
PHYSICAL REVIEW B VOLUME 48, NUMBER 12 15 SEPTEMBER 1993-II
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Interesting features of the modulated photocurrent experiment have been emphasized in a recent pa-
per where we have shown that, if the localized states in the gap belong to the same species of monovalent
centers, then it is possible to deduce both an order of magnitude of the capture cross section and the ab-
solute value of the density of these states by means of this experiment. In the present paper, we extend
the calculation of the dc and ac photocurrent to the case where distributions of correlated states associ-
ated with the well-known dangling bonds (DB) are present in the material. This calculation includes the
contributions of both holes and electrons and takes into account the interactions of both types of carriers
with distributions of monovalent as well as correlated states in the gap of a semiconductor. We concen-
trate in particular on the signature of the DB states in the data analysis, the correlation energy being ei-
ther positive or negative. We first derive the variations with respect to energy of the occupation func-
tions of any distribution of DB states for both signs of the correlation energy under steady-state condi-
tions. We show that the concept of quasi-Fermi-levels for trapped carriers introduced by Simmons and
Taylor for monovalent states has to be reconsidered for the correlated states and we underline the
differences between the cases of positive and negative correlation energies. We give a clear and
comprehensive scheme of the different recombination paths for the correlated states and derive the
correct expressions of the electron and hole lifetimes related to these kinds of states. The results of the
steady-state-regime study are then used in a second part to identify how the DB states modify the modu-
lated photocurrent. Simplified expressions of the modulus of the modulated photocurrent and of its
phase shift with reference to the ac excitation light are given in two cases: a recombination-limited re-
gime and a trapping- and release-limited regime. The behaviors of the modulated photocurrent related
to the presence of DB states are also underlined in both regimes by means of a numerical simulation. It
is shown that a distribution of DB centers exhibiting a positive correlation energy roughly behaves as
two distributions of monovalent states whereas a distribution of DB centers with a negative correlation
energy roughly behaves as a single distribution of monovalent states. An important property of the DB
states with a positive correlation energy is that they can give a significant response in the trapping- and
release-limited regime even if their ground-energy level is below the Fermi level. It is also shown that if
there are both monovalent- and correlated-state distributions in the gap, it is possible to derive an order
of magnitude of the lowest capture cross sections from the transition between the recombination-limited
and trapping- and release-limited regimes.

I. INTRODUCTION

The determination of the density of localized states
present in the mobility gap of amorphous or glassy semi-
conductors is still a matter of research, but the theoreti-
cal and experimental work performed so far has led to a
general picture which is commonly accepted by most of
the authors. In this picture part of the density of states
(DOS) is made of conduction- and valence-band tails of
localized states, ' usually assumed as monovalent (i.e.,
being neutral or singly charged), that originate from the
disorder intrinsic to such materials. Deeper in the gap
are other states, usually attributed to dangling bonds
(DB), that can be positively charged (D ), neutral (D ),
or negatively charged (D ) if occupied by zero, one, or
two electrons, respectively. This kind of defect is de-
scribed in the energy domain by two levels E~B and
EzB+E„where E„ is the correlation energy. The sign

and the value of the correlation energy depend on the
material considered. It is generally accepted that the
correlation energy is negative in chalcogenide glasses
such as a-AszSe3, whereas it is positive in tetrahedrally
bounded amorphous semiconductors such as a-Si:H. '

Though their origin is still a matter of controversy,
the DB states play an essential role in the material prop-
erties and they are included in almost all the models in-
voked as an explanation for the results of any experiment
performed on amorphous or glassy semiconductors. For
instance, their inhuence on the steady-state photoconduc-
tivity has been widely studied"' and is still studied. '

These states are also involved in the thermal equilibrium
processes observed in a-Si:H, ' ' as well as in the light-
induced metastabilities known as the Staebler-Wronsky
effect (for a recent review see, for instance, Zellama
et al. ' ).

However, the inclusion of DB states in the analysis of
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experimental results is often restrictive. They are mainly
considered as discrete levels' instead of distributions of
states, and, apparently because of the complexity of the
calculation linked to their specific statistics, ' ' they are
often treated as monovalent states ' by means of well-
known statistics such as the one extensively studied by
Simmons and Taylor. We present in this paper a de-
tailed and comprehensive analysis of the energy depen-
dence of the DB states occupancy under steady-state il-
lumination conditions. We show that simplified expres-
sions of the occupation functions can be found depending
on the considered energy range, and we give a
comprehensive view of the recombination paths along
with the corresponding expressions for the recombination
rates of electrons and holes.

Among all the experiments performed on amorphous
and glassy semiconductors to study the DOS, the modu-
lated photocurrent (MPC) experiment is both powerful
and convenient. Indeed, this experiment has been applied
to CdS crystals by its inventor, and then to a-Si:H
(Refs. 24 and 25) and to a-As2Se3. However, to our
knowledge, among all the attempts to correlate the exper-
imental results with the presence of DB states in the mo-
bility gap, only a few have been made by means of the
basic equations. ' In a previous paper, we have
presented a detailed calculation and analysis of the modu-
lated photocurrent including the contributions of holes
and electrons for the case where the DOS consists of a
single species of monovalent states. In the present pa-
per we extend this calculation to densities of states, which
also includes distributions of DB states, and we em-
phasize the part of the calculation relative to these states.
The cases of positive as well as negative correlation ener-
gies are addressed. Obviously, since the MPC experiment
is mainly performed on samples built in the coplanar
geometry, both types of carriers, electrons and holes, are
taken into account.

In Sec. II, we present the whole calculation starting
from the basic continuity equations which are recalled in
Sec. II A. In order to simplify the treatment of the prob-
lem, we consider distributions of DB centers having a
constant correlation energy E„. If there is a repartition
of correlation energies associated with the defect distribu-
tion, as suggested by some authors, one can always
divide the whole DB state into DB distributions with
constant E„. In Sec. II B, a treatment of the dc contribu-
tion to the current is given which emphasizes the part
due to the DB states. This treatment, presenting some
similarities to that of monovalent states described by
Simmons and Taylor, is achieved for E„)0 and for
E„&0. In Sec. II C, the whole treatment of the alterna-
tive part of the photocurrent is presented for the two
cases (E„)0 and E„(0). The experimental differences
expected in both cases are underlined.

In Sec. III, the approximate analytical results of Sec.
IIC are tested and illustrated by means of a numerical
simulation. Particular attention is paid to the transition
from a recombination-limited regime of the modulated
photocurrent to a trapping- and release-limited regime
and to the possibility of reconstructing the DOS in the
presence of DB states. We emphasize the insights that

the MPC experiment can bring to the defects in amor-
phous and glassy semiconductors.

II. THEORY

n f+(E)]dE— (2)

A. Basic equations

We consider a semiconductor layer in a coplanar
configuration uniformly illuminated so that the densities
of electrons and holes in the extended states (n and p, re-
spectively) are uniform in the conduction cross-sectional
area S. The general expression for the current I is then
given by

I=sqg(p„n+p~p),
where q is the absolute value of the electronic charge, g is
the applied electric field, and p„and pz are the extended
states mobilities of electrons and holes, respectively.

The values of n and p can be obtained from the resolu-
tion of continuity equations, taking the different emission
and capture processes into account. In the following we
shall consider a DOS made of two types of states: a sin-
gle species of monovalent traps and a single species of DB
states.

A species of monovalent traps is defined by capture
cross sections for electrons and holes, o.„and o. , respec-
tively, and a density of states 1V'(E) at the energy E. The
statistics of occupation of such states was presented by
Simmons and Taylor as an. extension of the Shockley-
Read ' statistics, where it is assumed that localized states
can only exchange carriers via the extended states.

A species of dangling bonds states is defined by a densi-
ty of states X (E), the capture cross sections for elec-
trons o„and o.„+ of the D and D+ states, respectively,
the capture cross sections for holes o. and o. of the D
and D states, respectively, and a correlation energy E„.
The occupancy of these centers follows the statistics of
correlated states' ' instead of Fermi-Dirac statistics.
We also assume that this type of state can only exchange
carriers via the extended states.

We have to keep in mind that a real DOS can be com-
posed of more than one species of each type of states.
However, from a mathematical point of view the formal-
ism used in the equations does not depend on the number
of species involved and the choice of a single species of
both monovalent and dangling-bond states is made to
clarify the development.

The electron and hole current densities being uniform,
and calling r the time, G the generation rate of carriers (G
being the same for electrons and holes since we consider
only photon energies greater than the mobility gap), E,
the energy of the bottom of the conduction band, and E,
the energy of the top of the valence band, the continuity
equations for electrons and holes are

Bt
=6—f %(E)In[1—f(E)] e„(E)f(E)]dE-E

E
+ X E e E E —n —e E
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and Bf(E) =n+e (E)—f(E)[n+p+e„(E)+e (E)],
E

=G —f N(E)[pf(E) e—(E)[1—f(E)]jdE

E
+ EDBE e+ E + E —po —eo 0E

U

=[n +e (E)]f (E)—[p +e„(E)]f (E),

=[@ +e„(E))f (E) [n —++e+(E)]f+(E),
(4)

P f—(E)]dE . (3)
1=f+(E)+f (E)+f (E) .

The first and second integrals in Eqs. (2) and (3) describe
the interactions of electrons and holes with the mono-
valent states and the DB states, respectively. In these
equations the notations relevant to the monovalent traps
are the following: f(E), the probability of the states at
the energy E to be occupied by an electron; e„(E) and
e (E), the emission rates of electrons and holes from a
state at the energy E toward the conduction and valence
band, respectively; and n and p, the capture rates of elec-
trons and holes which can be written n =v„o.„n =c„n
and p =up~pp =cpp U. and up being the thermal veloci-
ties and c„and c the corresponding capture coeKcients
for electrons and holes, respectively.

The notations relevant to the DB states are the follow-
ing: f+(E), f (E), and f (E), the probabilities of a DB
center at the energy E to be positively charged, neutral,
and negatively charged, respectively; e„and e„,the emis-
sion rates of electrons toward the conduction band from
neutral and negatively charged states; e and e+, the
emission rates of holes toward the valence band from
neutral and positively charged states; n and n +, the
capture rates of electrons by neutral and positively
charged states; p and p, the capture rates of holes by
neutral and negatively charged states. These capture
rates can be written n =u„o.„n, n + =u„cr„+n,

p =v o. p, and p =u o,, p. The corresponding capture
coe%cients for electrons and holes can be defined exactly
as for the monovalent states (e.g. , c„+=v„o.„+).

According to the Shockley-Read ' formalism the occu-
pation functions are given by

and

—[nd, —e„(E)]fd, (E)jdE

E
O=Gd, —f N(E)Ipd, fd, (E)—e (E)[1—fd, (E)]jdE

E
+ + E ep E d E —pd d~ E

—[pd, e(E)]fd—,(E ) j dE .

For the alternative contribution, we obtain

Since in the MPC experiment the excitation light is a
periodic function of the time, two types of contributions
have to be considered: the first one giving a dc current
due to the average contribution of the excitation to the
creation of carriers and the second one coming from the
alternative part of the excitation. We treat the case of a
small ac signal and do not take the harmonics into con-
sideration. So, basically all the quantities appearing in
Eqs. (2)—(4), except the emission rates and the distribu-
tions of states, can be separated in two components in-
dexed dc for the steady-state component and ac for the
alternative component Q = Qd, +Q„exp(j tot ), where j is
the complex quantity such that j = —1 and co is the pul-
sation of the excitation. Taking both the dc and ac com-
ponents into account, Eqs. (2)—(4) can be split into equa-
tions including the dc and ac contributions, respectively.
For the steady-state contribution, we obtain

E
O=G f N(E)[nd, [1—fd, (E)]—e„(E)fd,(E)jdE

U

E
+ E E e„E d, E —nd d, E

E
j con„=G„+f N(E)I [nd, +e„(E)]f„(E)—n„[1 fd, (E)]jdE—

E
+ f N (E)[e„(E)f,, (E) ndJ',+, (E)——n,+,fd, (E)]dE

N (E) I n,J', (E)+[n, e„(E)]f„(E)jdE—

and

E E
j cop„=G„—f N(E)[[pd, +e~(E)]f„(E)+p„fd,(E)jdE+ f N (E)[e+(E)f,+, (E)—pd J'„(E)—p,,fd, (E)]dE

U

E—f N (E)[p,J'd, (E)+[pd, ez(E)]f„(E)jdE .—
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+ I N(E)[fd, (E)—fd,o(E)]dE, (9)

where the subscript 0 indicates that the quantities con-
sidered correspond to the dark thermal equilibrium.

