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In this paper we intend to discuss in detail the question of an instability process of modulated-strain

structures in alloys that undergo a first-order phase transformation. In addition, we aim at characteriz-

ing the formation of nonlinear structures in the pretransformation regime produced by the instability

mechanism. The model is based on a two-dimensional lattice including nonlinear and competing in-

teractions, which play a key role in the instability of a homogeneous solution. Although the main body
of the study is devoted to the nonlinear dynamics of a lattice model, an excursion in linear analysis pro-
vides us with necessary results about the critical behavior of the system. Indeed, the linear problem
leads us to the study of the phonon-dispersion branch, and the existence of a critica1 point of the

phonon-dispersion curve is then shown for a particular value of the elastic coeKcient (here, the control

parameter of the phase transition). This critical behavior is, in fact, related to the softening of the
dispersion curve at a nonzero wave number. The nonlinear analysis becomes essentia1 when the system

is linearly unstable in the vicinity of the critical point. An amplitude equation of the Ginzburg-Landau

type is next deduced in a semidiscrete approach by using a multiple-scale technique. The examination of
the stability of steady solutions allows one to determine the nature of the bifurcation near the critical
point. The study of the bifurcating stationary solutions shows an instability process for long-wavelength

modulations taking place in the transverse direction of the two-dimensional system. The mechanism of
self-generated nonlinear structures in the two-dimensional lattice near the critical region of the phonon
dispersion is numerically investigated. Nontrivial localized structures are then demonstrated. By way of
conclusion, some emphasis is placed on the pretransformation phenomena in martensitic materials or
ferroelastic crystals.

I. INTRODUCTION

A lot of interest has recently been devoted to spatio-
temporal patterns as well as the associated defects and
dynamics such as standing-wave patterns, localized struc-
tures including solitons or oscillating patterns. These
structures become fundamental in the study of phase
transitions which are usually accompanied by the appear-
ance of defects: dislocation motions, grain boundaries,
domain wall structures, and twinnings. ' The present
paper is particularly motivated by the pretransformation
structures occurring in phase transformations in crystal-
line alloys. More precisely, we are interested in strain
structures for martensitic-ferroelastic transformations
which are described by a strain order parameter includ-
ing a displacive first-order phase transition. Pretransi-
tional effects can be seen as a martensitic phase partially
developed in the parent phase and this is characterized by
modulated structures or strain modulations. These struc-
tures made of spatially periodic arrangements of marten-
sites are referred to as "tweed patterns" occurring in a
wide range of temperature followed at lower temperature
by the martensitic transformation. Moreover, the dy-
namics of martensitic twinning turns out to be important
for phase transformation and can be considered as a nu-
cleation and growth mechanism of martensitic embryos.
On the other hand, we propose here to illustrate complex
spatiotemporal patterns in the context of phase transfor-
mations in solids. Such problems are more commonly

met in the framework of hydrodynamical systems, chemi-
cal reactions, or crystal growth. One of the essential
aims of the work is to understand how instabilities arising
at the microscale, that is, at the level of the lattice model,
are able to organize the system at the macroscale and
what the selection properties of the nonlinear structures
are.

The physical implications of the proposed lattice model
lie in the existence of lattice instability which manifests
itself by the existence of low-lying transverse-acoustic
phonons propagating along the [110]direction of the cu-
bic lattice. The instability exhibits strain modulation or
modulated domains and microstructures occurring in
some range of temperature and then followed at lower
temperatures by the martensitic transformation. '
These microstructures are viewed as strain embryos of
martensitic phase. Alloys such as Ni-A1, Zr-Nb, Ti-Ni,
and others suffer this kind of instability with a condensa-
tion of their acoustic phonons producing a low value of
the corresponding shear elastic constant and this has
been observed by means of neutron scattering experi-
ments. It is now well established that this anomalous
change in the elastic behavior and phonon spectra is pre-
cursory to the oncoming displacive phase change. High-
resolution electron microscopy has revealed microstruc-
tures made of fine-scale arrangements of modulated-
strain domains. ' ' We propose here an alternative view
to attempt to understand the formation of such micro-
structures in terms of lattice instability and spatiotem-
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poral structures.
We confine our attention to the stability of modulated-

strain structures or lattice-distortion waves on the basis
of a two-dimensional lattice model. The standpoint of
the study is then a lattice plane involving competing and
nonlinear interactions which are the key ingredients to
describe the relevant phenomena. The same lattice model
has been used to examine with success the formation of
localized strain patterns decaying in all directions. '

