-VI semiconductors. From
Table II of Ref. 39, we see y&=19.67, y2=8. 37, and

y3 9.29 in InAs and y& =7.65, y2=2. 41, and y3= 3 ~ 28
in GaAs, giving y, = 14.0, y2= 5.57, y3 =6.46, and

( 1 2+ ) 3 ) /2 =6.02 in Ino 53Gao 47As from linear inter-
polation. These parameters, however, have not been test-
ed experimentally and their uncertainty casts doubt on
the calculated dispersion. We will determine a set of
Luttinger-Kohn parameters, y, and y, to properly ex-
plain magneto-optical data.

VI. MAGNETO-OPTICAL ABSORPTION
IN Ino, 3Gao 4&As/InP QUANTUM WELLS

A. Optical-absorption spectra

Optical-absorption spectra of the quantum wells (Fig.
1) show that the electron-HH exciton resonance (le-hh)
spectrum is at the absorption edge and that the electron-
LH resonance (le-lh) is on the absorption continuum at
shorter wavelengths for each quantum well. Due to the
quantum confinement effect, the splitting energies be-
tween 1e-hh and 1e-lh resonances, AE&I, increase as the
well width decreases, and are 14 meV in 13.6-nm, 22 meV
in 10.0-nm, and 51+3 meV in 6.3-nm quantum wells

(Table I). Higher-order electron-HH exciton resonances,
assigned as 2e-hh and 3e-hh, are also observed.

Figure 2 shows the magneto-optical absorption spectra
of the quantum wells. Spectra of 1e-hh resonances show
broadening with a full width at half maximum of 4.2 meV
in 13.6-nm, 4.3 meV in 10.0-nm, and 9.4 meV in 6.3-nm
quantum wells at zero fields. This low-temperature
broadening is an inhomogeneous one primarily due to
composition fluctuations and interface roughness. ' '

The width depends little on the magnetic field; 4.2 meV
(at 7 T) in 13.6-nm, 5.3 meV (6.2 T) in 10.0-nm, and 8.6
meV (7 T) in 6.3-nm quantum wells and spin-induced
splitting of the exciton resonances was not observed in
the measured field. In each quantum well, the le-hh exci-
ton resonance at the absorption edge shows diamagnetic
shifts and its intensity remarkably increases. The absorp-
tion continuum separates into discrete spectra, which are
assigned as 2S and 3S states of le-hh excitons and are ex-

(c)

1.0 1.2 1.4

Wavelength (pm)

F!G. 1. Optical-absorption spectra at 77 K of
Ino 53Gao 47As/!nP quantum wells with well widths of (a) 13.6
nm, (b) 10.0 nm, and (c) 6.3 nm.

B. Diamagnetic shift

Diamagnetic shifts up to about 4—5 meV are observed
in the measured field region (Fig. 3). While diamagnetic
shifts in 13.6-nm and 10.0-nm quantum wells are almost
identical, those in 6.3-nm quantum wells are definitely
smaller. The lines on the measured values are calculated
by Eq. (10) including both conduction- and valence-band
nonparabolicity through Eq. (12). The calculations ex-
plain the measured shifts quite well up to 7 —8 T.

The Luttinger-Kohn parameters, y &
and y, were deter-

mined by the following procedure. First, we calculated
the valence-subband edge energies using Eq. (14) with

k~~
=0 and we find sets of y& and y which give the mea-

sured splitting energy between the le-lh and le-hh reso-
nances. We subtracted the contribution of the biaxial
compression listed in Table I from the measured splitting
energies, and neglected differences in the exciton binding
energies between the two resonances. Then, we found a
unique set that describes the le-hh diamagnetic shifts.

pected to approach Landau states in the high-field limit.
The le-lh exciton resonances merged into the electron-
HH exciton resonances because of their weak oscillator
strength and could not be detected under magnetic fields.
We measured the diamagnetic shifts and integrated inten-
sity of the ground-state (1$) le-hh exciton resonances as a
function of the magnetic field. Taking the peak of the
spectra as the resonance energy and using the low-energy
side of the spectra, we extracted the contribution of the
1e-hh exciton resonance.



DIAMAGNETIC SHIFT AND OSCILLATOR STRENGTH OF. . . 8853

4 x10
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hh

4
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1.45 1.50
Wavelength (p.m)

x10
4 I

I I I I

0
0 20 40

Magnetic field (T )

60

--- 6.2 T

OT

FIG. 3. Diamagnetic shift of the ground-state electron-HH
exciton resonance spectra as a function of the square of the
magnetic field. Luttinger-Kohn parameters were y&=5. 8 and

y =2.0 in 13.6-nm quantum wells, y& =8.1 and y=2. 4 in 10.0-
nm quantum wells, and y& =6.3 and y =2.5 in 6.3-nm quantum
wells.