Note that if we assume that N (E)=0, then Eqs.
(5)—(9) transform into Eqs. (5)—(8) and (12) of a previous
paper. In that paper the case of the monovalent states
was treated extensively. Therefore, in the following, we
shall concentrate on the part of the equations involving
the DB states: this is done by equating N(E) to zero.

As Okamoto, Kida, and Hamakawa did, ' if we write,
for the sake of simplicity,

N+(E) = n d, +e+(E),
N (E)=nd, +e (E),
P (E)=pd, +e„(E),
P (E)=pd, +e„(E),

(10)

the last three equations of the system of equations (4)
transform into two subsystems: one for the dc com-
ponents,

From these equations it is possible to deduce n~„p~„
n„, and p„, taking account of the charge neutrality
given by

(Pd Pd0) ( d dO
E=I N (E)[[fd,(E)—fd,O(E)]

V

+2t fd, (E)—fd,o(E)]}dE

study of the alternative part, which is essential for the
calculation of the modulated photocurrent, requires the
complete knowledge of the variations of the dc occupa-
tion functions with respect to the energy. This point is
addressed in the next subsection where we derive the de-
tailed energy dependence of the occupation functions and
give simple approximate expressions of these functions in
both cases E„&0 and E„&0. This will be done essential-
ly by making a parallel between our calculation for the
DB centers and that for monovalent states, using the for-
malism of Simmons and Taylor.

Before going further, it is worth noticing that the ex-
pression of fd, in Eqs. (13) is obtained from the expres-
sion offd, by a simple transformation of notations called
7 in the following: changing all the letters N or n into P
or p (all the P or p into N or n) and all the superscripts—
into + (all the superscripts + into —

) transforms the ex-
pression of fd+, into that of fd„ the expression of fd, be-
ing unchanged by V. The interest of this transformation
in order to simplify and shorten the calculation will ap-
pear immediately.

FroID the second subsystem we deduce the expressions
of f,+„ f„, and f„as functions of n„adnp„. Since
there is a phase shift between the alternative component
of the light of excitation and the modulated photocurrent
these last quantities are complex, and we can write
n„=n„+jn;, p„=p„+jp;, the indices r and i standing
for real and imaginary, respectively. Then, the expres-
sions of f,+„f,„and f,, at an energy E are

f,+, (E)=n„a„++n;P„++p„a++p;P~

N (E)fd, (E)—P (E)fd, (E)=0,
P (E)fd, (E)—N+(E)fd, (E)=0,
fd, (E)+fd, (E)+fd, (E)=1,

and another one for the ac components,

N (E)f„(E)+n,J'd, (E) p,,fd, (E)—

+j( n„p„+—+n;a„+ —
p„p~ +p;a+),

f,, (E ) = n „a„+n; P„+p„a ~ +p; P~

+j ( n„p„+—n; a„p„p~+p;a~ —),
f,, (E)=n„a„+n,P„+p„a. +p;P~

+j ( n„p„+n;—a„—p„p~ +p;a~ ),

(14)

P P +N+P +N N+

0 &+ + — &' ofdc pO fdc& fdc p —fdc

(13)

as functions of the different emission and capture rates
for a given energy. These equations have been obtained
already and extensively used by some authors for the
study of the photoconduction (see, for instance, Vaillant
and Jousse, " Vaillant, Jousse, and Bruyere, and
Okamoto, Kida, and Hamakawa' ). Nevertheless, the

=f,, (E)[jrd+P (E)],
P (E)f„(E)+p,J'd, (E) n,+,fd+, (E)—

=f,+, (E)[j co+ N+ (E)),
f,+, (E)+f„(E)+f,, (E)=o

From the first subsystem one obtains the expressions of
fd+„ fd„and fd„

where the expressions of the energy-dependent
coefficients of n„, n;, p„and p, for each function are
given in Appendix A. As an example of the usefulness of
7, note that the application of 7 to the expression of f,+,

in Eqs. (14) gives the expression of f,,
B. Study of the dc contribution

The formalism of Simmons and Taylor has been
proved to successfully explain and describe the variations
with respect to the energy of the occupation functions of
monovalent traps within the gap of a semiconductor un-
der nonequilibrium steady-state conditions. In this sec-
tion we show that an equivalent formalism can be applied
to a distribution of correlated states such as DB states
and, consequently, that one can obtain the variations
with respect to the energy of the steady-state occupation
functions fd+„ fd„and fd, within the gap of a semicon-
ductor. Because the ac components of the main physical
quantities depend on their dc components, the study of
these variations is essential for the determination of f„,
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E —E
nd, =2V, exp

k, T

EF —E,
pd, =N, exp

B

(15)

where kB is the Boltzmann constant and T the tempera-
ture. Under conditions such that n d, » n d,o and

pd, »pd, o, the electron lifetime ~„and the hole lifetime

f„,and f,„which in turn determine the ac components
of the densities of free carriers, and hence the modulated
photocurrent.

The variations of the occupation functions with respect
to the energy under dark thermal equilibrium conditions
were presented by Okamoto and Hamakawa several
years ago for both cases E„&0and E„&0. These varia-
tions are recalled in Figs. 1(a) and 1(b), respectively. As
seen in these figures, both cases are not symmetrical. In
the case E„&0, two intervals can be roughly defined, one
for which fd,p

= 1 and one for which fdcp: 1 fdcp being
practically always negligible. In the case E„&0three in-
tervals, wherein each function is alternatively roughly
equal to 1, can be defined. In both cases the limits of
these intervals depend on the position of the dark Fermi
level and of the correlation energy.

Under illumination we expect the dark Fermi level EF
to split into a quasi-Fermi-level for electrons EF„and a
quasi-Fermi-level for holes EF . Therefore, in the case
E„&0 we expect to observe at the most three different in-
tervals wherein the occupation functions take different
values, whereas in the case E„&0, we expect to observe
at the most five different intervals wherein the occupation
functions take different values.

Calling N, and N„ the equivalent densities of states at
the bottom of the conduction and top of the valence
band, respectively, n d, and pd, are written

p.s (
(D

O
o 0.6

0.4
G$
CL

0.2

0
E

I ~
J

I P I P I I

~ I

fdc
I~

I
~ I

~ I

~ l

] ~

t I

I ~

I
I

f o~l
dc

1

1

't

EF-EU EF

Energy

(8

O
o 0.6

I ~

J

f- ~' ~ +
dc ;I fdc

o 0.4
C

o 0.20

0 I I I I I I I I

E

Energy

I

EF-Eu 2 E

Qp are usual 1y defined by Gd, —n d, /&„and &d. —p d. «p
respectively. After some calculations, the parts relative
to the dangling-bond states r„and r can be written
independently of the sign of the correlation energy,

FIG. 1. Variations of the occupation functions fd"„ fd„and
fd, (full, dashed, and dotted lines, respectively) vs the energy
under dark thermal equilibrium in the cases (a) E„)0 and (b)
E„&0. Characteristic energies of these variations are indicated
by open arrows along the energy axis in both figures. Whereas
three different regions are distinguishable in the case E„)0,
only two regions exist in the case E„&0. In this last case,
fd, i E) never takes significant values provided that ~E„~ ))k~ T.

~ P«IP«+ (E)]+ nP«~" ~~+
N (E)dEE. P (E)P (E)+N (E)P (E)+N (E)N+(E)

(16)

and

c& n dc [n&~+e& (E)]+cpn dc Ipdc +e. (E)]
N (E)dE .E„Po(E)P (E)+N (E)P (E)+N (E)N (E)

(17)

The expressions of e„,e„, e+, and e as functions of the
energy can be written from the results of Vaillant and
Jousse" [see their Eqs. (18)]

e„(E)=2nd, exp T

and

e„+(E)=2pd, exp
kBT

(19)

e„(E)=
—+
ndc

2
exp

E —E
k, T

(18) Pdc
e (E)= exp

2
Fp Q

kBT

In the following we shall treat the two cases E„&0and
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E„)0, the semiconductor being under steady-state
quasiequi/ibrium conditions. We shall assume that the
capture rate of a carrier by a center bearing an opposite
charge is higher than the capture rate of this carrier by a
neutral center, so that nd@d, can be neglected compared—0—
to n ~~ d, . For both E„)0 and E„&0, the detailed ener-

gy dependence of the occupation functions will be studied
and simple expressions will be given for fd„ fd„and fd,
as well as for r„and r

l. E„positive

Ev

I

I

E

Case 1: low temperature/high generation rate

I

I

0
tp

I

I

tp

I

I

Etn
0

Etn

0
tp

I

Etn

I

tp

I

I

0
tn

Case 2; high temperature/low generation rate
3' 2 1

I

I

Ec

Ec

(pd, +e„)(pd, +e„)f
(pd, +nd, +e„)(pd, +nd, +e„) (20)

From Eq. (20) we define two energy levels E,„and E,„by

For energies above the dark equilibrium Fermi level EF
we have e+ «pd, and e «pd„and the expression of
fd+, given by Eqs. (13) can be simplified into

FIG. 2. Relative positions of E,„,E,„,E,~, and E,~ within the
gap of a semiconductor in the two different cases that can be en-
countered for positive values of the correlation energy. The
case (1,2,3,4,5) corresponds to a steady-state quasiequilibrium
far from dark equilibrium which can be observed for low tem-
peratures and/or high generation rates. The case (1,2,3',4,5)
corresponds to a steady-state quasiequilibrium close to dark
equilibrium, which can be observed for high temperatures
and/or low generation rates.

e„(E,„)=nd, +pd„e„(E,„)=nd, +pd, . (21)

In the same way, for energies lower than EF—E„we
have e„«n d, and e„«n d„and we obtain the
simplified expression for fd„

(nd, +e )(nd, +e+)
(pd, +nd, +e )(pd, +nd, +e+) (22)

from which we define two energy levels E, and E,+ by

e~+ (E,~ ) =p d, + n ~„ep ( E,~ ) =p d, +n d, . (23)

By means of Eqs. (18) and (19) it can be easily shown that
E,„—E,„=E„and E,+ —E, =E„within a few kz T, and

++pd andE)p Epp E ifpd
This approach of the statistics of the correlated states

is quite close to the two-state model proposed by Hal-
pern, and it will be shown that, as far as the modulation
of the photocurrent is concerned, we also obtain very
similar results by taking into account either a single dis-
tribution of DB states or two distributions of monovalent
states belonging to difFerent species of traps.

We present in Fig. 2 the two diAerent possibilities for
the positions of E,„,E,„,E, , and E,+ within the gap of a
semiconductor depending on whether E,+ & E,„or
E,„&E,+. We have labeled the five intervals 1, 2, 3, 4,
and 5 in the first case and 1, 2, 3', 4, and 5 in the second
one. Indeed, the intervals 1, 2, 4, and 5 are defined by the
same inequalities in both cases as given in Appendix B.
The occurrence of one situation or of the other depends
on the semiconductor characteristics (in particular, the
defect distribution), and, for a given semiconductor, also
on the experimental conditions. The first situation
(1,2,3,4,5) is likely to occur under high illumination and
low temperature, while the second situation (1,2,3',4,5)
can be observed under low illumination and high temper-
ature. To illustrate this, let us consider the case of intrin-
sic a-Si:H for which the dark Fermi level is located at say

0.75 eV below the conduction-band edge, as commonly
found in the literature. At low temperature (e.g. , 150 K)
and high generation rate (e.g. , 5 X 10' cm s ') the two
quasi-Fermi-levels are well separated (E, EF„=0.4—ev)
and, a correlation energy of the order of 0.3 eV being as-
sumed, we are likely to be in the first case. On the con-
trary, at high temperature (e.g. , 400 K) and low genera-
tion rate (e.g. , 5 X 10' cm s ') the two quasi-Fermi-
levels are close to the dark Fermi level and thus we are
likely to be in the second case.

Within each interval, simple energy-independent ex-
pressions can be obtained for the occupation functions of
the DB states because it is possible to neglect some of the
capture and emission rates in front of the others. The re-
sults are summarized in Table I. To confirm the validity
of these simple approximate analytical expressions and to
justify the choice of the energy limits defined by Eqs. (21)
and (23), in Figs. 3(a) and 3(b) we present typical varia-
tions with the energy of the occupation functions in the
first (1,2,3,4,5) and second (1,2,3',4,5) cases, respectively.
Each one of the five intervals is well distinct from the
others in these figures. It is clear that the occupation
functions can be considered as independent of the energy
within each interval, and we have checked that their
values are in perfect agreement with the analytical ap-
proximate expressions of Table I.

Depending on the values of nd, and pd„some of the in-
tervals may be hidden. In particular, the five regions are
clearly visible in the second case only if the material is
practically intrinsic and n„, =pd, . It is easily shown that
in the case of an n-type or p-type material (even slightly n

or p) then, according to the expressions of fd„only four
different regions will be apparent. Indeed, fd, =1 in re-
gions 2 and 3' in an n-type material or fdo, = 1 in regions
3' and 4 in a p-type material, so that regions 2 and 3' or
regions 3' and 4 apparently merge into a single region for
an n-type or p-type material, respectively.