The important and interesting results provided by the
study of the model are (i) the partial softening of the
transverse-acoustic phonon branch at a nonzero wave
number, (ii) the positive curvature of the dispersion
branch at the long-wavelength limit, ' '9 and (iii) the
shearing motion of the atomic planes along the stacking
direction leading to spatially arranged structures made of
martensitic twin bands and the existence of strain solitary
waves describing the coherent movement of martensitic
domains. ' ' The nonlinear dynamics of the two-
dimensional system has allowed us to examine the stabili-
ty of the lattice and numerical simulations have shown
the formation of localized strain structures emerging
from an instability mechanism. ' ' In the present paper
we continue the investigation of the properties of our lat-
tice model when the formation of elastic structure deals
with steady state of periodic strain patterns. The study is
physically concerned with pretransitional effects in phase
transformations and the description of microtwinning
formation emerging from a lattice instability. The first
essential step toward the understanding of the mecha-
nism responsible for the new pattern formation is the
linear analysis of the lattice stability. Then we determine
the critical conditions for the onset of the instability from
the softening of the acoustic-phonon branch which
occurs at a nonzero wave number. ' The study pro-
vides also the critical wave number or wavelength for
which instability disturbances are most likely to grow
first. The instability mechanism is, in fact, controlled by
a parameter which is just the elastic constant. However,
as this control parameter is decreased below a certain
critical value, the initially small perturbations grow with
time until they are so large that the nonlinear terms be-
come significant and prevent the unlimited growth of per-
turbations. The produced nonlinear structures that take
place in the system are the result of the competition be-
tween the linear arnplification and nonlinear saturation.
Consequently, the pattern selection mechanisms which
are produced by the competing process are strongly
dependent on the implication of the nonlinearities of the
system, in particular in the postbifurcation regime. In or-
der to obtain some useful information about the non-
linear analysis we must take the advantage of a perturba-
tive method. The way of developing a perturbative
scheme turns out to be efticient by examining the situa-
tion near the instability point. Then, from rather compli-
cated dynamical equations for the discrete system (micro-
scopic model) we derive an amplitude equation that de-
scribes the nonlinear dynamics near the critical point.
The equation thus obtained is similar to that of
Ginzburg-Landau type. The study of this model equation
allows us to define a criterion of stability for modulated-

II. THE MODEL AND EQUATIONS OF MOTION

A. Construction of the model

We give here, very brieAy, the main features of the lat-
tice model; for more details the reader must be referred
to Ref. 17. Let us consider a lattice plane extracted, for
instance, from a cubic structure (the high-temperature
phase, untransformed lattice) made of squares parallel to
the i and j directions (see Fig. 1 of Ref. 17). A lattice
point of the plane is located by (i,j ). Each particle of the
lattice can move in the plane and we denote by u(i, j)
and u(i, j) the displacements in the i and j directions, re-
spectively. Along with Ref. 17, we consider a particular
transformation described by the displacement u only. We
next introduce discrete deformations defined by

S(i,j ) = u (i,j )
—u (i —1,j),

G(i,j)=u(i,j)—u(i, j—1) . (lb)

The first strain (la) represents the elongational deforma-
tion in the direction i and Eq. (lb) denotes a pure shear.

B. The lattice energy

Insofar as the interatomic interactions are concerned,
we assume that the particles interact via two types of in-
teratomic potential. The first kind of interactions is sup-
posed to be a function of particle pairs between the first-
nearest neighbors in the i and j directions. The potential
describing these interactions must possess stable, unsta-

strain structures and the nature of the instabilities as well
as the pattern formation thus produced are checked by
means of numerical simulations. The latter are in good
agreement with the physical conjectures and show the or-
ganization of the system beyond the instability regime.