1.45

Wavelength (p~)
1.5

4 x10

0 Tesla

7.0 Tesla

2K

(c)
1.4 1.45

Wavelength (pm)

FIG. 2. Magneto-optical absorption spectra at 2 K of
Ino 53Gao47As/InP quantum wells with well width of (a) 13.6
nm, (b) 10.0 nm, and (c) 6.3 nm. The magnetic field is perpen-
dicular to the quantum-well layers.

The in-plane reduced effective mass and in-plane effective
masses of electrons and holes at zero field calculated by
Eq. (12) are shown in Table II. Values of E„at zero field,
i.e., exciton binding energy EI, and the exciton radius A, ,
calculated by the hydrogenic wave function in Eq. (8), are
also shown. These effective masses and Luttinger-Kohn
parameters are discussed in Sec. IV D.

The dashed straight line, for 13.6-nm quantum wells, is
the diamagnetic shift calculated by Eq. (11) in the low-
field limit. The approximation of the low-field limit holds
at most up to 1 or 2 T. Diamagnetic shifts under higher
magnetic fields are no longer proportional to the square
of the magnetic field and gradually bend away from the
straight lines, showing that the in-plane exciton wave
function shrinks Q, decreases) in the magnetic field.

To illustrate the dependence of exciton wave functions
on the magnetic field, we show (a) lP,„(r)l

and (b)
D' k~~A(k~~) under magnetic fields of 0, 4, and 8 T for
13.6-nm quantum wells (Fig. 4). These terms are closely
related to the integrated intensity [Eqs. (17) and (22)].
%'e used variational parameters which explain diamag-
netic shifts in Fig. 3; a =0.8, b =0.203, A, =15.4 nm, and
g=23. 8 nm at 0 T, a =0.5, b =0.507, A, =10.2 nm, and
q=20 0 nm at 4 T, and a=0.3, b=0.715, k=6.6 nm,
and g=16.2 nm at 8 T. As the magnetic field increases,

TABLE II. Parameters of excitons at zero field. In-plane reduced effective mass pll, in-plane electron
eff'ective mass m„ in-plane HH effective mass m I', h, binding energy Eb, and in-plane radius A.. Eff'ective

masses are in units of m o.

Sample

I
II
III

0.037
0.035
0.04

0.048
0.05
0.054

mII„

0.15
0.12
0.16

(meV)

—5.8
—6.1
—7.3

(nm)

16.4
16.0
13.2
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6',
L = 13.6 nm

8 Tesla

4 Tesla

(a)

0
20 40

In-plane distance (nm)

the exciton wave function for in-plane relative motion
shrinks and its amplitude at r =0, P,„(0), increases. This
is due to the parabolic confinement potential proportional
to the square of the magnetic field in the quantum-well
plane [Eq. (10)]. To the contrary, the expansion
coefficient A(k~~~), which is the Fourier transform of the
real-space wave function, extends in k space, increasing

e area o '
k~~A(k~~).

'
k~~A(kl) pea s a

0.054 nm ' at 0 T, kll 0.071 nm ' at 4 T, and

k~~
=0.095 nm ' at 8 T, showing that excitons are formed

mainly from states around these points. These wave vec-
tors correspond approximately to the inverse of the ra-
dius of the real-space wave function. The magnetic field
shrinks the exciton relative-motion wave function in the
quantum-well plane and extends the expansion
coefficients in k space, thus more states take part in the
formation of excitons than under zero field.

Previously, ' we could not explain the diamagnetic
shifts in 10.0-nm quantum wells over the entire range of
magnetic fields, due to the assumed parabolic bands.
Comparing the measured and calculated diamagnetic

shifts, the reduced effective mass of excitons increased
under the field (Fig. 4 in Ref. 14). By taking into account
band nonparabolicity here, the mass increased by a few
percent under the magnetic field due to the extension of
the expansion coefficient over nonparabolic bands. This
results in the excellent agreements with the measured
shifts in Fig. 3.

C. Oscillator strength

The integrated intensity increases monotonously with
the magnetic field and shows about 50% enhancement
around 7 T in each sample (Fig. 5). The intensity in 6.3-
nm quantum wells is larger than that in 10.0- and 13.6-
nm quantum wells. Lines were calculated by Eqs. (16)
and (17) integrating the product of the expansion
coefficient and the wave-vector-dependent matrix element
in k space. We used variational parameters of Eq. (8) ob-
tained from the diamagnetic shifts. We used D in Eq.
(21) as a fitting parameter and obtained D'= —7 for
13.6-nm quantum wells, D'= —5 for 10.0-nm quantum
wells, and D'= —6 for 6.3-nm quantum wells. Note that
D' is almost common in the three quantum wells. Using
the average of D'= —6, we obtain the matrix element in
Eq. (21) as moP =11.5 eV. This value is about 1.2 times
larger than that calculated by neglecting D'.