To further illustrate this feature we present in Figs.
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TABLE I. Simplified expressions of the occupation functions of the DB states in the different energy
intervals in the gap for the two cases [(1,2,3,4,5) and (1,2,3',4,5)] that can exist if the correlation energy
is positive, as described in Fig. 2.

Energy
interval or 3l

+
dc

0
Pdc

0 +
Pdc+ &dc

+
ndc

0 +
Pd ++d

0

P dcP dc

PdNdc

PdNdc

0
1dNdc

++ndcP dc
+

n dNdc
+

+ndcPd
+ 0

nd nd
+

+nd~d,

+ 0
+nd, nd,

+ 0
+Kid nd

+ 0
+fld nd

or

or

or

0

Pdc
0

~d. +Ad.
0

&dc
0

n d +Pdc

0

4(a) —4(c) the evolution of the occupation functions with
an increasing dc Aux in a slightly n-type semiconductor.
As mentioned above, only four regions can be seen in Fig.
4(b). Physically, we can put forward the evolution of the
electron and hole populations to explain this point. Since
the material is n type, a low dc flux results in a relative
increase of pd, much higher than that of nd, . Therefore,
E~~ moves far from E~ but E~„remains close to EI;.
This is why fd, extends towards the valence band as soon
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FICJ. 3. Variations of the occupation functions fd+„ fd„and
fd, (full, dashed, and dotted lines, respectively) vs the energy in
the two cases that can be encountered for positive values of the
correlation energy E„. The cases (1,2,3,4,5) and (1,2,3',4,5) are
illustrated in (a) and (b), respectively. The parameters have
been chosen so that the five different regions are clearly distin-
guishable in both cases. In both figures, the limits of the five re-
gions are indicated as in Fig. 2.

and

EO

B
=f c„ fd+,N (E)dE

n tn

+f, (c„+fd, +c„f,, )N (E)dE
tp

EO
= f (c~ fd, +c„fd, )N (E)dE

tp

(24)

E+
+f, c„ fd,N (E)dE (25)

tp

in both (1,2,3,4,5) and (1,2,3',4,5) cases. Let us briefly
comment on these equations, for instance, in the case

as the "sample" is illuminated. At high Aux, if the DOS
is such that the populations of electrons and holes tend to
equilibrate, we obtain the variations of the occupation
functions as plotted in Fig. 4(c). Conversely, if the popu-
lations remain such that nd, »pd„we obtain variations
similar to those presented in Fig. 4(b). As a conclusion, if
E„ is positive, the number of apparent regions wherein
the occupation functions take constant approximate ex-
pressions is included between three, as for dark thermal
equilibrium, and five.

Another interesting feature is presented in Fig. 5,
namely the inAuence of the capture coefficients on the
variations of the occupation functions. It can be seen
that an increase of the capture coefficients of the charged
centers results in an increase of the value of the neutral
occupation function fd, . Physically, this is due to the in-
crease of the capture by charged centers of the carriers
bearing the opposite charge. This capture transforms the
charged dangling-bond centers (D,D+) into neutral
ones (D ). For instance, the increase of the capture
coefficient c„+ enhances the transition D++ electron
~D, resulting in an increase of the density of D states.

From the above considerations it is interesting to
derive simple expressions of the lifetimes associated to
the DB centers, r„ for the electrons and r for the
holes, as Taylor and Simmons did for the monovalent
states. If we assume that nd, »nd, o and p«»pd, o and
taking into account the expressions of the occupation
functions derived above, one obtains from Eqs. (16) and
(17)
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from a D center towards the conduction band. Be-
tween E,+ and E, the recombination occurs via the fol-
lowing process: D + electron ~D and D + hole
—+D . Consequently, the D states act as traps for holes
via D + hole ~D+, the hole being emitted from a D+
center towards the valence band. Finally, between E,„
and E,+ both processes of recombination are involved,
and all the states are recombining states. These
behaviors are illustrated in Fig. 6 where the exchanges of
carriers between the extended states and DB states are
described as functions of the considered energy range.
The same type of remarks and figure could be done for
the case (1,2,3',4,5) by changing the limits of the con-
sidered intervals.

Finally, it is worth pointing out that the expressions of
the recombination lifetimes associated with a distribution
of DB centers are not simply the integrals over the whole
energy domain of the expressions derived by other au-
thors for a single DB level. Indeed, for a single DB level,
it was shown that the recombination lifetimes of electrons
and of holes are respectively proportional to
c„ fd, +c„fd, and to c~ fd, +c~fd, .

' Our calculation
shows that c„fd, must not be taken into account between

E,„and E,„, since there is no recombination path
through the D /D transition in this interval. The same
holds for c~fd, between E, and E,„+, since there is no
recombination through the D+/D transition in this in-
terval.

2. E„negative

+[e (nd, +e+)] . (2g)

Typical variations of the bracketed quantities as func-
tions of the energy are shown in Fig. 7(a). It appears
clearly on the figure that, due to the exponential depen-
dence upon energy of the emission rates, the main contri-
bution to Df comes from the third, second, and erst
quantities, respectively, as the energy increases from E,
to E, . Therefore, we define two levels E,„and E, by the
following relations:

e„(E,„)[e„(E,„)+pd, ]=nd, [nd, +pd, ]+p~@d, (29)

and

ep(E„)[e,+«ip )+ndc ] =/dc Ipdc+n dc ]+n den dc, (3O)

CU

M

(/)

O

O
O

) 018

1 014

10

~ e 0 (n,'. + e+) e„o (

o +
Pd Pd + IId Pd +

case E„&0. Taking into account that E„&0 in the ex-
pressions of the emission rates [Eqs. (18) and (19)], the
denominator Df =P P +X+P +N X+ of the occu-
pation functions defined in Eqs. (13) can be simplified into

Df [e ~Pd + )]+[PdcPd +ndcPd + d nd

The dissymmetry between the cases E„&0 and E„&0
already mentioned at equilibrium persists under steady-
state conditions and the treatment of the occupation
functions in the case E„&0 is different from that in the
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FIG. 6. Illustration of the exchanges of carriers between the
extended states and the DB states for E„)0 in the case
(1,2,3,4,5). Depending on the energy range considered, the DB
states act as traps for carriers coming from the nearest band or
as recombination centers. The traKc of the carriers between the
extended states and the localized states is represented by ar-
rows, the various recombination paths being put into a frame.
Electrons are represented by full circles and holes by open cir-
cles.
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the emission rates of electrons towards the conduction band, the
second one (dashed lines) the emission rates of holes towards the
valence band, and the third one (dotted lines) only the capture
rates of holes and electrons which are independent of the ener-

gy. The intersections of these curves define the two levels E,„
and E,~. The corresponding variations of the occupation func-
tions fd+„ fd„and fd, (full, dashed, and dotted lines, respective-
ly) are shown in (b), where these two levels clearly appear to
play the role of quasi-Fermi-levels for trapped carriers for DB
states with a negative correlation energy.
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Eq. (30) being, as usual, the transformation by V' of Eq.
(29). Note that these levels are such that E,„)E~„and
EF~

—E„)E,p. According to the definitions of these lev-
els it is possible to obtain simplified approximate expres-
sions for the occupation functions in the energy intervals
1, 2, and 3 defined by E &E,„,E, E E,„,and E &E, ,
respectively. These expressions are independent of the
energy within each of these intervals, and they are given
in Table II. We present in Fig. 7(b) typical variations of
the occupation functions in the case E„(0 using the
same parameters as in Fig. 7(a). The three different
ranges of energy are clearly distinguishable on the figure
and compare perfectly well with the three regions ob-
served in Fig. 7(a). Moreover, the occupation functions
can be considered as independent of the energy within
each of these ranges, and the constant values correspond
to the expressions given in Table II.

As in the preceding subsection, taking the above re-
sults into account, we can derive the expressions of the
lifetimes of electrons and holes associated to the DB
states by means of Eqs. (16) and (17). We obtain

(R )
'= J (c„+fd +c f~ )N (E)dE (31)

tp

and

(+~ ) '= I (c~fd +c~ fd )N (E)dE . (32)
Ep

These relations show that the recombining states are only
the states included between E,„and E,p and that the pro-
cesses involved in the recombination are the following:
D++ electron —+D and D + hole ~D+ along with
D + electron ~D and D + hole ~D . Outside this
interval the states act as traps exchanging carriers with
the nearest band. These behaviors are illostrated in Fig.
8 where the exchanges of carriers between the extended
states and the DB centers are described depending as
functions of the considered energy range.

It is worth noticing that our description of the occupa-
tion of the DB states works very well under steady-state
conditions which are not too close to equilibrium condi-
tions. Close to equilibrium, the peak located at
EI; —E„/2 that exists at equilibrium in the energy depen-
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FIG. 8. Illustration of the exchanges of carriers between the
extended states and the DB states for E„&0. Same symbols as
in Fig. 6.

dence of fd, still persists and its contribution has to be
taken into account. This contribution increases with de-
creasing values of ~E„~. For instance, fd, has a max-
imum value equal to —,

' for E„=O. This means that the
case of very low absolute values of the correlation energy,
such as suggested by some authors in a-Si:H, should re-
quire more refinements in the analysis to be perfectly de-
scribed.

C. Study of the alternative contribution

If the expressions of the occupation functions given by
Eqs. (13) and (14) are replaced into Eqs. (7) and (8), we
obtain the following linear system of four equations:

n —(8 +co)n. + A *
p +8* p

n +g n —8*D p +g* p.

g sDB +8+DB + gDB (8DB+ )

8* n —A * n —(8 +co)p —3 p

=G„,
=0,
=G„,
=0,

(33)

where the expressions of the coefficients are given in Ap-
pendix C. If this linear system is solved for n„, n, , p„, and

p;, the alternative contribution to the photocurrent is
found from

TABLE II. Simplified expressions of the occupation func-
tions of the DB states in the di8'erent energy intervals of the gap
if the correlation energy is negative. The labels 1, 2, and 3 cor-
respond to E & E,„,E,„&E & E,p, and E„&E, respectively.

(34)

Then, the phase shift N between the excitation and the
modulated photocurrent as well as the modulus of this
photocurrent such as I„=~I„~exp( —j@)are given by

Energy
interval

+
dc

0
dc

dc

1

E&E,„
0

P dNdc
+

+ndNdc
+

n dcP dc
++nd~d,
+ 0

n dc~& dc
+

+ndNdc

Pdjdc

P dcP dc

p dcP dc

+ 0
+nd nd

+ 0
+kid nd

+ 0
+nd nd

2
E,„&E&E„

3

Ep &E pp n&' +ppp;
tan(N) =-

pn nr +ppS'r

~I„~=Sqg[(p, „n;+p p;) +(IM„n„+p, p„) ]'

(35)

(36)

The system (33) stands only for a single type of correlated
state, i.e., with energy-independent capture cross sections
and a constant correlation energy E„ independent of the
energy of the DB states. If other types of states are taken
into account, then the coefficients of n„, n;, p„, and p, in
the system (33) have to be changed by adding to the
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present coeKcients the equivalent coem. cients correspond-
ing to these other types of states (see Appendix C).

In the case E„)0 and considering the physics in-
volved, it is clear that four specific levels, such that

e„(E „)=e„(E „)=ez (E z ) =
ez+

( E„+z ) = co, (37)

play an important role. Owing to the results of the
preceding subsections it is easily understood that different
cases will have to be taken into account depending on the
relative positions of E„n, E„n, E, and E+ compared
with E,„,E,n, E, , and E,+. In the following we shall
treat separately the two cases:

(i) co«nd, +Pd„co«nd, +pd, ;
—0 —+ —0

( ii ) co ))n d, +p d„co» n d+, +p d, ,

which define the recombination-limited regime and the
trapping- and release-limited regime, respectively.

In the case E„(0the definition of the specific emission
levels E „,E „,E, and E„+ remains the same as for
E„)0. Nevertheless, the precise determination of the
two limiting regimes for the modulated photocurrent is
not as simple as for E„)0. This is due to the intricate
definitions of E,n and E, where the products of different
capture rates are involved.

From the study of the steady-state occupancy of the
DB states, and as illustrated in Fig. 8, we know that all
the DB states for which the D level lies between E,„and
E, act as recombination centers, whatever their state of
charge (D, D, or D+). Moreover, we also know (see
Table II) that above E,„ the DB centers are in the D+
state, while for energies below E, they are in the D
state. Thus we expect that the only capture and release
processes which have to be taken into account are the fol-
lowing: (a) for the traffic with the conduction band, cap-
ture of an electron by a D+ center located above E,„ to
form a D which then releases the electron to return in
the D+ state, (b) for the traffic with the valence band,
capture of a hole by a D center below Etp to form a D
which then releases the hole to return in the D state.

