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We study the quantum Hall effect in samples in which a portion of the longitudinal conduction path is
gated. Full magnetic-field sweeps were taken on a sample consisting of a gated Hall bar geometry.
These data yielded plateaus in longitudinal resistance, as the gate voltage is varied, for the integer filling
factor in the bulk, as previously observed, and plateaus for the case of a fixed integer number of transmit-
ted edge states under the barrier as the gate voltage and the magnetic field are varied. For a significant
portion of the Shubnikov—de Haas sweeps, the barrier region dominates the characteristic conductance
and Fourier analysis allows one to determine the variation of the carrier concentration in the gated re-

gion as a function of gate voltage.

INTRODUCTION

The study of the quantum Hall effect, in which the
Hall resistance is quantized exactly in units of 4 /e?, has
focused over the last few years upon the role played by
edge states in transport through the overall device.!
These edge states are thought to provide -essentially
dissipation-free transport from a current-injecting con-
tact to the current-sinking contact, so that the quantized
Hall conductance can be computed from the Biittiker-
Landauer formula? in terms of transmission coefficients
through the structure. The role of these edge states has
previously been examined in gated structures, and it has
been shown that a gate selectively reflects a fraction of
the occupied edge states.>* Both Biittiker’ and van
Houten and co-workers® have shown that when a quan-
tum Hall bar is biased with a perpendicular magnetic
field, such that the filling factor away from the gate is an
integer N, a gate barrier which reflects K edge states leads
to a quantized longitudinal resistance in accordance with
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This equation can be rewritten in the original form of
Biittiker as’
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where N'=N —K is the number of edge states transmit-
ted through the barrier.

It has been shown that by fixing N (constant magnetic
field), increasing the barrier height results in quantized
values of the longitudinal resistance in accordance with
(1) and (2) for barriers able to completely reflect an edge
channel.>* In contrast, we have previously shown that
for samples biased with barriers created from ultrasub-
micron gates (L, =50 nm), the plateaus predicted from
(1) and (2) are not formed, due to the presence of
significant tunneling of the incident edge channels
through the depletion region.’
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In this study we have set out to study more extensively
the role of the barrier throughout the entire magnetic-
field range. By biasing the bulk of the sample to nonin-
teger filling factors, and then varying the barrier height,
we can probe directly the edge states under the barrier, as
well as in the ungated bulk. In this method, it can be
seen that the transport varies from two-dimensional to
one-dimensional under the barrier, as the filling factor of
this region is varied, and back to two-dimensional again.
Similar behavior is experienced as one moves away from
the barrier as the current traverses the region. The case
of a constant N' (edge states under the barrier are fixed to
an integer number independent of the barrier height) is
investigated and quantized values of the longitudinal
resistance are observed in accordance with (2). These are
compared to the case of constant N (edge states away
from the barrier are fixed to an integer number indepen-
dent of barrier height). Additionally, by use of a Fourier
transform to determine the frequency of the
Shubnikov-de Haas oscillations in the longitudinal resis-
tance, as the barrier height is increased, the dominant
factor in edge-state transport is shown to be the barrier
region and not the much larger undisturbed edge-state re-
gion away from the barrier.

SAMPLE PREPARATION

The devices were fabricated from GaAs/Al Ga,;_,As
heterojunction material, with a nominal two-dimensional
density of 4 X 10'' cm ™2 and a mobility of 4 X 10° cm?V s,
both at 1.4 K. The layers consisted of molecular-beam-
epitaxy growth 1-um undoped GaAs buffer, a 20-nm un-
doped Ga,Al;_,As (x =0.3) spacer layer, a 30-nm
1X 10'® Si-doped Ga, Al,_,As (x =0.3) layer, and a 5-
nm undoped GaAs cap layer. The device was patterned
into a Hall bar with six side arms and a 20-um gate was
placed across the longitudinal axis between adjacent side
arms, so that the longitudinal conductance could be
simultaneously measured in both the gated and ungated
regions, in order to isolate the effects of the gate. The
Hall bar geometry was defined by wet etching. The Ohm-
ic contacts were AuGeNi alloyed at 450 °C for 40 sec by
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FIG. 1. Schematic representation of the device. A 20-um
gate is situated between adjacent side arms in region 2 to allow
longitudinal transport to be compared by simultaneous mea-
surements of ungated (region 1) and gated (region 2) portions of
the sample. This allows us to isolate the effects of the gate. The
width of the longitudinal part of the sample is 30 um, and the
20-um-wide side arms are spaced by 90 um (center to center).