The paper is organized as follows. In the next section,
Sec. II, the lattice model is briefly recalled and the equa-
tions of motion for the discrete system are given. The
linear analysis of the discrete system is presented in Sec.
III. In this section, we point out the possible softening of
the acoustic-phonon branch at a nonzero wave number
due to the introduction of competing interactions at the
microscopic scale. Then, the existence of a critical point
for the dispersion phonon is proved, which gives rise to
the lattice instability. In Sec. IV we use a perturbative
scheme based on multiple-scale technique in order to
derive an amplitude equation which governs the dynam-
ics of the system near the critical point. Moreover, this
amplitude equation is obtained in a semidiscrete ap-
proach, which makes the instability analysis particu-
larly interesting and powerful. The instability of a
modulated-strain structure is analyzed in detail in Sec. V
and some physical implications are given. The problem is
then illustrated by means of numerical experiments ex-
hibiting rather complex localized patterns emerging from
the instability process. We conclude the paper in Sec. VI
by saying a few words on the relationship between the
pattern formation and the transformation and some fur-
ther extensions of the model are evoked.
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ble, or metastable states according to a control parameter
(which can be connected with temperature). ' The second
kind of interatomic interactions is suppose to model the
resistance of the crystalline cell to twisting and bending
due to the long-range atomic interactions. ' ' These in-
teractions involve noncentral forces and are called three-

I

body interactions. Moreover, they occur between first-
and second-nearest neighbors. The noncentral interac-
tions are of particular interest for the competing interac-
tions and stability of the nonlinear structures. On using
the invariances of the lattice energy under translations
and rotations, ' we can adopt the following functional:

V= g [@(S(i,j)}+,'p[—G(i,j )] + —,'5[[61+S(i,j )] +[6TG(i,j )] ]

+—,'g([bl+[S(i+ 1 j )+2S(i,j)+S(i—1 j )]] + [AT[G(i,j+1)+2G(ij )+G(i,j —1)]})], (2)

C. Equations of motion

Let us introduce the kinetic energy associated with the
displacement u,

K= g —,'u (i,j ),
(i,j)

the mass of the particles has been set to unit. Then, a set
of equations of motion for the displacement u can be de-
duced from the Hamiltonian %+V. On accounting for
Eqs. (la) and (lb) the equations of motion can be written
in terms of the discrete deformation S(i,j ),

S(l,j)+IS(l,j)=6 X (l,j)+6 X (l,j) (5)

where we have set

XL(l,j)=~(l,j } ~lxl. (l j
XT(i,j)=pS(i,j ) bTXT(i,j ), —

(6a)

(6b}

where the potential @ is given by

@(S)=—'aS ——'S +—'S
2 3 4

The lattice energy (2) has been written in dimensionless
units for ease of presentation. The first and second terms
in Eq. (2) represent the linear and nonlinear potentials
coming from the particle pair interactions where a and I3
are the lattice force coefficients for the longitudinal and
shear deformations, respectively. The third and fourth
parts of the lattice energy (2) hold for the actions of the
noncentral interactions in the i and j directions. The in-
teractions are characterized by the parameters 6 and g
for the actions between first- and second-nearest parti-
cles, respectively. On the other hand, the operators 6L
and AT+ hold for the forward first-order finite differences
in the i and j directions [b,L f(i,j )=f(i+ 1,j ) f(i,j )—
and b, Tf(i,j )=f(i,j+1) f(i,j )].—We notice that,
thanks to Eqs. (la) and (lb), the noncentral interactions
in Eq. (2) can be written in the form
u(i —1,j)—2u(i, j)+u(i+1,j) for the first-nearest-
neighbor interaction and u(i —2,j)—2u(i, j)+u(i+2, j)
for the second-nearest-neighbor interaction; the same
holds true in the j direction for the deformation G(i,j ).
A one-dimensional model can be extracted from the com-
plete two-dimensional system. This one-dimensional
model thus reduced has been examined in detail and it
has allowed us to model localized structures made of ar-
rays of elastic solitary waves. ' '

o (i,j ) =aS(i,j) S—(i,j)+S (i,j ),
yL (i,j )=bl [5 S(i,j )+ }7[S(i+2,j)+4S(i+1j }

+6S(i,j )+4S(i —l,j )

+S(i —2,j)]],
gT(i,j ) =6 T [5 S(i,j ) +g[S(i,j +2)+4S(i,j +1)

+6S(i,j ) + 4S(i,j —1 )

+S(i,j —2)]I .