As a consequence, in the case E„(0the release pro-
cesses always occur from a neutral DB state. This means
that among the four possible emission levels defined by
Eq. (37), only the two levels E „and E play an essen-
tial role, and the trapping and release regime is character-
ized by E „)E,„and E„p (Etp In terms of the angular
frequency co, this can also be written co»e~(E,~) and
co»e„(E,„). Using the definition of E,~ and E,„, these
two conditions can be explained by co ))co and cu ))co„,
where

———+
P dcn dc

cop —
0 exp

SPd,

—0
P dc Eu—1+ 1+16 exp
ndc

—0 —0
dc+ Pdc +1—+

Pdc

' 1/2

(38)

1. Case (i): Low frequency reg-ime

This case can be treated independently of the sign of
the correlation energy assuming that co verifies the condi-
tions

~((pgd +pd, ~((nd +pd if E )0,

cop if E

Using the expressions of the coefficients of the system
(33) given in Appendix C, it can be easily shown
that, in a first-order approximation, A„=A„and

We then find the following expressions for
p p

tan(4 ) and
~ I„~/cos( @):

the expression of co„being the transformation by '7 of the
expression of co . Thus the definition of the transition
frequency in the case E„&0 is not simply related to the
single capture rates as it is the case for E„)0. Simple re-
lations can only be found if there is a strong predominant
capture from one type of carriers. For instance, if
pd. & p d, & (n d+, l4)exp[ E„/2kB T] &—n d„ the limits can
be approximated by co& =(p~, l2)exp[ E„/2kB T] fo—r
the upper one and by ~„=pd, for the lower one. In a
symmetrical case, if n d, ) n d, ) (pz, /4)exp[ E„—
/2kB T ] &p d„ the limits can be approximated by
co„=(nd, l2)exp[ E„/2k TB] for—the upper one and by
co =n d, for the lower one.—0

p
In summary, for E„(0, the low- and high-frequency

regimes are defined, respectively, by (i) co « co„and
co « co, and (ii) co ))co„and co ))co .

(BODB)(BODB) (BDB+ )(BDB+ )
tan(4&) =-

g DB(BeDB+BDB+ )+ g DB(BeDB+BDB+ )
n p

67 n

(39)

p„(B' +B +co)+p (B„* +B„+co)
cos(N) ~~ g DB(B+DB+BDB+ )+ g DB(BeDB+BDB+~)=Sq G„

n p CO n

(4O)
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and

~I„~=SqgG„(t „H'+t „H') . (42)

As in the case of monovalent states, we find that the
same lifetimes are involved in the expressions of the
modulus of the alternative part of the current and in that
of its continuous part. In the case of DB states with a
positive correlation energy, this shows that, if m is such
that co « n dc ++dc a11d co & n qc +P dc the ac photo-
current is mainly related to recombination-limited pro-
cesses and its expression is similar to that of the dc one.
In the case of DB states with a negative correlation ener-
gy the same remark applies for co «co and co «cu„.

In summary, the interesting features of case (i) are the
linear dependence of tan(@) upon co and the indepen-
dence of ~I„~/cos(N) upon co, as far as c0&&nd, +pd,
and m «nd, +pd, if E„ is positive, or as far as co «co
and co «co„ if E„ is negative. The consequences of these
behaviors will be illustrated by means of the simulation in
Sec. III.

Case (ii): High frequency regim-e

This regime is defined by

co ))n „,+P d„cu ))n d, +P d, if E„)0,
co))cu„, co))co if E„&0 .

Looking at the frequency dependence of A B A

B A *D B* A eDs and B*0 jt can be shown
p ~ n ~ n ~ p ~ p

that tan(4) varies linearly with co whereas ~I„~/c os(4)
is independent of co.

Using stronger approximations for the coefficients,
Eqs. (39) and (40) lead to the first-order approximate ex-
pressions

(41)

E+
c f G+(E)N (E)dE

Eo p dc p
tp

E,',+ f c f,G (E)N (E)dE, (46)

where the values of fd+„ fd„and fd, are those given in
Table I and where the weighting functions G„(E),
G„(E),G~(E), and G+(E) are given by

toe„(E) toe„(E)
G„(E)=, (47)

co +e„(E) "
co +e„(E)

roe (E)
, G+(E)=2+ 0(E)2 P

p

G„(E)=

G (E)=

ndc
—+

g Dii k 7" c +NDB(EO )+c 0 NDs(E —
)

ndc I dc

(49)

B =—k Tc N (E )+c N (E )P 2 B P cop

Pdg ~ dc

E„n, E „,E, and E+ being given by the relations

(50)

E, —E.-„=k,T ln
2c„X, +E„,

Equations (43)—(46) present some similarities with the
expressions derived for the case of monovalent states in a
previous paper, except that, for the DB centers, two
contributions describing the two possible interactions of
free carriers with this kind of defect have to be taken into
account. The weighting functions G„(E), G„(E), G (E),
and Gz+(E) are sharp peaked functions centered at E
E„„,E„, and E„+, respectively. Therefore, B„and
B can be approximated by

In this regime, contrary to the low-frequency regime, the
study has to be performed in di6'erent ways depending on
whether the correlation energy is positive or negative.

(a) E„positiue. In the case E„)0 one finds that the
only coefficients remaining in the system (33) are

EO [e0(E)]2+ 2

EO 2

+f c„fd, 2 2N (E)dE, (43)[e„(E)]+co

and

E, —E „=kBTln

E„+ —E, =kB T ln

r

2c X,

E„p—E, =kBT ln
2co

(51)

(52)

E
~ DB f +f+GO(E)NDB(E )dE

tn
EO

+ f c„fd,G„(E)N (E)dE,
tn

+ 2

~o P dc )e+(E)]2+ 2

(44)

EO 2
+ f c fd, N (E)dE, (45)'

[e (E)] +cop

A first consequence of the developments presented
above is that, if the modulated photocurrent is mainly a
current due to electrons, it is linked to the emission of
electrons from states down to an energy located at E„
below the dark Fermi level. Indeed, at high temperature
and low Aux the quasi-Fermi-level for electrons is close to
EF. If co is chosen so that E „ is slightly above EI;, then,
except with extremely different capture coefficients (i.e.,
c„((c„+),E„„is located roughly at EF E„. This means—
that even if the distribution of D states is located below
the dark Fermi level, the DB centers will be probed by
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2
mkB T

G„Sqgp„sin( 4& )
(53)

This last relation shows that, as far as the modulated
photocurrent is concerned, a single distribution of DB
states behaves roughly as if two distributions of mono-
valent states belonging to two different trap species were
taken into account: one distribution exchanging carriers
between E„„and the conduction band with a capture
coefficient equal to c„+,and another distribution exchang-
ing carriers between E „and the conduction band with a
capture coefficient equal to c„fd, (E „), which simplifies
into c„ if nd, »pd, . This is in agreement with the two-
state model. For high values of co we have plotted in
Fig. 9 the variations with the energy of the dimensionless
quantity

b»(E)

[P„(E)e„(E)—P„+(E)nz, P„(E)[n—d,
—e„(E)] )

c

(54)

the modulated photocurrent experiment. This is abso-
lutely impossible in the case of a monovalent distribution
located at the same energy below EF.

The other consequences of these developments can be
illustrated by means of an example. Let us consider the
case of an electron-controlled modulated photocurrent.
Following the results presented elsewhere, we obtain
after simple calculations

ndc
—+

c+N (E )+c N (E )
Pdc

(55)
co +[e„(E)]

E
8 = f c+G (E)N (E)dE, (56)

tn

E 2

co +[e (E)]
=f c G (E)N (E)dE, (58)

V

where the functions G„(E) and G~(E) are the same as in
the case E„)0 and are given by Eqs. (47) and (48). Since
the functions G„(E) and G (E) are sharply peaked func-
tions, B„and B can be approximated by

(57)

8 = k Tc+NDB(ED )

duction band are clearly distinguishable in the figure. In
the same figure the variations of b (E) are presented,
that is, the weighting factor of N (E) in the integral of
8 divided by c . The expression of b~ (E) is simply
the transformation by 'T of Eq. (54). Two peaks associat-
ed with the emission of holes from E and E+ towards
the valence band can also be seen.

Equation (53) along with Eqs. (51) are simple relations
connecting the density of DB states to the modulus and
phase shift of the modulated photocurrent. They are the
appropriate extensions to positively correlated DB states
of the equations previously derived by Bruggemann et ah.
which are valid only for monovalent states. Obviously,
the same kind of relations could have been derived as-
suming that the modulated photocurrent is controlled by
holes.

(b) E„negatiue In .the case E„&0the only remaining
coefficients in the system (33) are

which is the weighting factor of N (E) in the integral of
B„divided by c„+. The two peaks associated with the
emission of electrons from E „and E „ towards the con-
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FIG. 9. Variations vs the energy of b„and b (crosses and
full circles, respectively) in the high-frequency regime for DB
centers with a positiue correlation energy. These quantities
represent the weighting factors of N (E) in the integrals of
B„and B~, divided by c„+ and c~, respectively. For both
curves two peaks are observed, describing the emission of car-
riers from charged and neutral DB centers.

8 =—k Tc N (E )B p COP (60)

Equations (55)—(60) show that the results obtained for
DB states with a negative correlation energy are very
similar to those obtained for monovalent centers, taking
into account the capture cross sections of the charged
centers c and c„+ in place of c and c„ for monovalent
states. As a consequence, as far as the modulated photo-
current is concerned, all the developments presented for
monovalent states apply to the negatively correlated DB
centers except that, in the case of a modulated photo-
current of holes, the correlation energy has to be taken
into account for a proper energy scaling [see the expres-
sion of E ~ in Eqs. (52)]. However, taking this particu-
larity into account, it is possible to deduce the trap densi-
ty shape from the equation proposed by Bruggemann
et al.

We present in Fig. 10 the variations of b~ (E) and
b„(E) for a high value of co. As expected from our
simplified expressions only a single peak appears for each
function, as opposed to the case E„&0. From a physical
point of view, the reason is that there are almost no neu-
tral DB centers and the capture of free carriers occurs
only via the charged centers.
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FIG. 10. Variations vs the energy of bn and bp (crosses
and full circles, respectively) in the high-frequency regime for
DB centers having a negative correlation energy. These quanti-
ties represent the weighting factors of N (E) in the integrals of
B„and B, divided by c„+ and c, respectively. On both
curves a single peak is observed describing the emission of car-
riers from neutral DB centers only, as opposed to what is ob-
served in Fig. 9 for a positive correlation energy.

set of 21 frequencies varying from f, = 12 Hz to
fz, =39.9 kHz such that f;+,= 1.5f;. Finally, the phase
shift 4 and modulus ~I„~ of the ac photocurrent are cal-
culated from Eqs. (35) and (36).

We address successively the case of positive and nega-
tive correlation energies in Secs. III A and III B, respec-
tively. In each case, we illustrate the characteristic
features that can be linked to the DB states in the
recombination-limited regime as well as in the trapping-
and release-limited regime either when the DOS consists
only of a single distribution of DB states or when the
DOS consists of a distribution of DB states and distribu-
tions of monovalent band-tail states. Particular attention
is paid to the transition between the two regimes and to
the ability to deduce the trap distribution in the high-
frequency regime by using simple analytical formulas
which have been proved to be successful for the case of
monovalent centers.

A. E„positive

1. Single distribution of DB states

III. SIMULATIQN

We do not intend to use our simulation to achieve a
study as complete as in the case of monovalent states.
In regard to the results of the preceding section, most of
the results presented in the case of monovalent states
can be translated immediately to the DB states. For in-
stance, the development we made on the inhuence of the
dc photon Aux is still valid. Another important point is
that the DOS is probed by the type of carriers which
presents the highest lJ, /(No ) factor. , where p is the free-
carrier mobility, o the capture cross section, and X the
density of the trapping states for which the emission rate
equals the angular frequency co. We shall use this proper-
ty in the following.