rapid thermal annealing (RTA). The gate itself was a
nonrecessed, 100-nm-thick Au layer. The Ohmic con-
tacts and the gate were connected to 300X 300 um?
bonding pads to allow connection for mounting to the
ceramic flat package. A schematic of the active area of
the device is shown in Fig. 1. The measurements were
performed using a lock-in technique with a current bias
of 10 nA at 1.4 K, in a Janis He* superconducting mag-
net, and with magnetic fields up to 9 T.

RESULTS

Depending on the recent history of the device, it would
act as either a depletion- or accumulation-mode device.
For the results presented here, the device was operated in
the accumulation mode with a “decoupling” bias of 0.65
V needed to equate the density in regions 1 and 2 (Fig. 1).
To determine the decoupling bias needed for the gate, the
gate voltage is first varied until the density is roughly
equal in region 1 (ungated) and region 2 (gated), as in-
ferred from the two-dimensional sheet density obtained
from the Shubnikov—de Haas oscillations. As will be
shown later, it was not possible to fully equate these den-
sities, as region 2 would always retain a slightly lower
density. Once the decoupling voltage is determined and
applied to the gate, the channel is considered to be fully
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open. The Hall and longitudinal resistances for regions 1
and 2 are shown in Fig. 2 with a positive voltage of 0.66
V applied to the gate.

A series of magnetic-field sweeps, at different gate volt-
ages, was performed over the range 0-9 T, with gate
voltage steps of 10 mV. Varying the magnetic field al-
lowed the entire spectrum of filling factors in both the
gated and the ungated regions to be examined. As ex-
pected, the longitudinal sweeps of region 1 are completely
unaffected by sweeping the gate bias in region 2, since the
edge channels are re-equilibrated by the side arm.® A
series of sweeps for region 2 is shown in Fig. 3. By taking
a cross-sectional slice through the data at a fixed magnet-
ic field, corresponding to a constant filling factor in re-
gion 1, the constant N case of edge-state gating is
recovered. This is shown in Fig. 4, with the individual
curves offset by 10 kQ for clarity. The expected plateaus,
from (1), are indicated by the arrows and labeled with the
corresponding N' values. As may be seen in Fig. 4, the
plateaus are observed in agreement with previous stud-
ies>* and with (1). We note that this method allows one
to probe the spin-split minima as well as those for com-
pletely full Landau levels in the ungated part of the sam-
ple.

In Fig. 3, it appears that the minima for the
N =2,3,4,6, . .. filling factors appear to shift to a lower
magnetic field as the gate depletion is increased, suggest-
ing a reduction in density. This is, in fact, expected to
occur under the gate. However, it suggests that the
overall longitudinal conductance is dominated by the
resistive contributions of the gated region. This will al-
low us to examine the density by looking at the Fourier
transforms of these traces. Since the behavior should be
periodic in 1/B, the Fourier transform needs to be taken
in 1/B. Experimentally we are limited to taking data at
regular intervals of B rather than 1/B. It is possible to
reconstruct a bandlimited signal from nonuniform sam-
ples t, if there exists a bijective function y(¢,) that maps
the nonuniform samples into uniform samples’

y(t,)=nT . (3)

If the function A (¢) is the nonuniformly sampled signal,
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Longitudinal Resistance (k)

FIG. 3. The longitudinal resistances for re-
gion 2 for a variety of gate voltages. Sweeps
a-o are for +0.12, 0.15, 0.18, 0.21, 0.24, 0.27,
0.3, 0.33, 0.36, 0.42, 0.45, 0.48, 0.51, 0.54, and
0.57 V applied to the gate, respectively.

Magnetic Field (T)

and f(7) a uniformly sampled signal equal to A (?), they
are related by

h(O=Fly(D}=F(7),
ht)=f{y(t,)}=F(nT) .

