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Fermions interacting via a long-range repulsive potential are considered in D spatial dimensions,
where 1 & D & 2. The standard screening picture is found to break down, i.e., the screened
effective interaction cannot be treated as instantaneous. For a bare potential which behaves at long
distances as r ~ l [as lnr in two dimensions (2D)] and within the random-phase approximation,
the retardation efFects induce an infrared catastrophe that changes the Fermi liquid into a Luttinger
liquid in which the occupation number in momentum space is continuous across the Fermi surface.
In 2D, the quantum liquid which we investigate may be called a "Z = 0 Fermi liquid" (where Z is the
strength of the quasiparticle pole at the Fermi surface) since the electron propagator has an isolated
pole with a constant residue that scales to zero as the size of the system increases to inanity. For
1 & D & 2, the quantum liquid resembles the 1D Luttinger liquid as the single-particle propagator
exhibits a branch cut structure. Moreover, we present a ground-state wave function which reproduces
the Luttinger-liquid exponent of the momentum distribution near the Fermi surface.

I. INTRODUCTION

Recently, models of highly correlated fermions have at-
tracted considerable attention. Experiments on high-T„
superconductors suggest the possible breakdown of stan-
dard Fermi-liquid theory. In three dimensions, our un-
derstanding of the metallic state is based on Landau's
Fermi-liquid theory. The latter is primarily aimed at
the description of the particle-hole continuum, though
some so-called Fermi-liquid effects are due to the col-
lective density modes. Theoretically, finding a metallic
non-Fermi-liquid fixed point is diKcult in space dimen-
sion higher than one. Some discussions on the break-
down of Fermi liquid in dimension D ) 1 have been given
recently and various generalizations of bosonization in
two and higher dimensions have been proposed. For one-
dimensional (1D) systems, the breakdown of Fermi liquid
is well documented. In one space dimension, the interac-
tion always produces a branch cut structure in the elec-
tron propagator which indicates the breakdown of Fermi
liquid.

In the present paper, we study a class of models with
long-range interactions beyond one dimension. We focus
on the one- and two-body correlations of these models
in order to investigate the possible breakdown of Fermi
liquid. Beyond one space dimension, the very concept
of "Luttinger liquid" is unclear despite its appearance
in the recent literature. By Luttinger liquid we mean
a metallic state at zero temperature with well-defined
Fermi-surface singularities, yet with a vanishing quasi-
particle spectral weight at the Fermi surface. As a con-
sequence, the occupation number in momentum space nI,
is continuous across k~. Nevertheless, the Fermi surface
exists and is marked by the singularities in the first or
higher derivatives of nI, with respect to k. In our search
for a Luttinger liquid beyond one dimension, we were led
to consider fermion interacting via long-range potentials
in space dimension D, i.e. ,

U(k) =

Zcx L c~ (2)

where L represents the linear size of the system. The
exponent qD in (2) is given by

For simplicity, we discuss here spinless fermions. A gen-
eralization of our results to fermions with internal de-
grees of freedom is presented in Sec. IV. The questions
we want to address in this paper are the following: (i)
How long ranged should the interaction (1) be for the mo-
mentum distribution to be continuous at the free Fermi
momentum? (ii) Does Fermi liquid really break down for
long-range interactions of the form (1) beyond 1D? (iii)
What liquid do the variational wave functions of the Jas-
trow type eo((+)) = H'( f(&* —&i)@Fs((2')) describe?
(Here @Fs denotes the wave function of the free Fermi
sea. )

For rI ) 2, the interaction (1) causes the density fluc-
tuations to open an energy gap in the small momentum
regime. It is generally believed that long-range forces
have no dramatic effect on the quasiparticle properties of
a Fermi liquid. This belief finds its rationale in the known
fact that the static (frequency-independent) screened in-
teraction is necessarily short ranged. We argue below
that the standard screening picture does not apply when
the particles interact via extremely long-range forces.
More precisely, within the random-phase approximation
(RPA) and taking into account the frequency dependence
of the effective interaction, we show that (1) produces an
infrared catastrophe (IRC) provided rt ) 2D —2. The
IRC effectively destroys the Fermi-liquid fixed point. In
the marginal case g = 2D —2, it is found that the IRC
changes the Fermi liquid into a Luttinger liquid. In par-
ticular, the strength of the quasiparticle pole at the Fermi
surface Z scales to zero in the limit of an infinite system
as
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where p = [
~