(6c)

(6d)

The operators AL and AT represent the backward first-

order finite differences in the i and j directions, respec-
tively. Next, h~ and hT denote the second-order finite
differences in the i and j directions, as well. Further-
more, a damping effect characterized by I has been ac-
counted for. In Eq. (5), macroscopic stresses are defined

by the first part of Eqs. (6a) and (6b) and microscopic
stresses due to the noncentral interactions are given by
Eqs. (6d) and (6e). We remark that the stress defined by
Eq. (6c) is a nonlinear function of the discrete strain S.
The set of nonlinear dift'erence-diff'erential equations (5)
governs the deformation S. Nevertheless, because of the
strongly nonlinear nature of the problem, these equations
are not manageable except for the linear problem which
will be examined in the next section. The set of nonlinear
discrete equations (5) can be solved, of course, by means
of numerical simulations with appropriate initial and
boundary conditions. However, an alternative situation
occurs in the case of the continuum approximation. This
situation leads to the quasi-continuum model including
the leading discreteness effects and this quasi-continuum
model has allowed us to study the problem of the forma-
tion of spatially localized structures and their stability.
This problem has been presented in detail in another
work' ' and has provided important physical situations
concerning the elastic domain formation for phase trans-
formations in alloys including martensitic materials.

In the present work, the emphasis is placed especially
on the nonlinear dynamics of modulated-strain structures
and the possible nonlinear structure formation. The state
of deformation is determined by the linear problem
whose wavelength corresponds to the critical point of the
acoustic-phonon branch at a nonzero wave number. Ac-
cordingly, a semidiscrete approach turns out to be quite
necessary to arrive at a more realistic mechanism for pat-
tern formation.



48 LATTICE DYNAMICS AND STABILITY OF MODULATED- ' ~ ~ 867

III. LINEAR ANALYSIS
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The critical situation occurs when coo vanishes for a
particular nonzero value of p, say po, while coo remains
positive for all other p s. This situation is obtained, of
course, by an appropriate choice of the control parameter
a which is the elastic modulus of the lattice. Then e=o.o
denotes the critical value of the control parameter for
which a periodic state of strain with the wave number po
takes place in the lattice. The values po and o.o are there-
fore such that po is a double root of coo [double root of
Eq. (7a), as well] and must check the condition (10). The
other roots remain always negative. We now use the
dispersion relation (7b) and the condition (10) to deter-
mine the wave number of the critical point. We find then

1.20—

0.80—

0.40—

Po
sin

2
(2—&1—35/16' )

3
(1 la)

0.00
0.00 0.80

PO

1.60

4 Po 2 Po
n = —128' sin cos

2 2
(1 lb)

FIG. 4. The critical elastic modulus ao as a function of the
critical wave number po (po E [0,~!2]).

The solution (1 la) exists if, first of all, ao) 0, hence g (0.
Second, the right-hand side of Eq. (1 la) must be positive
and smaller than one, and third, we consider the situation
where po is the only root of the dispersion relation.
These conditions imply that 0 &po ~ ~/2 and —16
&5/g(4. Figure 3 shows the critical wave number po
as a function of the ratio 5/q. The variation of the criti-
cal elastic modulus versus po is given in Fig. 4.

Such a softening effect is usually observed by neutron
scattering technique. In fact, precursor structures
occur and are characterized by modulated lattice distor-
tion within the high-temperature phase and electron mi-
crographs exhibit fine-scale, diffuse, striation microstruc-
tures which are commonly referred to as "tweed pat-

& ~26, 27

mation therefore breaks down after a time of the order
1/m and the nonlinear terms would no longer be ignored.
With the view of examining the inhuence of nonlinearities
on structure stability we adopt the so-called multiple-
scale technique which is a common method used in hy-
drodynamical systems and dissipative structures. '

The first step of the task is to specify how characteristic
time and length scales appear near the bifurcation point
(ao,po). Then, we expand co to the leading order in the
neighborhood of the critical point; we have

l . 2 +0
co = ——. 4sin

I 2
(a —a )

IV. NONLINEAR ANALYSIS

Po+64 sin
2

d co

d [4 sin (p /2 ) ] p =p,

2

The linear theory tells us that unstable perturbations
with wave numbers lying on a segment around po will be
growing drastically as time elapses. The linear approxi-

1.60

1.20—

p„0.80—

0.40—

0.00—16.00 —6.00
0/r)

4.00

FIG. 3. The critical wave number as a function of the ratio
6/g on the segment [ —16,4].