The signal A (¢) can be reconstructed from the sampling
theorem,

4)

S (nDsin{wy(r—nT)}
wo(Tt—nT)
h(t,)sin{oy[y(t)—nT]}
oy(y(t)—nT)

h(t)=f(r)=3

Longitudinal Resistance (k)
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FIG. 4. The longitudinal resistance at fixed magnetic field
values of 8.5, 5.85, 4.4, and 2.9 T, corresponding to integer
filling factors (in the ungated region) of 2, 3, 4, and 6, respective-
ly, obtained from the magnetic-field sweeps shown in Fig. 3.
The expected positions of various plateaus are identified by the
arrows and the filling factor in the gated region. The curves are
offset by 10 k Q for clarity.

For the situation we are concerned with, the mapping
function is simply
1
y(t)=— (6)
t
and a discrete transform can be found from the uniformly
sampled signal
1 N—1

Fm=_ 2 f(nT)e*i?nrmn/N’ m=0,1,.
N n=0

..,N—1. (7)
Before the Fourier transform is taken, a Parzen window
is applied to reduce spectral power leakage from one
“bin” into neighboring “bins,” and has the form

Jj—iN—1)

=1—
© N+

(8)

In Fig. 5, two Shubnikov—-de Haas traces are shown, one
for region 1 (ungated) and one for region 2 (gated). The
sweep for the gated region has a positive bias of 0.45 V
applied to the gate, so that it is somewhat depleted with
respect to the ungated region. The Fourier transforms (in
1/B) are shown in Fig. 6. The corresponding Fourier
transform for the sweep with a gate bias of 0.66 V, taken
from Fig. 2, is also shown in Fig. 6. As can be seen from
this latter figure, region 1 clearly shows a single strong
peak near 8.75 T, labeled peak 1, which corresponds to
the first subharmonic, and the fundamental peak at 17.5
T. Because the spin-split filling factors are not well
developed, compared to the even filling factors, and we
do not reach a magnetic field corresponding to N =1, the
fundamental frequency is significantly weaker than the
first subharmonic. It is this first subharmonic that we
will concentrate on in the remainder of the paper. These
two peaks correspond to a density of 4.22X10!! cm™?,
which is in agreement with the inferred density previous-
ly obtained from the Hall constant.

The gated region also shows a peak essentially at the
same position as the ungated region of the sample, and is
therefore labeled peak 1. The position of this peak does
not shift as a function of applied gate voltage. We there-
fore assume that this peak arises from the contributions
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1 FIG. 5. The measured longitudinal resis-
tances for region 1 (ungated) and region 2 (gat-
ed) with a voltage of +0.45 V applied to the
1 gate. Here, it is clear that the density in the
gated region is considerably lower than that in
the ungated region, and this is evident in the
= Shubnikov-de Haas behavior.
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FIG. 6. (a) The Fourier transform (reciprocal magnetic field)
of the longitudinal resistance of region 1 (ungated). Peak 1 is
the first subharmonic of the fundamental period (shown near
17.5 T), and is much stronger due to the lack of the N =1 pla-
teau in the data series. (b) The equivalent Fourier transforms
for region 2 (gated) sweeps at two different values of the gate
voltage (+0.66 and +0.45 V). While peak 1 remains relatively
unchanged, the position and amplitude of peak 2 varies with the
gate voltage.

to the overall resistance from those portions of region 2,
which are not under the barrier. As can be observed, a
second peak, labeled peak 2, is also present in the gated
region sweeps, even with the decoupled voltage applied to
the gate. This peak is due to the resistance contributions
from the reduced density region under the gate barrier it-
self. The amplitude of peak 2 increases in magnitude,
and the peak itself shifts to lower frequency (implying a
lower density), as the barrier height is increased. We plot
the position of these two peaks in Fig. 7 as a function of
the gate voltage. To reiterate, the data in Fig. 7, for both
peaks, arise from a single Shubnikov—-de Haas magnetic-
field sweep measured across the two side arms of region 2
(Fig. 1). The error bars represent the spectral width of
the transform that is introduced by the windowing of the
data; e.g., the result of a finite range of magnetic field.
Within experimental error, the position of peak 1 (in re-
gion 2) does not shift as a function of gate voltage. Peak
2, however, decreases roughly linearly as a function of
voltage, as expected if the gate voltage linearly moves the
Fermi energy in the degenerate two-dimensional electron
gas. The density decreases by approximately a factor of 2
over the range of gate voltage shown. The straight line
drawn through the points is merely to guide the eye (and
is not a fit to the data); but it is evident that simply in-
creasing the applied gate voltage does not completely
eliminate the gate from transport measurements. Since
the gates were not recessed, it would seem probable that
applying sufficient positive voltage could lead to a higher
density under the gate than in the ungated bulk region;
but this is not the case, at least in these samples.