]
/ denotes a dimensionless coupling

po
constant. The scaling result for Z is obtained by four dif-
ferent methods, namely (i) a hydrodynamical approach
(Sec. II), (ii) a poor man s renormalization analysis
(Sec. III), (iii) a random-phase approximation for the
electron propagator (Sec. III); and (iv) a wave-function
calculation (Sec. IV).

Specifically, our main results are for 1 ( D & 2, we find
a Luttinger liquid in the sense that the single-particle
propagator has a branch cut structure, i.e., there are
no true asymptotic quasiparticle states. These results
are not applicable to a physical situation due to the pe-
culiar spacial dimension. Nonetheless, carrying such a
calculation is intructive because (i) it gives information
on how the spectral function evolves as we increase the
spacial dimension from one to two and (ii) it explicitly
demonstrates how the coupling between the electron and
the collective mode leads to the breakdown of Fermi liq-
uid beyond one dimension. For D = 2, the quasiparti-
cles form a Fermi liquid yet their overlap with the bare
fermion vanishes in the thermodynamic limit. The trans-
port properties of this quantum liquid are expected to
be similar to those of the usual Fermi liquids. The mo-
mentum distribution is continuous (weak singularity) at
the Fermi momentum. We call such a liquid a "Z = 0
Fermi liquid. " It is widely believed that a continuous mo-
mentum distribution implies a Luttinger-liquid behavior.
The Z=O Fermi liquid provides a counterexample. We
establish the connection between a class of Hamiltoni-
ans containing long-range forces of the type (I) and the
Jastrow-type wave functions which have been considered
as good variationnal wave functions for the Hubbard and
related models. We develop a technique to calculate one-
and two-body correlation functions of the Jastrow-type
wave functions and show analytically that the momentum
distribution is continuous at the free Fermi momentum.

The plan of the paper is as follows: In Sec. II, we
deal with an hydrodynamical description of the IRC.
In Sec. III, we evaluate the single-particle propagator
near the Fermi surface within RPA and confirm thereby
the simple hydrodynamical calculations of the previ-
ous section. A renormalization-group (RG) analysis is
also given which yields results consistent with those of
Sec. II. In Sec. IV, we propose and investigate a ground-
state wave function which describes the long-wavelength
density fiuctuations in the system. We show that this
wave function reproduces the Fermi-edge singularity (2).
Section V is devoted to a generalization of the previ-
ous results to fermions interacting via long-range spin-
dependent forces. Section VI contains the concluding
remarks.

II. INFRARED CATASTROPHE:
HYDRODYNAMICAL CALCULATION

In order to clarify the physical content of the IRC,
we shall first take the hydrodynamical point of view. At
wavelengths which are large compared to the mean par-

ticle spacing, the density Quctuations of the interacting
system can be described by a quantized theory of lon-
gitudinal sound waves. The classical dynamics of small
density fiuctuations is governed by the Lagrangian

1 I
d x ——j (x) ——Vpp (x)

2 pp 2

d x d y p(x)—U(x —y) p(y)
2

(4)

where pp denotes the average number density, j is the
number vector current, and Vp is proportional to the
inverse of the compressibility of the free fermion gas.
We assume a two-body potential U(x) = g~x~" with
Fourier transform

U(k) =

where k = ~k~ and gD is proportional to the coupling con-
stant g in real space of dimension D. At this stage, the
exponent g in (5) denotes an arbitrary real number. Be-
low, we shall determine the condition that g must fulfill
in order for (5) to induce an IRC.