For a given distribution of defects (characterized by
their position in the gap, their density of states, their cap-
ture cross sections, and their correlation energy in case of
correlated states), and the equilibrium Fermi level E~o at
T=O K being Axed, the following steps are performed in
the simulation. First, the equilibrium Fermi level posi-
tion is determined at each temperature (generally ranging
from 150 to 450 K by 50-K steps) from the statement of
charge neutrality and from the knowledge of EI;p. Thus
we take account of a possible statistical shift of the Fermi
level with the temperature as observed by different au-
thors. ' Then, the dc free-carrier densities n d, and pd,
under illumination are obtained from the resolution of
the continuity and neutrality relations [Eqs. (5), (6), and
(9), respectively], taking account of the steady-state occu-
pation of the DB states given by Eq. (13). Next, after cal-
culation of the different coefficients A„, B„

DB P 4 DB 4 DB P 0 DB and B0DB taking al 1 the types
of states introduced in the gap into account (see the re-
mark at the end of Appendix C), the real and imaginary
parts of the ac components of the free carriers are calcu-
lated by solving the system (33) for each frequency of a

We choose a Gaussian distribution of DB states peaked
at EDB such that E, —EDB = 1 eV with a maximum value
of 10' cm eV ' and a standard deviation o.DB=0.2
eV. The correlation energy of the DB centers is taken
equal to E„=0.3 eV. The Fermi level at T=O K cannot
be chosen arbitrarily but has to be fixed at Enn +E„/2 to
satisfy charge neutrality. The other parameters used for
this simulation are the capture coefficients for the neutral
states c„=c =2 X 10 crn s ', the capture coefficients
for the charged states c„+=c = 10Xc„=2X 10
cm s ', the mobilities for electrons and holes p„=10
cm V 's ' and p =1 cm V 's ', respectively, the
conduction cross-sectional area S=4X10 cm, the dc
electric field /=3000 Vcm ', and the equivalent densi-
ties of the conduction and valence bands
1V, =N, =k~TXp, with Np=10 ' cm eV

(a) Transition between the recombination limited re-
gime and the trapping- and release-limited regime. We
first look at the transition between the two limiting re-
gimes of the modulated photocurrent. We have shown in
a previous paper that, in the case of a single species of
monovalent traps, a simple evaluation of the capture
cross section for the predominant type of carriers can be
inferred from the threshold frequency corresponding to
this transition. This threshold frequency can be obtained
from a plot of cos(N)/~I„~ versus frequency. Indeed, in
such a plot the recombination-limited regime corresponds
to a plateau where c s(o@)/II„I is constant, while in the
trapping- and release-limited regime cos(4)/~I„~ in-
creases with frequency and the curves corresponding to
different light intensities gather at high frequency. We
want to address this point when the DOS consists only of
a Gaussian distribution of DB states in order to check if
the frequencies involved in the transition between the two
regimes are related to n d, +pd, and n d, +@d„as suggest-
ed in the theoretical study in Sec. II C 1.

In Fig. 11(a) the frequency dependence of cos(@)/~I„~
at T =400 K for different values of the dc generation rate
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is shown. A plateau is observed for the highest dc gen-
eration rates (Gd, ~ 5 X 10' cm s '). For the curve ob-
tained with Gd, =5X10' cm s ' the full and open ar-
rows indicate the frequencies corresponding to the pulsa-
tions co =n d, +p d, and co = n d, +p d„respectively. It
seems that the end of the plateau corresponds to
n„, +pd„which is always lower than nd, +pd, in this
case, the density of free electrons being always higher
than the density of free holes as it could be expected from
the Fermi-level position. This result is also confirmed by
the dependence of tan(C&) on frequency, shown on Fig.
11(b). Indeed, we observe that tan(N) varies linearly with
frequency in the recombination regime for ~&nd, +pd,
as predicted by the analytical approximations of Eq. (39).

In the case of Fig. 11, the ratios of the capture
coefficients of the charged states to the capture
coefficients of the neutral states are taken to be equal to

10. This is why the two possible frequencies for the tran-
sition are not well separated. To enlarge the interval be-
tween these two frequencies the ratios have been in-
creased up to 500. The results are presented in Fig. 12.
In Fig. 12(a) the frequency dependence of cos(N)/lI„l
obtained at T=400 K is shown. Note that, for all the dc
generation rates we used, we observe a plateau, and con-
sequently a recombination-limited regime, as opposed to
the behavior of Fig. 11(a). This is due to the enhance-
ment of the recombination linked to the increase of the
D contribution. Indeed, as shown in Fig. S, an increase
of the capture coefficients of the charged centers results
in an increase of the value of fd, . Therefore, since the
recombination of carriers via the DB states always in-
volves a D center [see Eqs. (26) and (27)j the recombina-
tion is enhanced if the capture coefficients of the charged
centers are increased.
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FIG. 11. Results of the simulation performed at T=400 K
for a DOS consisting of a single Gaussian distribution of DB
states such that N(E) =Nos exp[ —(E—EDs ) /(2o'Ds) ] with

N» =10" cm 'eV ', E, —E»=1 eV, o.»=0.2 eV, and a
correlation energy E„=0.3 eV. (a) Plots of cos(4)/~I„~ vs the
modulation frequency under four different dc generation rates:
(0) Gd, =SX10' cm s '; (~ ) Gd, =5X10' cm s

(X) Gd, =SX10' cm 's '; (6) Gd, =SX10' cm s '. All
the curves are normalized to an ac generation rate G„=5 X 10'
cm s '. On the curve corresponding to Gd, = 5 X 10'
cm ' s ' we have indicated by a full arrow the frequency f,

0
such that 2' &

=n d, +pd, and by an open arrow the frequency

f2 such that 2vrfz=nd, +pd, ; (b) linear plot of tan(C&) vs the
frequency for Gd, =5 X 10" cm 's '. The arrows of (a) are re-
ported in (b). Both show that the end of the recombination-
limited regime corresponds to f~.

FIG. 12. The DOS of the studied "sample" being the same as
for Fig. 11, the ratios of the capture cross sections of the
charged DB centers to that of the neutral DB centers, c„+/c„
and c~ /c~, have been increased from 10 to 500. In (a) the plots
of cos(4)/~I„~ vs the frequency are obtained from the results of
our simulation performed at the same temperature and the same
four different dc generation rates as for Fig. 11 (same symbols).
All the curves are normalized to an ac generation rate
G„=5 X 10' cm s '. On the curve obtained with

Gd, =5X 10' cm's ', the full arrow indicates the frequency f ~

such that 2~f, = n d, +p d, whereas the open arrow indicates the
+ 0

frequency f2 for such that 2nf2=nd, +p~, . The end of the
recombination-limited regime corresponds to f, as confirmed in

(b) where tan(@) is linearly plotted vs the frequency. The fre-
quency f2 is out of the abscissa scale of this plot and the end of
the linear variations of tan(C&) clearly corresponds to f, .



8730 C. LONGEAUD AND J. P. KLEIDER 48

The arrows in Fig. 12(a) indicate the frequencies corre-
sponding to the pulsations co=nd, +pd, and co=nd+, +pd,
for G„,=5X10' cm s '. These two arrows are much
better separated than in Fig. 11, and it is much clearer
that the end of the plateau corresponds to nd, +pd, .
A.gain, this is also confirmed by the linear plot of tan(@)
versus frequency shown in Fig. 12(b), where we observe
that tan(4) varies linearly with frequency in the
recombination-limited regime for co (n d, +pd, .

In summary, if the DOS is made of a single distribution
of DB centers with a positive correlation energy, it seems
that the limit f„betwe. en the regime limited by recom-
bination and the regime limited by trapping and release
processes can be easily defined either from a plot of
cos(Ci)/~I„~ versus frequency or from a linear plot of
tan(4) versus frequency. Moreover, if the electrons give
the predominant contribution to both the dc current Id,
and the modulated photocurrent, then a good estimate of
c„/p„can be deduced from the measurement of Id, and

fi; . If, in addition, the electron mobility p„ is known, it
is possible to obtain a good estimate of the electron-
capture cross section o.„ofthe neutral DB centers. The
same conclusions can be reached for o. by considering
that 2vrf»~=n~, +p d, =p d, if there is a strong predom-
inant contribution of the holes.

It is worth noticing that the plots of cos(iIi)/ I„~
versus frequency presented in Figs. 11(a) and 12(a) behave
in a way dift'erent from those obtained with a single
species of monovalent states (see, for instance, Fig. 3 of
Ref. 28). Indeed, whereas the curves obtained with a sin-
gle species of monovalent centers under di6'erent genera-
tion rates converge towards the same curve for high
modulation frequencies, the curves obtained with a single
species of DB states cross one another. This behavior is a
typical signature of the DB states. It is of great interest
because it has been recently observed on a-Si:H samples,
and it will be discussed in another paper where several
experimental results obtained on a-Si:H will be presented.

(b) DOS reconstruction in the trapping and release-
limited regime. The calculated phase shift and modulus
of the ac photocurrent are used to derive a DOS spec-
trum from the usual formulas
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reconstruct the DOS in case of the Gaussian distribution
of DB states described above. To avoid a possible mixing
of the contributions of both holes and electrons to the
modulated photocurrent, we have decreased the mobility
of the holes down to p =0. 1 cm V ' s ', keeping
p„=10 cm V ' s ', so that the modulated photocurrent
is determined by the electrons only. The other parame-
ters are the same as described at the beginning of the
present section, with Gd, =5X10' cm s ' and the Fer-
mi level EFO at T=0 K such that E, —EFO =0.85 eV.

In Figs. 13(a) and 13(b) the results of the reconstruc-
tion by means of Eqs. (61) and (62) using vo'=c„and
vo. =c„+, respectively, are shown (symbols). In Fig. 13(a)
the result of the reconstruction after decreasing the ener-

gy determined from Eq. (62) by E„(dashed lines) is also
shown. In Figs. 13(a) and 13(b) the introduced DOS is
drawn in full lines. Obviously, the reconstruction is im-
perfect. In Fig. 13(a) (vo =c„)good agreement is found

N(E )= 2

kB TUO-

Sq pgG„sin( 4 )
(61) 0.2 0.4 0.6 0.8

E - E(eV)
1.2

and

Uo ks TN(E», )
iE„,—Z„i=k, Tln (62)

We know that Eqs. (61) and (62) can be safely used for a
single species of monovalent centers in the trapping- and
release-limited regime which occurs at low illuminating
intensities, provided there is a predominant contribution
of one type of carrier to the modulated photocurrent. In
this case, U, o., and p are, respectively, the thermal veloci-
ty, capture cross section, and mobility relative to the type
of carriers that give the major contribution to the photo-
current, and Eb, is the corresponding band edge. We
want to test here the ability of such simple relations to

FIG. 13. The DOS introduced in the simulation (full line)
'consists of a Gaussian distribution of DB states peaked at E»
such as E, —ED& =1 eV with a correlation energy E„=0.3 eV.
It is compared with the DOS reconstructed by means of the
usual equations (61) and (62) (symbols). For the reconstruction,
the capture coefticient used in both equations is (a) that of the
D center and (b) that of the D center. The equilibrium Fermi
level at T=O K EFo is such that E EI;o=0.85 eV. Each set
of symbols corresponds to a given temperature: (o) 150 K; (X)
200 K; ( ) 250 K; (+) 300 K; (0) 350 K; (&) 400 K; (~) 450 K
and consists of 21 frequency points ranging from 12 Hz to 39.9
kHz. In (a) also shown by dashed lines is the result obtained
after lowering the probed energy deduced from Eq. (62) by E„.
The DOS reconstruction is never perfect, due to the mixture
coming from both D /D and D+ /D transitions.
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between the introduced DOS and the one reconstructed
from the results of the simulation performed at Ion tem-
peratures, taking into account a shift of the "probed" en-
ergy equal to E„as predicted by the first equation of Eqs.
(51). Conversely, in Fig. 13(b) (vo =c„)the best agree-
ment is found with the results of the simulation per-
formed at high temperatures without any shift of the
probed energy according to the second equation of Eqs.
(51). Note that the sharp drop observed mainly at the
two highest temperatures is due to the transition
from the trapping- and release-limited regime to the
recombination-limited regime as extensively described in
Ref. 28. At the intermediate temperatures, the shape of
the DOS is only roughly reconstructed. The reason is
that, when increasing the temperature, the major contri-
bution to the modulated photocurrent shifts from capture
and emission processes related to the D /D transition
(vo =c„)to capture and emission processes related to the
D+/D transition (vo =c„+). This explains also why in
Fig. 13(a) the values of the DOS reconstructed from the
simulations performed for high temperatures are approxi-
mately ten times higher than the introduced DOS.
Indeed, these data are plotted using vo =c„ instead of
v o =c„+ used in Fig. 13(b), the ratio c„+/c„being equal to
10.

This case is a clear illustration of the theoretical results
obtained in Sec. IIC2, leading to Eq. (53), which em-
phasizes the mixture of the responses coming from both
D /D and D+/D transitions. Another illustration
will also be given below in the case of a more realistic
DOS.