The ratio of the amplitude of the two peaks is plotted
as a function of gate voltage in Fig. 8. From this figure, it
is evident that, as the barrier is increased (applied gate
voltage —O0 V), the dominant frequency primarily arises
from the region of reduced density under the gate, and it
is this region that determines the nature of the longitudi-
nal transport through the device. From Fig. 8, the
minimum around 0.58 V indicates that the role of the
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Position of FT Peak (T)
<2

FIG. 7. The position of the two main peaks
in the Fourier transforms of the gated-region
longitudinal resistance, as a function of gate
voltage. Peak 1 does not shift position, indi-
cating that it arises from that portion of region
2 not directly under the gate-depletion region,
while peak 2 shifts as a function of gate voltage
| as is expected from a peak arising from that
portion actually in the depletion region.

0.1 0.2 0.3 0.4 0.5 0.6

Gate Voltage (V)

barrier again increases in what would be expected to be
the accumulation range, even though Fig. 7 indicates the
density in this region of gate voltages is pinned to a level
just under accumulation.

From the data contained in Fig. 7, the density of the
region under the barrier can be determined as a function
of both gate voltage and magnetic field, so that it is now
possible to examine the case for a fixed number of edge
states under the barrier, independent of barrier height
(constant N'). This corresponds to following (2) along the
lines indicated in Fig. 9. By fixing N’ and varying N, pla-
teaus are predicted from (2) whenever N reaches an in-
teger value. That is, we pick a fixed value of N’ and plot
the longitudinal resistance as the gate voltage is varied,
but using a magnetic-field value such that the filling fac-
tor under the gate remains constant. This is plotted in
Fig. 10 for the N'=2, 4, and 6 cases and results in good
agreement with the expected positions of the plateaus, al-
though the plateaus here are not as well formed as for the
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FIG. 8. The relative magnitude of the Fourier transform
peak 2 to peak 1 as a function of gate voltage for the gated re-
gion. Here, the ratio is that of the intensities (the actual ratio of
amplitudes plotted in Fig. 6 for example).

0.7

case of constant N. For the constant N’ traces, a limiting
resistance value of h /N'e? will be approached as N — o0,
in contrast to the infinite resistance in the constant N
case as the barrier completely depletes the channel. The
reason the N’ traces do not approach their limiting
values here is that the current, held constant as required
for quantum Hall-effect measurements, is forced into the
buffer layer thus destroying the two-dimensional nature
of the sample as the barrier height is increased. To
prevent this from occurring, the gate voltage was limited
to values less than the full channel pinchoff. To follow a
constant N’ trace for an odd index was more difficult,
since the spin-split levels are not resolved at low magnetic
field. Figure 11 shows a constant N'=3 trace which
forms a plateau at N =4, but there are only hints at for-
mation of the N =6 and 8 plateaus before the edge state
is no longer well resolved.

DISCUSSION

It is clear that the Shubnikov—de Haas measurements
across a gated region show the effects of both the region
under the gate and the parts of the sample outside of this
region. When the bulk of the sample is near a Hall pla-
teau, so that the longitudinal conductance is near zero, it
is easy to understand why the resistance of the gate re-
gion dominates the entire region. On the other hand,
when the region under the gate is near a Hall plateau, the
ungated region dominates the overall resistance. Al-
though is it not truly possible to say that these two resis-
tance regions are connected in series for the ballistic-
transport mode appropriate to the edge states,? it is ap-
parent that the oscillatory properties of both regions ap-
pear in the overall resistance. As the resistance of the
gated region becomes higher, with depletion of this re-
gion, this resistance plays a larger role in the overall
properties, as exhibited in the growing strength of peak 2
in Fig. 8.