The continuity equation, p(x) + V j = 0, which ex-
presses the conservation of matter, reads in momentum
space

.k.
jI =& pj's )

k
(6)

where k is a unit vector pointing in the direction of k.
On substitution of (6) into Eq. (4), we have

1 4m [Vp + U(k)]
p Q2

From (7), we can evaluate the density-density correlation
function II,~(x, t) = (T (p(x, t)p(0, 0)j) in Fourier space,

1Il,s(k, u)) =
„, —[U(k) + V—o]

(Io)

The equal-time density-density correlation follows readily
by contour integration,

1 pp- A:

(pA:p —~) =—
2 m [U(k) + V,)'/'

To discuss the IRC, we inject a single electron into the
interacting system. Due to screening efFects, the elec-

& =
2V ):—k, I

p~I' —
2V ).I p~ I' [Vo + U(k)]

2V pp k2
k

(7)

where V is the volume of the system. The Lagrangian (7)
describes a collection of harmonic oscillators with normal
coordinates pA, . In the quantized theory, the wave func-
tion associated with the zero-point density fiuctuations
is given by

~1/2 —(1/4)Aq

ipse

i

, ... ~i/4
Ic

where
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tron will be dressed by the charge-density fluctuations.
The interaction between the additional particle and the
collective density oscillations leads to a term LC in the
Lagrangian (4),

where gV ((pk)) corresponds to displaced harmonic oscil-
lators. In (13), hp~ represents the displacement of the
k mode and is obtained by minimizing the energy with
respect to the density fluctuations, i.e. ,

d x p(x) U(x) .

The wave function for the density fluctuations is modifi. ed
accordingly, i.e. ,

p'(&p~)) =go(&p~ —~p~))

U(k)
U(k) + Vo

(14)

The wave-function overlap between the states ~P' ((pk)))
and ~Pe ((p~))) is easily calculated,

(&. ((~ )) I&'((S ))) ~ P — ). „'+U' k4~ - qok~ U' k
(15)

( 1 mgLi dk+ 1

2 po, (2~)~ k'+»' )
(16)

The quasiparticle weight Z at the Fermi surface in the
one-electron propagator is ~(Po ((p~)) ~P' ((pk))) ~, and
on subtitution of (5) into (15), we find near k = 0

singularity at the absorption edge, one requires a vanish-
ing bandwidth for the core electrons and the effect exists
even for short-range interactions. In contrast, the IRC
that occurs in our model arises from the collective modes
provided the forces between the particles are long ranged.
Within RPA, we argue below that the particle-hole con-
tinuum does not cause an IRC as a consequence of the
finiteness of the electron mass.

The ultraviolet cutoff A ( po in (16) specifies the range
of momentum values where the hydrodynamical descrip-
tion should be valid and the infrared cutoff q, L
where L represents the linear size of the system. From
(16) we conclude that Z = 0 for g ) 2D —2. Clearly,
the vanishing of the coherent piece in the propagator is
a direct consequence of the IRC. Specializing to the case
g = 2D —2, we infer

Z oc (LA) (17)

where qLi = p/2+m~~ I' ( 2 ) and p =
[

~~ ]i~2 is a
dimensionless constant. The scaling behavior of Z in
(17) is reminiscent of that occurring in the 1D Luttinger
liquids. A crucial observation is that the scaling expo-
nent &~ is proportional to the square root of the coupling
constant g~, i.e., is not analytic in g~, in contrast to
the one-dimensional case where &~ depends linearly on
the square of g~ in the weak-coupling limit. In one di-
mension, the breakdown of Fermi-liquid theory can be
demonstrated by conventional perturbation techniques
while in higher dimensions it is generically a nonpertur-
bative effect.

We remark that the IRC discussed here should not be
confused with the orthogonality catastrophe occurring in
the x-ray spectra of metals (see, for example, Mahan's
book in Ref. 10 and references therein). In the latter
problem, the absorption edge singularity for x-ray transi-
tions stems from the particle-hole continuum of the con-
ducting electrons. However, to observe the power-law

III. RANDOM-PHASE APPROXIMATION
IN DIMENSIONS 1 & D & 2

In Sec. II, we have been concerned with an hydrody-
namical description of the IRC. In the present section, we
wish to perform a quantum-mechanical calculation which
corroborates and completes the previous discussion. The
hydrodynamical analysis has provided us with the pre-
cise long-wavelength behavior of the potential expected
to produce an IRC in dimension D. In one spacial dimen-
sion, we find that a short-range interaction is sufFicient
while in dimension D = 2 a long-range logarithmic inter-
action is at least necessary for the IRC to occur. In three
dimensions, the required interaction is so long ranged
that the potential becomes confining, i.e., increases lin-
early with distance at long wavelengths. In the present
section, we assume a potential of the form

U(k) =

We find it useful to vary continuously the dimension of
space D from one to two as we can examine in detail how
the electron propagator evolves with increasing spatial
dimension.