X sin
2

Po—sin
2

(12)

cx —cxo+ A,6 (13)

Nevertheless, since the basic linear analysis which has led
us to the dispersion relation has been obtained for the
discrete system, we must, as far as possible, keep the most
leading feature of the discrete problem. Such a study is

It follows from Eq. (12) that the range of wave number
near p =po for which the homogeneous periodic struc-
ture is unstable is then bp =F(po)(ao —a)' where F is a
function of po that we do not write. The corresponding
length scale for modulations of the structure that can be
considered with this band of wave number is 6/=1/Ap,
which is large in comparison with the original wave-
length 2'/po (scale separation). Moreover, since
co ~ (a —ao) for the corresponding modulation modes, the
characteristic time scale of the interesting modulation is
of order (a —ao) '. The procedure of the multiple-scale
method is to attempt to separate the fast variations in
space and time from the slow ones. We introduce now a
small parameter as follows:
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usually not tractable and accordingly we adopt a semi-
discrete analysis. The method consists in separating the
fast changes of the periodic structure involving the
discrete phase npo while the amplitude part will be treat-
ed in the continuum limit. ' Then, we start with an
asymptotic series of S(n, m ) in e and in harmonics of the
phase variable

S( n, m)= eA( n, m)e

+e l [B,(n, m )e '+B2(n, m )e ')+c.c.

(14)

and they are connected with the envelope A. We observe
that Eq. (15a) is of the Ginzburg-Landau type. We re-
mark moreover, since the original equation is translation-
ally invariant, then Eq. (15a) is invariant under phase
change A —+ Ae' . It is worthwhile mentioning that such
a type of equation is universal and it describes how the
amplitude of the first order deviates locally from the basic
periodic homogeneous strain structure. The Ginzburg-
Landau equation is usually met in Quid Qow instability,
convection problems, or reaction-diffusion system as well
as in cellular instabilities of shell buckling, for in-
stance.

ra, (~')„—~ PW„—+Xa —i ia ~'~ =0,
where we have defined

(15a)

The time variable has been omitted for ease of presenta-
tion, but 2, B, , and B2 are also functions of time. The
procedure is now to substitute (14) into Eqs. (5) and
(6a) —(6e) and equate powers of e up to the third order for
the same harmonic. In fact, the expression (14) is just the
solution needed to determine the appropriate solution to
the first order. On assuming slowly varying envelopes A,
B„andB2 in space we can consider the continuum ap-
proximation for these functions while we take finite
differences of the phase for the discrete variable. We in-
troduce, next, for the envelope the slow time variable
~=a t and space variables X=ex and Y'=ay where the
small parameter e corresponds, of course, to the order of
the characteristic space and time scales. First of all, at
the first order in e of the harmonic one, we recover the
condition coo(po, ao)=0. Secondly at the next order (i.e.,
e ) of the same harmonic, we have again
(dcoo/dp) =0. The third order provides then the

Po

equation for the envelope A coupled to B2. Now by
equating the second harmonic according to the power in
E we reach two relationships between B2 and A, and B,
and 3 next. Without dwelling on algebraic manipula-
tions but by using straightforward computation, we ar-
rive fina11y at

V. STABILITY STUDY

The nonlinear analysis helps us to know whether or not
the system is going to form steady organized patterns
near the critical point and we must examine in more de-
tail the equilibrium solutions to Eq. (15a) and investigate
their stability. It is more convenient to rewrite Eq. (15a)
in the normalized form

A, —A~~ —Arr+A, A —
p~ A

~
3 =0

by using the transformations

X~X/'l/ {co )~~, I' —+ I'/&P, and r~~/r
Equation (17) admits the following steady solutions:

Ao =0, Ao =+)/X/p,

(17)

3 =Ho+a (20)

into Eq. (17) where a is a small time-dependent deviation
about the equilibrium state Ao. We neglect the nonlinear
terms in a and we arrive at

which imposes that Ap) 0. However, the sign of A, is
directly given by that of a —ao [see Eq. (13)] but p can be
either positive or negative according to Eq. (15d) and it
depends especially on po. Now, we discuss the stability of
these equilibrium states by substituting

d2„2
COO

dp p =F0
(15b)

a, +(A, —3pAO)a =0 . (21)

A solution to Eq. (21) is then given by a =aoexp(i07)
and yields the dispersion relation

k=4K, sin (po/2),

p=4sin (po/2)[ —3+8 sin (po)/co (2po) ) .

(15c)

(15d)

sin(po )B, =i cos(po )— co (2p)
dp P =Po

X sin(po)/co (2po) (16a)

co (2po)B~ =4 sin (po) A (16b)

Equation (15b) holds for the second derivative of coo taken
at the critical point and this coe%cient measures the cur-
vature of the dispersion curve coo(p) near the critical
point. The dispersion relation is given by Eq. (7). Fur-
thermore, the other envelope terms are given by

f1 =i(A, —3p 3 0 ) . (22)

We now consider the four cases represented by the possi-
ble signs of k and p.