By introducing the second-order k p term on the ma-
trix element, Eqs. (16) and (17) perfectly describe the
measured integrated intensity of exciton resonance from
zero field, at least into the intermediate-field region of
7 —8 T. The enhancement of the integrated intensity, and
thus oscillator strength, is due to the field-induced
shrinkage of the exciton in-plane relative-motion wave
function. Our previous analyses could not explain the in-
tegrated intensity over the entire field range (Fig. 4 in
Ref. 14), partly due to the underestimates of the
transition-matrix element and partly due to the assumed
parabolic bands.

e 2.0—
C)

3.6 nm C1.5
I

'0 0.2 0.4
Wave vector k„(nm ')

0.6

FICx. 4. (a) ~((),„(r)~ and (b) D'

kgb|A(k~~)

for 13.6-nm quan-
tum wells under magnetic fields perpendicular to quantum-well
layers of 0, 4, and 8 T.

4P

1.0,'
U)
CD

-a L„=6.3 nm

—oL =10.0nm
---+ L = 13.6 nm

0.5 I I I I I I I

4 6

Magnetic field (Tesla)

FICz. 5. Integrated intensity of the ground-state electron-HH
exciton resonance spectra as a function of the magnetic field.
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FIG. 6. (a) In-plane electron and reduced effective masses of
excitons under zero field. The solid line represents the
conduction-band-edge efFective mass calculated using Bastard's
formula (Ref. 26). (b) In-plane HH effective masses of excitons
under zero field.

tron effective mass. In Fig. 6(b) we plotted the in-plane
HH effective mass of excitons with error bars correspond-
ing to the +5% uncertainty in the calculated electron
effective mass. Note that, though diagonal terms of the
Luttinger-Kohn Hamiltonian give the band-edge HH
effective mass as (y, +y) ', the plotted masses are
10—30% larger than the band-edge mass due to the non-
parabolic characteristics of the valence band. Nonpara-
bolic characteristics are more remarkable in the valence
band than in the conduction band.

Luttinger-Kohn parameters obtained for the three
samples were y&=5. 8 and y=2. 0 in 13.6-nm quantum
wells, y &

=8. 1 and y =2.4 in 10.0-nm quantum wells, and

y, =6.3 and y=2. 5 in 6.3-nm quantum wells. If we as-
sume +5% error in the calculated electron effective mass,
uncertainties of about +1 in y& and +0. 1 in y are expect-
ed. We cannot discuss the well width dependence of Lut-
tinger parameters due to these uncertainties. The aver-
ages of the parameters for the three samples are y, =6.7
and y =2.3. These values give a reasonable bulk
valence-band effective mass ' of InQ 53GaQ 47As as
mo/(y, —2y) =0.48mo for the HH band and

mo/(y, +2y) =0.088mo for the LH band. Note that our
values are much smaller than y, =14.0 and y=6.02 ob-
tained from Lawaetz's calculation for InQ 53GaQ 47As.
The almost half values obtained in this work give about
twice the in-plane HH mass at the band edge given by
m o /( y i +y ). The calculated in-plane valence-band
dispersion is strongly modified through the change in the
degree of intersubband mixing, which depends on the
HH-LH splitting energies and the magnitude of nondiag-
onal terms. To calculate Luttinger-Kohn parameters, we
need the interband momentum matrix elements and ener-

gy separations between valence-band edges and remote
even-parity band edges. The uncertainties in these quan-
tities, which can hardly be obtained experimentally, may
explain the discrepancy between Lawaetz's calculations
and our values.

V. CONCLUSION

The effective masses we obtained are shown in Fig. 6.
The solid line [Fig. 6(a)] represents the band-edge elec-
tron effective mass obtained by the second derivative of
E," „(k~~ ) [Eq. (13)]. The electron efFective mass increases
as the well width decreases from the bulk band-edge mass
of 0.044mQ. This is due to the nonparabolic characteris-
tics of the conduction band under the first-order k p cou-
pling. Note that the electron effective mass of excitons
is a few percent larger than the quantum-well band-edge
mass due to the extension of the exciton expansion
coeScient in k~~ space in the nonparabolic band. The
masses increased further by a few percent under magnetic
field due to the further extension of the expansion
coefficient [Fig. 4(b)]. The reduced effective mass in the
6.3-nm quantum well is slightly larger than those in other
thicker quantum wells, primarily due to the larger elec-

We studied diamagnetic shifts and the integrated inten-
sity of exciton optical-absorption spectra in lattice-
matched InQ53GaQ47As/Inp quantum wells under mag-
netic fields perpendicular to quantum-well layers. We ob-
served both diamagnetic shifts and the enhancement of
integrated intensity in the ground-state electron-HH exci-
ton resonance under magnetic fields of up to 8 T at 2 K.
We demonstrated that the integrated intensity enhance-
ment, and thus the oscillator strength of exciton transi-
tions, is due to the field-induced shrinkage of the excitons
in quantum-well planes or, equivalently, their field-
induced extension in k space. We evaluated in-plane
electron, hole, and reduced effective masses of excitons,
Luttinger-Kohn valence-band effective-mass parameters,
and a momentum matrix element between s- and p-state
band-edge basis functions.
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