2. More realistic DOS distribution

One expects the DOS of amorphous semiconductors to
consist of di6'erent kinds of states instead of a single
Gaussian distribution of DB states. The shape of the
DOS that will be used in the following consists of a
Gaussian distribution of DB states and two band tails ex-
ponentially decreasing from the band edges toward
midgap. This DOS is not representative of a special ma-
terial but of an amorphous or glassy semiconductor in
general. Indeed, the exponential band tails characterize
the lack of long-range order in the material and should
exist in any type of amorphous or glassy semiconduc-
tors, ' while the DB states are typical deep gap states in
these materials, with material-dependent parameters; for
instance, in a-As2Se3, the DB states are believed to have
negative correlation energies, as opposed to a-Si:H
where the DB states present a positive correlation ener-
gy. ' As mentioned in the introduction of this section,
the band-tail states are assumed to be monovalent, ' as op-
posed to the DB states. Unless otherwise specified, the
densities of states at the conduction- and valence-band
edges have been fixed equal to 10 ' cm eV '. The
slopes of the exponential distributions of the band-tail
states are 1/(kz T, ) and —1/(k+ T, ) with T, =200 K and

T, =750 K for the conduction- and valence-band tails,
respectively. The distribution of DB states is represented
by a Gaussian distribution as in Sec. III A 1, with a max-
imum equal to 10' cm eV ' and a standard deviation

0.z,8=0.05 eV. The correlation energy E„ is equal to 0.3
eV. The capture coefficients c„=v„o.„and c =v 0. of
the neutral dangling bonds have been taken independent
of the temperature and equal to 2X10 cm s '. The
same value has been taken for the capture coefficients c„
and c of the band-tail states. The capture coefficients of
the charged dangling bonds c and c„+ are ten times
larger ( c =c„+=2 X 10 cm s '). The other parame-
ters of the simulation are the same as above. The Fermi
level at T=O K is fixed at 0.85 eV below E, . As shown
in Fig. 14, two cases are considered, depending on the po-
sition Ezz of the maximum of the Gaussian DB states
distribution: (a) EoB E, =—1 eV, so that E~0 E„—
& Ez&n & EF0; and (b) EoB E,=—0.7 eV, so that
E~B)E~0. Also drawn in Fig. 14 are the DB states shift-
ed by E„, which are involved in the D /D transitions
(dotted lines).

(a) Transition between the recombination limited -re
gime and the trapping- and release-limited regime. We
present the plots of cos(N)/~I„~ as a function of the fre-
quency obtained at T=450 K in Figs. 15(a) and 15(b) for
the DOS of Figs. 14(a) and 14(b), respectively. Such a
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FIG. 14. Scheme of the DOS used in the following simula-

tions, consisting of two exponential band-tail distributions
(dashed lines) and a Gaussian distribution of DB states, the
maximum of which is located at E» such that (a)

E» —E„=0.8 eV and (b) E» —E„=1.1 eV. The states corre-
sponding to the D /D+ transition are represented by full lines
and the states corresponding to the D /D transition are
represented by dotted lines. The band-gap energy is EG=1.8
eV and the Fermi level at T=O K, EF0, is located at 0.95 eV
from E„.
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FIG. 15. Variations of cos( &b ) /~ I„~ vs the frequency ob-
tained at T=450 K with the DOS of Fig. 14, (a) with the DB
distribution peaked at 0.8 eV above E, and (b) with the DB dis-
tribution peaked at 1 .1 eV above E„. In both cases, the correla-
tion energy of the DB centers is equal to 0.3 eV. The four sets
of symbols correspond to four values of the dc generation rate
G«. (C) ) 5 X 10" cm s '; () 5 X 10' cm ' s '; ( X ) 5 X 10'
cm s '; (D ) 5 X 10" cm s ' . All the curves are normalized
to an ac generation rate G„=5 X 10 ' cm s ' . In both parts
for the curves obtained with the lowest and highest dc genera-
tion rates, the full and simple arrows indicate the threshold fre-

0
quencies corresponding to 2m'f na =n d, +p ~, and 2~f-,„,

c n d +cppd„respectively.

high temperature has been chosen to enhance the contri-
bution of the deep gap states, i.e., the DB states, to the
modulated photocurrent. We observe a quite different
behavior in Figs. 1 5(a) and 1 5(b). On one hand, the re-
sults of Fig. 1 5(a) are comparable to what was observed in
the study of a single species of monovalent traps (see, for
instance, Fig. 3 of Ref. 28). On the other hand, in Fig.
1 5 (b), the curves corresponding to different values of the
dc generation rate cross each other, as already observed
in Figs. 1 1 and 12. This feature is characteristic of the
DB states and, more generally, traduces the ability of
several species of traps having different capture cross sec-
tions to respond to the ac modulation simultaneously.
The different behaviors of the curves in (a) and (b) are ex-
plained by the position of the DB states distribution. In
Fig. 15(a), EDB is below the Fermi level, but EDB +E„ is
above the Fermi level. Thus, when interacting with the
conduction band via the trapping and release of elec-
trons, the Gaussian distribution of DB states behaves as a
Gaussian distribution of a single species of monovalent

states located above EF, at EDB +E„, corresponding to
the D /D transition. Moreover, the electron-capture
coefficient c„ involved in this transition has been chosen
to be identical to that of the states of the conduction-
band tail. Therefore the contributions to the modulated
photocurrent of the DB states and that of the
conduction-band tail states appear as if these two
different types of states belonged to the same species of
traps. For this reason, there is no real mixing in the ac
response coming from different species of traps and thus
no crossing of the curves is observed. In Fig. 15(b), the
peak of the DB states distribution is above the equilibri-
um Fermi level EF, so that the two equivalent mono-
valent distributions of states corresponding to the capture
of electrons by D and D + states, which belong to
different species owing to the different capture cross sec-
tions of charged and neutral DB centers, are located
above E„. Thus both can participate to the trapping and
release traffic, and this leads to the crossing of the curves
obtained under different dc generation rates.

To study the transition between the recombination-
limited regime and the trapping- and release-limited re-
gime we have indicated by full and simple arrows the fre-
quencies fDB and f,„, corresponding to the pulsation
coD& = n d, +p d, and cu,„,=c„nd, + p d„respectively.

—O

From the discussion in Sec. II C, we know that ~DB is the
pulsation corresponding to the end of the recombination
via the DB states in the present example while cu,„,cor-
responds to the end of the recombination via the band-
tail states. The arrows are put only on the curves ob-
tained for the highest and the lowest dc generation rates
in order to keep the figure clear enough.

It is quite unclear which arrow indicates the end of the
plateau, that is, the end of the recombination-limited re-
gime. Therefore, we have plotted in Figs. 16(a) and 16(b)
the variations of tan(@) versus frequency under the
highest dc generation rate ( Gd, = 5 X lo' cm s ') for
both (a) and (b) DOS cases, respectively. The arrows of
Figs. 1 5(a) and 1 5(b) are reported in Figs. 16(a) and 16(b),
respectively. In both figures it can be seen that the end of
the recombination-limited regime corresponds to the
lowest transition frequency, f,„, in the present case.

This shows that (i) if the plot of cos( C' )I~II„~ is not al-
ways accurate for determining the end of the
recombination-limited regime of the modulated photo-
current, the plot of tan(4 ) versus frequency seems to give
a better definition of the transition frequency; and (ii)
from the plot of tan(4 ) versus frequency one can deduce
an order of magnitude of the lowest capture coefficient of
all the states present in the gap of the studied semicon-
ductor. This can be simply understood since the modu-
lated photocurrent is fully limited by the recombination
processes only when the frequency is lower than the
lowest possible transition frequencies.

This last point has been confirmed by performing vari-
ous simulations wherein the capture coefficients of the
different distributions of states were taken very different
from one another. The end of the linear dependence of
tan( @) upon frequency always gives an order of magni-
tude of the lowest transition frequency. As in the case of
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a single distribution of DB centers, provided that the dc
current is mainly due to one type of carrier, one can ob-
tain an order of magnitude of the lowest capture
coefficient.

(b) DOS reconstruction in the trapping a-nd release
limited regime. In Figs. 17(a) and 17(b) we present the re-
sults of the DOS reconstruction by means of Eqs. (61)
and (62) in cases (a) and (b), respectively. Owing to the
shape of the DOS and to the values of the free-carrier
mobilities, the major contribution to the modulated pho-
tocurrent comes from the electrons (No/p for electrons
is always lower than No/l' for holes). Thus the recon-
struction has been done using p=p„ in both figures.
Moreover, the Uo product in Figs. 17(a) and 17(b) has
been taken to be equal to that of the D and D+ centers,
respectively, that is, U o.=c„=2 X 10 cm s ' in Fig.
17(a) and Uo. =c„+=2X10 cm s ' in Fig. 17(b). The
original DOS is also shown on these figures (full lines for
the DB states and dashed lines for the band-tail states).
It is clearly seen that, in case (a) the DOS reconstruction
leads to a sI'ngle DOS bump representative of the DB dis-
tribution, the position of which is located E„above ED&.
On the contrary, we observe two well-defined DOS bumps
in case (b), though there is only one Gaussian distribution
of DB states. This is another good illustration of our cal-
culation exposed in Sec. IIC2(a). In Fig. 17(a), the posi-
tion of the peak of the D centers is below the Fermi lev-
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FIG. 17. The DOS introduced in the simulation (full line for
the DB states and dashed lines for the band tails) is compared
with the DOS reconstructed by means of Eqs. (61) and (62)
(same symbols as for Fig. 13) for a Gaussian distribution of DB
states peaked at EDB such that (a) E, —ED&=1 eV and (b)
E,—E»=0.7 eV. The correlation energy is E„=0.3 eV. The
equilibrium Fermi level E+0 at T =0 K is such that
E EFp=0. 85 eV. The reconstructed DOS is calculated using
(a) Uo-=c„and (b) Uo. =c„+.
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FIG. 16. Variations of tan(N) vs the frequency for
Gd, =5X10' cm s ' in Figs. 15(a) and 15(b). On both parts,
the full and simple arrows indicate the threshold frequencies

0
corresponding to 2m fns=nd, +pd, and 2'f,„,=c„nd, +c~pd„
respectively. The end of the linear variations of tan(4) clearly

0
corresponds to c„n«+cpp«which is lower than n «+p«.

el, so that no emission of electrons from the D states to-
ward the conduction band is observed, while, because of
the positiue correlation energy E„,the position of the D
states is above the Fermi level, enabling the emission of
electrons from the D centers toward the conduction
band to be observed. In Fig. 17(b), the deepest peak cor-
responds to the emission from the D centers, which has
beenidentifiedbythetermc„+N (E „)inEq. (53). Itis
found with the proper energy position and density value
compared with the DOS introduced in the simulation
(shown in full lines in the figure), since the reconstruction
has been performed with the parameter relative to the
D+/D transition. In fact, the variations are somewhat
smoothed and the reconstructed peak is found to be wid-
er and with a peak amplitude lower than the introduced
one; this is purely an effect of temperature dispersion
which occurs if the DOS variations are sharp compared
with exp(~E~/ksT), as explained in Ref. 28. The other
peak corresponds to the emission from the D centers
andhasbeenidentifiedbythetermc„fd, (E „)N (E „)
in Eq. (53); it is found at an energy approximately 0.3 eV
(=E„) closer to the conduction-band edge due to the
difference between E „and Eo„,as seen in Eqs. (51), and
with an amplitude roughly reduced by a factor of 10 cor-
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FICx. 18. Frequency dependence of cos(C&i/JI„~ obtained un-
der a dc generation rate Gd, =5 X 10" cm ' s ' for the DOS of
Fig. 14(b) where a Gaussian distribution of DB states is centered
at ED& —E„=1.1 eV. The results are shown for three tempera-
tures: 150 K ( 0 ), 300 K (0), and 450 K ( X ). These results are
compared with those obtained if the Gaussian distribution of
DB states is replaced by two Gaussian distributions of mono-
valent states centered at EDB and EDz+E„, with the capture
cross sections involved in the D+/D and D /D transitions,
respectively. The solid line, dashed line, and dash-dotted line
correspond to temperatures equal to 150, 300, and 450 K, re-
spectively.

responding to the ratio f„+/c„of the capture coefficient
of positively charged DB centers to that of neutral DB
centers.

Figures 17(a) and 17(b) clearly emphasize the role of
the correlation energy. Indeed, as far as the states locat-
ed between EF and EF—E„are concerned, no response of
the monovalent valence-band tail states is observed,
though their density is comparable to that of the DB
states for energies around 1 eV below E, where both dis-
tributions overlap [see Fig. 17(a)]. This shows that the
DB states can be probed even if located below EF. Nev-
ertheless, if the position of the DB states distribution falls
below EF—E„,then no emission of electrons towards the
conduction band can be seen, and the presence of DB
centers cannot be detected from their interactions with
the conduction band.

Symmetrically, if the dominant contribution to the
modulated photocurrent comes from the holes instead of
the electrons, then the signature of a distribution of DB
states peaked at ED~ can consist of either two or a single
bump in the reconstructed DOS, whether ED& lies below
EF—E„or between EF—E„and EF. No signature is ob-
served if EDB is above EF.