(i) A, )0 (or a & ao) and p) 0. In this case there are
two equilibrium solutions given by Eq. (19) (we do not
distinguish between signs + and —). 30=0 is stable
while Ao =++A, /p is unstable.

(ii) X & 0 (or a )ao) and p &0. There is only one equi-
librium point Ao =0 which is still stable.

(iii) A, & 0 (or a & ao) and p & 0. We have two equilibri-

um points: 20=0 which is unstable and Ho=++2/p
which is now the stable solution as we can see by using
the dispersion relation (22).

(iv) A, &0 {or a & ao) and p) 0. In this case, there is no
finite amplitude equilibrium, the one solution 20=0 is
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unstable, and the nonlinear effect appearing in Eq. (17)
acts to reinforce the destabilizing tendency which occurs
at the linear level.

It should be noticed that the solution bifurcation can
be compared to the phase transition phenomena. Indeed,
the equilibrium solutions can be rewritten as

AD=0, AD=++(a —ao)/p . (23)

Now, the nature of the bifurcation is clear and the equi-
librium solution is a continuous function of the control
parameter a when it crosses the critical value eo. More-
over, the bifurcation is then of the second order. (i) If
p) 0 the solution Ao=0 is unstable for e (eo, whereas
for a) ao it is also unstable. (ii) If p &0, for a &ao the
finite equilibrium solution Ao is then stable. For a) ao
the equilibrium solution Ao=0 is stable. The different
cases are sketched in Fig. 5, which represents the equilib-
rium solution Ao as a function of the control parameter
o. or the elastic coefficient; this is the bifurcation diagram.

Until now, we have been interested in the homogene-
ous solution to Eq. (17); we now intend to study the sta-
bility of solutions to Eq. (17) in the general case of space-
time-dependent amplitudes. In order to examine the
linear stability, it is convenient to look for complex am-

plitude A(X, Y, ~) in terms of a real amplitude p(X, Y, r)
and phase 0(X, Y, r),

A =pe'. (24)

We substitute the solution (24) into Eq. (17) and separate
the real and imaginary parts to yield

P. Pxx—Pr—r+P(~x+ "r+~ PP—') =0

P(8,—Hxx Or—r ) 2(—PxHx+P r Hr ) =0 .

(25a)

(25b)

eiKY (26)

such that po and K are related by the equation

K +~ ppo=0 . (27)

Moreover, we assume that the bifurcation is normal, that
is, the control parameter k is negative. This also means
that the linear perturbation is unstable (see Sec. III). But
the coefficient p of the nonlinear term in Eq. (17) can be
either positive or negative [see Eqs. (15d)].

The linear stability analysis of the stationary transverse
perturbation (26) can be readily studied by setting

Since the attention is focused on the transverse instabili-
ties, we look for a solution to Eqs. (25a) and (25b) with a
phase as a function of the Y coordinate

p=po+a, 0=JOY+6, (28)
O . (a)

CV

O

where a and b are small amplitude and phase perturba-
tions and are functions of Y and ~. The linearization in a
and b of Eqs. (25a) and (25b) gives

()OQO-
a, arr+(E +—X 3pPO)a+2p—+br =0,

2rCar+—po(b. br' ) =—0

(29a)

(29b)

CV

O

O

CV

O

a
1

]
I I

f
~

-2.60 -1.26 0.00
I

1.26
a-ao

~ 1

2.60 3.76 6.00 8.26

By searching for harmonic solutions of the form
exp[i(QY —Ar)] to the above equations, we arrive at the
dispersion relation

(Q —iA) —2(K +A, )(Q —iO) —4X Q =0, (30)

where the wave number K is defined by Eq. (27) and 0
and Q are the frequency and wave number of the trans-
verse disturbances. The stability of the stationary solu-
tion is guaranteed if the roots of Eq. (30) are such that
Im(Q) &0 for any Q's. For the first root 0-, Im(Q ) is
always negative, but for the other root

A+=i[% +1,—Q ++(IC +A, ) +4K Q ] (31)
oOQO-

CV

O

the imaginary part can be either positive or negative ac-
cording to the value of Q. Consequently, the instability
of the stationary solution with respect to the transverse
disturbances occurs whenever

Q'&2(X+3K') . (32)

O
-B.26 -e.oo -3.76 -2.60 -1.26 0.00 126 2.60

a-ao

FIG. 5. The bifurcation diagram, the amplitude of the equi-
librium solution as a function of the lattice force difference
a —ao for (a) p )0 and (b) p (0.