It is worth comparing the results obtained here with a
diagonal measurement used to study the density under a
gate, as reviewed by Beenakker and van Houten.!® In
this latter measurement, the Hall resistance and the lon-
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Longitudinal Resistance (kQ)

Magnetic Field (T)

gitudinal resistance are determined by a diagonal mea-
surement which yields RytR; (the sign depends upon
the orientation of the measurements, and shown in Fig.
82 of Ref. 10). When the number of edge states in both
the gated and ungated regions are integers, the density
can be inferred from the use of (2), and an equivalent
equation for the Hall resistance on the plateau. However,
when these quantities are not both integers, this approach
can lead to errors. Consider, for example, Fig. 3 in the
region around B =8.5 T. Here, N =2 in the ungated re-
gion. If we look at curve A, which is for ¥3;=0.33 V, the
longitudinal resistance varys quite rapidly as a function
of the magnetic field across the plateau. However, the
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0.1 0.3 0.5 0.7
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FIG. 10. The longitudinal resistance for a fixed (even) num-
ber N' of edge states under the barrier. The positions of the ex-
pected plateaus are indicated by the arrows. The curves are
offset by 2.5 kQ for clarity.

FIG. 9. Longitudinal resistance for the gat-
ed region as a function of magnetic field. The
curves here are exactly those in Fig. 2. The
lines are rough estimates of the position of
minima resulting from a constant number N’
of edge states under the barrier. The two
shown are for N'=2 and 4.

density in the gated region is not changed significantly,
and may be inferred to be approximately 2.5X 10!! cm ™2
from Fig. 7. The longitudinal resistance is composed of
two competing Shubnikov—de Haas series, due to the two
regions (gated and ungated), and only near a plateau can
the diagonal method be used with confidence.

As can be seen from Fig. 3, not all of the observable
structures in the Shubnikov—de Haas spectra can be ac-
counted for by the above discussions. Most obvious is
the structure observed between the N =2 and 3 minima
in Fig. 2. There is an indication of a minimum at approx-
imately 7 T in the curve for the ungated region. The po-

10 T T T T T
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0.1 0.3 0.5 0.7
Gate Voltage (V)

FIG. 11. The longitudinal resistance for a fixed N'=3 under
the barrier, as a function of gate voltage. The position of the ex-
pected plateau is indicated by the arrows. It is clear that there
is a variety of saddle-point and non-saddle-point tunneling tran-
sitions in the curves, where these quantities are defined in the
terminology of Ref. 3.
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sition of this point seems to be appropriate to the 7 frac-
tional level, but this is usually not well formed at 1.4 K,
where these measurements are made. However, this
minimum is enhanced and forms the much flatter region
observed in the curve for the gated region 2. This struc-
ture does not shift in position as a function of barrier
height, indicating it is in that portion of region 2 not un-
der gate metallization. Nevertheless, its behavior is
enhanced by the presence of the gate. We do not under-
stand how a fractional state could be enhanced by the
presence of the gate, unless there is significant nonequili-
brium population of the edge states involved,!! due to the
potentials in the vicinity of the gate.!> We also note that
there is some indication of a 4 (5.5 T) and 7 (2.8 T) dip in
the longitudinal conductance at the highest level of de-
pletion (upper curve) shown in Figs. 2 and 9, and these
are shifted in density as the region under the gate is dep-
leted. The existence of fractional edge states in
depletion-gated devices has been used to explain other re-
sults, although at much lower temperatures,'>!® and it is
possible that the presence of these states contributes to
the tunneling process. On a device fabricated from the
same material but with a gate structure consisting of
three 50-nm gates on a 200-nm period, and operating in
the depletion mode, a similar enhancement was also ob-
served. It is shown in Fig. 12. The enhanced fraction for
this gated structure is centered around a magnetic-field

value suggesting a 3 or a combination of odd denomina-
tors merging together to form a fractional edge state
along the barrier. This structure was only present in the
gated region of the sample. We remark, however, that an
alternative interpretation of these extra ‘“minima” could
be in terms of just effects arising from poor con-
tacts.!®1%15 Contacts which do not interact equally with
all edge states are known to lead to strange behavior,
quite similar to that observed here, which is interpreted
in terms of anomalous suppression of some of the
Shubnikov-de Haas oscillations. While it is not possible
to delineate whether these are real minima, or are just
contact effects, it is strange that the effects described here
would arise from contact effects that occur only at very
specific values of the magnetic field and often remain
even after other expected minima are destroyed by gat-
ing.
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