The results of Figs. 15—17 are easily interpreted in the
framework of the developments which have been done for
the monovalent centers, if one considers that a distribu-
tion of DB states peaked at ED~ is equivalent to two dis-
tributions of monovalent centers peaked at EDB and
EDB+E„,respectively, with capture coefticients equal to
those involved in the D+/D and D /D transitions, re-
spectively. To emphasize the equivalence between the
behavior of the DB centers and the two-state model, we
present in Fig. 18 the curves of cos(&P )/~I„~ as a function
of frequency obtained at a dc generation rate

Gd, =5 X 10' cm s ' and at three temperatures (150,
300, and 450 K) for two different kinds of DOS. The first
DOS is that of Fig. 14(b) where a single Gaussian distri-
bution of DB states is centered at E, —ED~ =0.7 eV. In
the second DOS the Gaussian distribution of DB states
has been replaced by two identical Gaussian distributions
(i.e., same values for the maximum and the standard devi-
ation) of monovalent centers. The first distribution of
monovalent traps is centered at EDB, the states having
capture coefficients for electrons and holes equal to c„+
and c, respectively. The second distribution of mono-
valent states is centered at EDB+E„, the states having
capture coefficients for electrons and holes equal to c„
and c, respectively. It is clear from Fig. 18 that the re-
sults obtained for a single distribution of DB states (sym-
bols) compare well with the results obtained for two dis-
tributions of monovalent centers (lines) in the whole
ranges of temperature and frequency.

B. E„negative

In this part we follow the same presentation as for
E„&0. Thus we first focus on the case where the DOS
consists of a Gaussian distribution of DB states only, be-
fore looking at the case where band-tail states are also
taken into account. In each subsection, we address both
the issue of the determination of the transition between
the recombination-limited and trapping- and release-
limited regimes, and that of the DOS reconstruction.

1. Single distribution ofDB states

We consider a single Gaussian distribution of DB
states peaked at EDB such that E, —EBB=0.8 eV with a
maximum value of 10' cm eV ' and a standard devia-
tion o.DB=0.2 eV. The correlation energy of the DB
centers is chosen to be equal to E„=—0.3 eV. The Fer-
mi level EF0 at T=0 K cannot be chosen arbitrarily but
has to be fixed at EDB+E„/2 for the charge neutrality to
be satisfied.

(a) Transition between the recombination limited re--
gime and the trapping- and release-limited regime. In Fig.
19 we present the plots of cos(C&)/~I„~ versus the fre-
quency obtained from the results of simulations per-
formed at T=400 K under four different generation rates
ranging from 5X10' to 5X10' cm s ' in two cases:
(a) p„=10cm V 's ' and IM =0. 1 cm V 's ', and (b)
p„=0.1 cm V 's ' and p =10 cm V 's

In case (a) the modulated photocurrent is determined
by the electrons whereas in case (b) it is determined by
the holes. We first note that we observe a plateau for all
the curves, and that the curves are crossing each other, as
in the case of a positive E„. From the analysis of Sec.
IIC, the threshold frequency should correspond to the
lowest of co& and co„, the expressions of which are given,
respectively, by Eq. (38) and by its transformation by 7.
According to these expressions, co and ~„are indepen-
dent of the mobility values. For the lowest and highest
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generation rates (Gd, =5X10' and 5X10' cm s ', re-
spectively), we have indicated by a full arrow the frequen-
cy f given by 2n f = ro and by an open arrow the fre-
quency f„given by 2m f„=co„.Since they do not depend
on the mobility values, the full and open arrows in Fig.
18(a) are at the same position as in Fig. 18(b). Actually,
the threshold frequency clearly corresponds to the lowest
of f„and f~ in both cases (a) and (b) for Gd, =5 X 10'
cm s '. This can also be seen in Fig. 20, which shows
that the dependence of tan(@) on frequency is linear for
frequencies below f„. But for Gd, =5X10' cm s
the transition in case (b) seems to occur at an intermedi-
ate value between f„and f . The discrepancy between
f„and the end of the linear dependence of tan(C&) upon
frequency can also be seen in Fig. 21. Actually, for such
a low generation rate, the steady-state thermodynamical
conditions are very close to those of dark equilibrium.
This is the origin of the observed discrepancies. Indeed,
our analysis in the case of negative correlation energies is
expected to give accurate results only if the steady-state
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FIG. 20. Linear plot of tan(N) vs the modulation frequency
for Gd, =SX10' cm 's ' at T=400 K for the two cases con-
sidered in Fig. 19, 1Q) and (+) for cases (a) and (b), respectively.
The full and open arrows indicate the threshold frequencies cor-
responding, respectively, to co~ and co„, defined by Eq. (38),
which are the same in (a) and (b). The full lines are extrapola-
tions of the linear dependence of tan(4) upon frequency ob-
served at low frequencies. The end of the linear dependence of
tan(4) upon frequency corresponds to the lowest of co„and co~,
which is here equal to co„.
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conditions are far enough from equilibrium. In particu-
lar, the distribution of the D centers is not well repro-
duced for thermodynamical conditions close to equilibri-
um, and more refinements would be needed to better ex-
plain all the behaviors in this regime.

('b) DOS reconstruction in the trapping and -release
limited regime In Figs. 2.2(a) and 22(b) the results of the
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FIG. 19. Frequency dependence of cos(@)/~I„~ obtained at
T=400 K for the DOS consisting of a single DB distribution
peaked at 0.8 eV below E„a standard deviation o.DB=0.2 eV,
and a correlation energy equal to —0.3 eV for two couples of
carrier mobilities: (a) p„=10 cm V ' s ' and p~ =0. 1

cm V 's ' and (b) p„=0.1 cm V 's ' and p~=0. 1

cm V ' s '. (Same symbols as in Fig. 15.) All the curves are
normalized to an ac generation rate G„=5X10' cm s '. In
both parts, for the curves obtained with the lowest and the
highest dc generation rates, the full arrows and the open arrows
indicate the transition frequencies in the modulated photo-
current corresponding, respectively, to co~ and co„, defined by
Eq. (38).
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FIG. 21. Linear plot of tan(N) vs the modulation frequency
for Gd, =5 X 10" cm s ' at T=400 K for the two cases con-
sidered in Fig. 19, 101 and (+) for cases (a) and (b), respectively.
The full and open arrows indicate the threshold frequencies cor-
responding, respectively, to co~ and co„, defined by Eq. (38),
which are the same in (a) and (b). The full lines are extrapola-
tions of the linear dependence of tan(N) upon frequency ob-
served at low frequencies. This linear dependence does not end
for the same frequencies in both cases; indeed, the agreement is
quite good for case (a) where the threshold corresponds to co„,
but in case (b), the threshold seems to correspond neither to ~„
nor to co~, but rather to an intermediate value.
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reconstruction by means of Eqs. (61) and (62) using
vo. =c„+, p=p„, and vo. =c, p=p, respectively, are
shown. Indeed, in cases (a) and (b) the modulated photo-
current is determined by the electrons and holes, respec-
tively. The agreement between the DOS reconstructed
(symbols) and that introduced in the simulation (full
lines) is very good in case (a), where the DB centers are
detected via the emission of electrons from the D
centers. In case (b) the DOS reconstruction is good if the
"probed" energy is increased by ~E„~I, as shown by
dashed lines in Fig. 22(b). This emphasizes that if the
modulated photocurrent is controlled by the holes, the
negatively correlated DB centers are detected via the
emission of holes from the D centers. Since the corre-
sponding emission rate involves the correlation energy as
can be seen in Eqs. (52), one has to subtract it from the
probed energy calculated from Eq. (62) to obtain the
proper energy location of the DB centers in the gap.

2. Gaussian distribution ofDB states
with two exponential band-tail states distributions

We consider a DOS consisting of two exponential dis-
tributions of band-tail states and a Gaussian distribution
of DB states. The characteristics of the band tails are the
same as in Sec. III A 2. The Gaussian distribution of DB
states is peaked at EDB such that E,—ED~ =0.6 eV with
a maximum equal to 10' cm eV ' and a standard de-
viation o.D~=0. 15 eV. The correlation energy E„ is
equal to —0.3 eV. The other parameters are the same as
in Sec. III A2.

(a) Transition between the recombination limi-ted re
gime and the trapping- and release-limited regs'me. In Fig.
23 the dependence of cos(@)/~I„~ upon frequency at
T=400 K for G«=5X10' cm s ' and Gd, =5X10'
cm s ' is shown. On both curves the frequencies cor-
responding to c„n+czp, co, and co„, which are such that
e„n+c p & co (co„, are indicated by a simple, a full, and
an open arrow, respectively. It seems that the end of the
plateau corresponds to none of these three values. How-
ever, the plot of tan(@) versus the frequency presented in
Fig. 24 shows that a deviation from the linear depen-
dence occurs for angular frequencies above c„n+c p. As
a consequence, the following features can be outlined.

(i) In some cases the plot of cos(N)/~I„can lead to a
wrong determination of the transition frequency. Indeed,
cos(@)/~I„~ can appear independent of the frequency
whereas the modulated photocurrent is neither in a pure
recombination-limited regime nor in a pure trapping- and
release-limited regime. The plot of tan(N) versus fre-
quency seems then to be more accurate.

(ii) In the presence of several species of traps, each of
them having its own threshold frequency, the
recombination-limited regime of the modulated photo-
current ends at the lowest of these threshold frequencies.
It can be determined in the linear plot of tan(4) versus
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FIG. 22. The DOS reconstructed by means of Eqs. (61) and
(62) (same symbols as in Fig. 13) is compared with the DOS in-
troduced in the simulation (full line) which corresponds to a
Gaussian distribution of DB states peaked at E» such that
E, —E» =0.8 eV, in two cases: (a) p„=10 cm V ' s
p~=0. 1 cm V 's ' and (b) p„=0.1 cm V 's ', p =10
cm V 's '. The correlation energy is E„=—0.3 eV. The
reconstructed DOS is calculated using (a) Uo =c„+ and (b)
Ua. =c„and p=p~. The reconstruction is very good in (a). In
(b) the results obtained after increasing the probed energy de-
duced from Eq. (62) by ~E„~ are also shown by dashed lines.
Then, the reconstruction is also very good.
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FICi. 23. Frequency dependence of cos(4)/~I„~ obtained at
T=400 K for a low and high dc generation rate,
(X) Gd, =5X10" cm s ', and (A) G„=5X10"cm-'s
Both curves are normalized to an ac generation rate
G„=SX10"cm s '. In both parts the simple, open, and full
arrows indicate the transition frequencies corresponding to2',„,=c„n~,+crpd„2'„=co„, and 2nf~ =co~, respectively.
None of these values seems to corresponds to the end of the pla-
teau.
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the frequency. The higher the dc generation rate the
more accurate this determination. From the measure-
ment of this threshold frequency and the dc current
value, it is possible to obtain an order of magnitude of the
lowest capture coefficient. Furthermore, if there is one
type of carrier giving a predominant contribution to both
the dc current and the ac photocurrent, and if its mobili-
ty value is known, it is possible to deduce the lowest cap-
ture cross section of the states for this type of carrier
from the measurements of the threshold frequency and of
the dc current.

(b) DOS reconstruction in the trapping and-release
limited regime. Since there are clearly fewer states in the
upper half of the gap than below midgap, and due to the
higher mobility assumed for the electrons (p„=10
cm V ' s ' and p = 1 cm V ' s '), the modulated pho-
tocurrent is dominated by the electrons. Using the elec-
tron parameters for the D+ centers, that is, using
vo. =c„+=2X10 cm s ', we have reconstructed the
DOS by means of Eqs. (61) and (62). This is presented in
Fig. 25 where each set of symbols corresponds to a
different temperature. It is clear that a large part of the
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FIG. 25. The DOS reconstructed by means of Eqs. (61) and
(62) (same symbols as in Fig. 13) is compared with the DOS in-

troduced in the simulation (full line for the DB distribution and
dashed line for the band tails). The correlation energy is
E„=—0.3 eV. The reconstructed DOS is calculated using
v 0.=c„+. The reconstruction is very good except for energies
close to or below EF—E„/2. This is because under this energy
limit DB states behave mainly as recombination centers for the
considered carrier and not as traps.
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FIG. 24. Linear plot of tan(4) vs the modulation frequency
at T=400 K for the two cases considered in Fig. 23. In (a)

Gd, =5X10" cm s ' and in (b) Gd, =SX10' cm s '. In
both figures the transition frequencies corresponding to
2~f,„,=c„nd, +c~p~, and 2m f„=co„are reported with a sim-

ple and open arrow, respectively. For (a) the low dc generation
rate, the end of the recombination-limited regime corresponds
to a frequency between f,„,and f„,whereas for (b) the high dc
generation rate, the end of the recombination-limited regime
corresponds to f,„,.

reconstructed DOS agrees well with the introduced one
(full line for the DB states and dashed line for the band-
tail states) except at energies close to midgap where the
reconstructed DOS is quenched. Again, this quenching
of the reconstructed DOS traduces the transition from
the trapping- and release-limited regime to the
recombination-limited regime. This behavior is identical
to what is observed with monovalent states when the en-
ergy of the probed states falls below the Fermi level.
This shows, as it was done theoretically, that a distribu-
tion of DB states with a negative E„and interacting with
the conduction band behaves mainly as a distribution of
monovalent states for which the capture coefficient would
be c„+ and the Fermi level would be at EF —E„/2.