The condition (32) implies that K ) —
A, /3. Figure 6

shows the imaginary part of the root 0+ as a function of
the wave number Q for a negative and positive value of p.
We notice that, since A. is rather small as well as K, the
instability takes place for long-wavelength modulations.
The condition (32) informs us about the region of wave-
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FIG. 6. The imaginary part of the frequency spectrum of the
transverse disturbance as a function of the transverse wave
number Q for (a) p, &0 (the curve passes through zero) and (b)
p )0. The positive maximum of Im(Q) corresponds to the max-
imum of the growth rate of the transverse instability.

length selection for the transverse pattern formation.
The maximum growth rate is then given by the positive
maximum of Eq. (31) as depicted in Fig. 6. This analyti-
cal study allows us to understand under which conditions
the pattern formation occurs at the birth of the trans-
verse instability but the nature of the nonlinear structure
emerging from the instability can only be investigated by
means of numerical experiments. This will be the pur-
pose of the following section.

VI. NUMERICAL INVESTIGATIONS

Here, we are interested in looking for the self-
organization of nonlinear structures emerging from the
instability process which has been studied in the preced-
ing section. Nevertheless, the amplitude equation (15a)
informs us about the dynamics of the system at the birth
of the instability process but it does not give any informa-
tion concerning the long-time evolution of the system. .
The aim of this section is to characterize the qualitative
nature of the pattern formation and its evolution in time.
We undertake this task by means of numerical simula-
tions performed directly on the microscopic system [see
Eqs. (5) and (6) written in terms of the displacement
u ( i,j ) ]. We consider a lattice made of 121 X 77 particles;
the boundary conditions are periodic on the lower and
upper sides and on the right and left boundaries as well.
The initial condition is simply a spatially sinusoidal de-
formation in the x direction and homogeneous in the
transverse direction as shown in Fig. 7(a). Moreover, the
initial condition is a static modulation. We choose the
wavelength of the periodic structure in order to have
eight periods within x direction so that the wavelength is
15.125 and the wave number corresponds to that of the
critical one and po=0. 415. Consequently, the elastic
constant a and noncentral interaction parameter g are
computed for a given 6 in order to fit with those of the
critical point. Then, we obtain &so=0.0398, 6=2.4, and

ri = —0. 1796. For the elastic modulus P we take
P=0.038. Note that these numerical values are compati-
ble with those used in a previous study for one- and two-
dimensional models. ' ' In order to place the system in
the unstable regime, the elastic constant or lattice force a
is slightly decreased below the critical value o.o, such that
exp cx —10 . The amplitude of the initial strain modu-
lation is rather small, p0=0. 0165. Shortly later, small
perturbations are taking place along the transverse direc-
tion but the periodic strain structure remains static as the
initial condition. This situation is shown in Fig. 7(b).
The instabilities are growing whereas the height strain
bands are still static. After a lapse of time, the instabili-
ties produce localized structures along the transverse
direction as depicted in Fig. 7(c). We can observe very
clearly, for each strain band, five ellipse-shaped struc-
tures.

A rough computation of the transverse instability from
Eqs. (27) and (31) leads to K =0.0694 and the maximum
growth rate occurs at Q,„=O.308 so that the transverse
wave number selected by the instability process is
K+Q,„=0.3774. The latter value can be compared to
that observed on the computerized picture [see Fig. 7(c)],
then the wavelength of the transverse modulations is
A, =15.4 corresponding to the wave number Q=0.4,
which is of the same order. The small discrepancy (6%)
is due to the periodic boundary condition in the trans-
verse direction, indeed, we must have an integer number
of periods within the transverse length of the lattice. By
continuing the numerical simulation a little bit longer, we
can notice that the instability growth leads to the move-
ment of the localized structures. These structures merge
and form a bigger band with localized strain domains on
the left of Fig. 7(d) whereas the localized patterns on the
right are vanishing. Afterwards, the structures are
transformed into a strain band which is modulated along
the transverse direction, but three bands of disk-shaped
domains are still present on the right [see Fig. 7(e)].
After a lapse of time, the strain band becomes larger al-
most homogeneously in the y direction at the expense of
some localized structures which are dying down as de-
picted in Fig. 7(f). Nevertheless, the pattern thus ob-
tained evolves to a stationary state made of a rather large
homogeneous strain band as plotted in Fig. 7(g). In fact,
such a structure can be considered as a solution to the
one-dimensional (in the x direction) model. ' ' In addi-
tion, the numerics provides the total energy of the system
and it can be shown that the energy decreases with some
oscillations and finally stays constant. This proves that
the system has reached its stationary state. This numeri-
cal investigation ascertains first the occurrence of the
transverse instability of a strain modulation near the in-
stability point of the acoustic branch of dispersion, and
secondly the nature and stability of the nonlinear struc-
ture emerging from the instability process modeled by the
amplitude equation (15).

VII. CONCLUSIONS

Our main objective was merely to describe the physical
mechanisms of nonlinear structure formation occurring
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for ferroelastic transitions at the instability point of the
phonon dispersion on the basis of a two-dimensional lat-
tice model. The pattern formation is interpreted here as
the nucleation and growth of ferroelastic domains trig-
gered by instability of modulated-strain structures or
strain modulation taking place at the pretransformation
point. The fundamental phenomenon is the existence of
lattice instability due to the low softening of the
transverse-acoustic branch of dispersion at a nonzero
wave number. The latter corresponds to the spatial
period of the strain modulation developing in alloys such

as Fe-Pd, Ni-A1, and others. These effects are character-
ized by microtexture formation made of fine-scale ar-
rangements of modulated-strain domains which are usu-
ally observed by high-resolution electron microscopy. ' '
By using multiple-scale technique in the vicinity of the
critical point we have obtained, in the semidiscrete ap-
proach, an amplitude equation of the Ginzburg-Landau
type. The discrete part of the solution to the microscopic
system is, in fact, provided by the linear analysis near the
critical point of the acoustic branch of dispersion while
the envelope term is considered in the long-wavelength
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limit. Moreover, the discrete part of the solution de-
scribes the static strain modulation of the lattice. The en-
velope equation [see Eq. (15)] allows us to examine the
stability of the basic stationary solution; this is done in
Sec. V. Then, it is proved that the transverse instability
occurs for the long-wavelength modulations given by the
criterion (32) when the bifurcation is normal. The study
of stability tells us under which conditions the transverse
structure birth can take place. However, thanks to the
numerical investigations we can clarify the nature of the
nonlinear structures on the two-dimensional lattice. In
fact, we obtain a self-localization of the transverse insta-
bilities in a two-dimensional periodic spatial structure.
The pattern thus obtained is interpreted as the formation
or nucleation of lenticular or ellipse-shaped twins consist-
ing of a two-dimensional array of ferroelastic domains
growing in the high-temperature phase (paraelastic
phase). However, these localized patterns are metastable
states corresponding to a local minimum of the total en-

ergy of the lattice. That means that the system must
evolve toward an absolute minimum of which the station-
ary state is characterized by a homogeneous strain band
[see Figs. 7(a) —7(g)]. The instability mechanism can be
seen as the nucleation of a ferroelastic domain within the
high-temperature phase (or the martensite on an austenic
phase). These complex structures are commonly ob-
served on electron micrographs for various alloys.
We would like to point out that the present work is some-
what similar to that of the well-known hydrodynamic in-
stability in Auid mechanics or reaction-diffusion systems

exhibiting dissipative or spatiotemporal structures,
but the physical background is quite different.

On the other hand, the present study provides insight
into the understanding of the phase transformation in al-
loys especially for martensitic-ferroelastic transforma-
tions and it is concerned especially with pretransforma-
tion effects or precursory phase. The model is also suited
to the commensurate-incommensurate phase transition
for which the dynamics of topological defect are particu-
larly important. This happens when the spatial period
of the strain modulation is not a multiple of the lattice
period. This interesting problem can be envisaged in
another work. In addition, the inhuence of an applied
field and damping on the dynamics of the nonlinear struc-
ture formation is worth studying in the framework of
nonequilibrium physics. The problem of the behavior of
the very discrete model without considering the continu-
um approximation can be undertaken by introducing a
substrate potential involving multistable minima which
characterize the possible variants of ferroelastic phases.
At this stage the model must include two displacement
components. Some aspects of these further problems are
presently under study.
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