To study the interaction of a Gaussian distribution of
DB states with the valence band we have reversed the
DOS of the previous simulation, making a mirror symme-
try around midgap. Hence we have T„=200 K, T, =750
K, E, —EDB = 1.2 eV, and E, —Ezo =0.95 eV. Consider-
ing this DOS it is clear that there are more states in the
upper half of the gap than below midgap. The values of
the mobilities were also exchanged (Itt =10 cm2V 's
and p,„=1 cm V ' s '). Consequently, we expect to ob-
tain a modulated photocurrent dominated by the holes.
Using the hole parameters for the D centers, that is, us-
ing vo. =c =2X10 cm s ', we have reconstructed
the DOS by means of Eqs. (61) and (62). The results are
presented in Fig. 26 where each set of symbols corre-
sponds to a different temperature. At first sight it seems
that the reconstructed DOS (symbols) does not fit the in-
troduced one (full line) at all. This is due to the fact that
the reconstructed DOS is 0.3 eV (= E„) closer to the-
valence-band edge than the introduced one. Indeed, ac-
cording to Eqs. (57) and (58) the major exchange of holes
between the DB states and the valence band occurs at
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FIG. 26. The DOS reconstructed by means of Eqs. (61) and
(62) (same symbols as in Fig. 13) is compared with the DOS in-
troduced in the simulation (full line for the DB distribution and
dashed line for the band tails). The correlation energy is
E„=—0.3 eV. The reconstructed DOS is calculated using
Uo. =c~ . The reconstruction is very good if the reconstructed
DOS is shifted along the energy axis of a quantity equal to —E„
(dotted lines).

IV. CONCLUSIONS

Our development has brought some insight to the
behavior and the determination of the DB states in amor-
phous and glassy semiconductors. Several issues have
been successively addressed.

In a first step we have studied the occupation of the

E . Therefore, a simple look at Eqs. (52) defining E
and at Eq. (62) used to scale the energy axis shows that
the reconstructed DOS must be translated along the ener-

gy axis to fit the introduced one, the amount of this
translation being precisely equal to —E„. As it could be
deduced from our theoretical study, the distribution of
DB states behaves as a distribution of monovalent centers
with a capture coefFicient equal to c located E„closer to
the valence-band edge than the actual position of the dis-
tribution of DB states.

In summary, if there is a predominant contribution of
one type of carrier to the modulated photocurrent, a sin-
gle distribution of negatively correlated DB centers
behaves mainly as a distribution of monovalent centers
with the appropriate capture cross sections. Conversely,
if there is no clear cut between one type of carrier or the
other, this result will be different. Indeed, a distribution
of DB states peaked at EDB can be roughly replaced by a
distribution of monovalent states peaked at the same en-
ergy for describing the interactions with the electrons,
while it has to be replaced by a distribution of mono-
valent states peaked at EDB+E„ to describe the interac-
tions with the holes. Therefore, as far as the modulated
photocurrent is concerned, a single distribution of DB
states with a negative correlation energy cannot be re-
placed by a single distribution of monovalent states if nei-
ther the electrons nor the holes are the predominant type
of carriers because these monovalent centers cannot be
peaked simultaneously at EDB and EDB+E„.

DB centers under steady-state illuminating conditions.
For that purpose, the variations with respect to energy of
the occupation functions f+,f, and f of the positively
charged, negatively charged, and neutral dangling bonds
have been calculated for both cases of the correlation en-
ergy (E„)0 and E„(0). We have shown that the con-
cept of quasi-Fermi levels for trapped carriers introduced
by Simmons and Taylor for monovalent centers has to
be reconsidered in the case of a distribution of DB states.
In particular, if E„)0, four energy levels have to be con-
sidered. These levels play the same role as the two
quasi-Fermi levels for trapped carriers for monovalent
centers, and simple constant values can be found for f+,f, and f within the intervals delimited by these new
energy levels. The different recombination paths through
the DB states have been clearly identified for both signs
of the correlation energy and expressions of the lifetimes
of the holes and of the electrons have been also deduced.
It has been shown that, contrary to what can be found in
the literature, these expressions do not consist in a simple
extension to a distribution of DB states of the expressions
proposed by Morgado' for a single discrete level of dan-
gling bonds.

In a second step, we have focused on the inhuence of
the DB centers on the modulated photocurrent and have
addressed the determination of the expressions of the
modulus and of the phase shift of the modulated photo-
current. A distinction has been made between a
recombination-limited regime and a trapping- and
release-limited regime of the modulated photocurrent de-
pending on the frequency of the modulation.

In the high-frequency domain the modulated photo-
current is controlled by trapping and release processes.
In that domain, many of the results obtained for a single
distribution of monovalent states are valid for distribu-
tions of DB states. Thus we have underlined behaviors
that are specific to the DB centers. Both theoretically
and by means of our simulation, we have shown that a
single distribution of DB states with a positive correlation
energy can behave either as two distributions of mono-
valent states or as a single distribution of monovalent
states depending on the relative positions of the dark Fer-
mi level and of the DB states distribution. Another im-
portant result is that, if the modulated photocurrent is
dominated by electrons, as it may be the case in a-Si:H,
then it is possible to probe a distribution of DB states
down to the correlation energy below the dark Fermi lev-
el. On the contrary, in the case of a single distribution of
DB states with a negative correlation energy, this distri-
bution behaves almost as a single distribution of mono-
valent centers.

In the low-frequency domains the modulated photo-
current is recombination limited. The upper limit of this
domain is clearly identified by the end of the linear varia-
tions of tan(4) versus the frequency of the modulation.
As it was found for a DOS made of a single distribution
of monovalent states, in the case of a modulated photo-
current due to a single type of carrier, this upper limit
can lead to the determination of a capture coeKcient if
the DOS is made of a single distribution of DB with a
positive correlation energy. In that case the capture
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coefficients determined for the carrier considered corre-
spond to that of the D . On the contrary, in the case of a
distribution of DB with a negative correlation energy this
upper limit can hardly be connected to any value of the
capture coefficients. In any case, the determination of a
capture coefficient from this upper limit is hardly possible
in the case of a "real" DOS if many types of states are in-
volved. However, an order of magnitude of the lowest
capture coefficient of the gap states can be obtained.

Moreover, even if several types of states are involved,
we believe that, considering the theoretical outlines
developed in this paper, a good understanding of the
DOS in amorphous and glassy semiconductors should be
possible by combining experimental results with those de-
rived from the simulation.
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APPENDIX A: EXPRESSION OF THE COEFFICIENTS
OF THE OCCUPATION FUNCTIONS

OF THE DANGLING BONDS

The coefficients of n„, n;, p„, and p; for f„(E)are

[ (—N+ A +coB )c„fd, + (P A +coB )c„+fd+, ]a„E

[(N+A+coB)cp fd, (P —A+coB)c fd, ]a (E)=

(A7)

[(N+8 —coA )c fd, (P 8 ——coA )c~fd, ]~(E)=

(A8)

(A9)

On the right-hand side of Eqs. (Al) —(A9), we have not in-
dicated the energy dependence of the terms for the sake
of clarity. The coefficients of n„, n;, p„, and p; for f,, can
be deduced from the coefficients of f„by application of
the transformation V' to the expression of f,+, . Note that
the expressions of A, 8, and b, are unchanged by 'T.

(A6)

[ —(N+8 —co A )c„fd, +(P 8 —co A )c„+fd+, ]„(E)=

A =(P'P +N+P +-N'N+ -~')—
8=co(P +P +N++N ),
b, =(P P +N+P +N N+ —co )

+co (P +P +N++N ) (A1)

The coefficients of n„, n;, p„, and p; for f,+, (E) are

[P Ac„fd, +[(P +N )A+coB]c„+fd+, Ia„+(E)=—

(A2)

[ PBc„fd, + [co—A (P +N )8—]c„+fd, I
7

[P Acp fd, +[(P +N )A+coB]c fd, Ia+(E)=

(A3)

The whole calculation of the coefficients of n„, n;, p„,
and p; for f,+„ f«, and f,, is quite long and tedious,
though the calculation in itself does not present any
mathematical difficulties. Basically it consists in the reso-
lution of a system of three equations with three unknown
quantities. So we shall not go into too much detail.

We define the energy-dependent quantities A, 8, and 5
by

APPENDIX B: DETERMINATION OF THE LIMITS
OF THE INTERVALS OF VARIATIONS

OF THE OCCUPATION FUNCTIONS FOR E„&0

In the case E„&0 the fundamental intervals for the
variation of the occupation functions are delimited by the
energy levels E,„,E,„, E, , and E,+. The first interval
where E,„&E & E, is defined by

e„(E)& nd, +p«, e~+(E) &pd, +nd, ,

e„(E))nd, +@d„eJ(E)&pd, +nd, ,
(B1)

and in the case (1,2,3',4,5), where E,o &E,„&E&E,+
& E,'„,

and the second interval, where E & E,„,E & E,+, E & E,„,
and E & E, is de6ned by

e„(E))nd, +pd„e+(E) &p~, +n~, ,

e„(E)& n d, +pd„ei, (E) &pd, +nd, .

As far as the third interval is concerned, in the case
(1,2,3,4,5) where E,~ & E,z & E & E,„&E,„,we can write

e„(E)& nd, +pd„e~+(E) &pd, +nd+, ,
(B3)

e„(E)& nd, +p«, ez(E) &pd, +n«,

[P Bc fd, —[coA —(P +N )B]c fd, I
1'+(E)=

(A4)

(A5)

e„(E)&nd, +p«, e~ (E)&pd, +nd+, ,

e„(E)&nd+, +p«, ei, (E) &pd, +nd, .
(B4)

Finally, for the fourth interval where E&E, , E &E,„,
E &E,+, and E & E,„,we have
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e„(E)& n d, +pd„e„+(E) )pd, +n

e„(E)& nd, +pd„e (E) &pd, +nd, ,

and for the 6fth interval, where E„4E(Etp,

e„(E)&n',,+Pd„e,+(E)& pd, +nd, ,

e„(E)& nd+, +pd„e (E))pd, +nd, .

(B5)

(B6)

APPENDIX C: EXPRESSIONS OF THK COEFFICIENTS
OF THE SYSTEM (33) OF FOUR EQUATIONS

Note that this last interval may be nonexistent. Indeed, if
pd, is high, then E~~ is close to the valence band. Since
E,+ is close to Ez, a large E„results in E, lower thantp

E„.

E
a Ee E —a+ End+

—a~(E)[nd, e„—(E)]]N (E)dE, (C3)

p* = —
p „E—p+ End+,

P—(E)[n, e„(—E)]]N (E)dE . (C4)

ressjons of g eDB BeDB g DB and BDB

deduced by means of the transformation 7 applied to the
expressions of A *,Bp*, A„, and B„,respectively.
If several species of gap states are taken into account, the
coefficients of n„, n;, p„, and p; in the system (33) have to
reAect their respective contributions. For instance, if one
considers that the DOS is made of M species of DB states
and X species of monovalent states, the coefficient of n„
in the first line of system (33) becomes

The expressions of the coefficients of the system (33)
are

M 1V

[ g DB] + y [ g mono] (C5)

E a„Ee„E—a„+ E nd,

DB — — + —+
V

—P„(E)[nd, —e„(E)]]N (E)dE, (C2)

—a„(E)[n,—e„(E)]]N (E)dE

+ f [c„+fd,(E)+c„fd,(E)]N (E)dE, (Cl)

[ A„];is the coefficient relative to the ith species of DB
states which can be calculated from Eq. (C 1) by using the
characteristics (capture cross sections, correlation energy)
of this type of defect. [A„'"'].is the coefficient relative
to the jth species of monovalent states and can be calcu-
lated from the expressions given in a previous paper.
Note that, compared with this previous paper, our nota-
tions have been slightly modified in order to make them
compatible with the use of the V' transform. The other
coefficients involved in the system (33) can be obtained in
the same way by equations analogous to Eq. (C5).
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