In order to investigate the nature of the time-ordered
electron propagator in dimension 1 ( D ( 2, we shall
evaluate the self-energy in the RPA (see Fig. 1), i.e. ,
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(a)

O-Q,
Q (b)

dDq
HARP" (k, ~) = i

(2~)D
dv—U(q) Gp(k —q, ur —v)
27t

r U(q) IIp(q, v)
—U(q)IIp(q, v) )

(19)

FIG. 1. (a) Hartree-Fock contribution to the self-energy;
(b) pure RPA-bubble contribution to the self-energy.

where Gp(k, ur) denotes the usual free-electron propaga-
tor

1
Gp(k, ~) =

(d —cA. + zhA.
(2O)

with eA,. =
2

—2~ and bg = bsgn(k —k~). The polar-
ization IIp(k, w) has the familiar form

IIp(k, (u) = —i
dDq dv Gp—(q+ k, v + (u) Gp(q, v) .
2m D 2'

(»)
The first term in the large parentheses on the right-hand
side (rhs) of Eq. (19) [Fig. 1(a)] represents the Hartree-
Fock contribution to the self-energy whereas the second
term [Fig. 1(b)] is of purely RPA origin.

In two dimensions, a straightforward evaluation of the
polarization (21) for w & 0 [with the property IIp(k, ur) =
IIp(k, —~)] yields

m

ReII'(q, v, ) = &

m
27K Cp

(v+ ~)2 —q~M+2 +

(v+ ~)2 —q~M+2—

(v —~ )2 —PM2 —q~],

(v —~, )' —PM' —q~],

gr (—2
(22)

q —(v —'—.)']
q —(v ——', )']

—2 —2—q &v& —'+q

where dimensionless variables q = ~& and v =, havek~

been used and M~ = min{~= 6 ~z, 1). In the limit of
long wavelength and finite frequency, the polarization be-
comes purely real, x =[(k~) ' —(k~)

q
(28)

m
ImIIp q, v

2D 1~(D 1)/2(D 1)k2—DI(D —1)

k2
IIp(q, (u) = Fq

4am&2

The RPA density correlation function is given by

(24)
where

) 1/2. (o;i —(- —-') )~q 2 ) (29)

n"'(" ) =1-U(,)n, (,)
(25) ) 1/2

kf =
~

max(0; 1 —
(

—+ —
)q 2 j (3o)

From the pole in (25), we infer the plasma frequency

gapo
)P m

(26)

gDy=
(dp

-mgD- &r'2

po
(27)

In dimension D, 1 ( D ( 2, the imaginary part of the
polarization is easily evaluated,

Icwhere po ——
~4 denotes the 2D fermion density. At this

point, it is convenient to introduce the dimensionless cou-
pling constant p as

Notice that (28) also applies to one dimension. The
fermion density in dimension D is given by

F
2D —17rD/2DI'( D

)

We can calculate ReIIp(q, w) from the definition by ex-
panding (21) for small q to order q . The calculation is
straightforward, and, at finite frequency, we have

VFs q poRellp(q, (u) =
(2m)D m(u2 m (u2

where
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2&D /2 yD
Vms ="=

r( —,) D

denotes the volume of the Fermi sphere in dimension D.
Equations (32) and (25) imply that the RPA polariza-
tion has a pole at tu = ur„(q) = g~p q . There-
fore, the density mode is gapless for 1 ( D & 2. For
w ( vzq, II,p(q, u) has a finite imaginary part coming
from the particle-hole continuum. We have checked that,
near the Fermi surface, the particle-hole continuum con-
tributes terms that are less singular than those due to
the collective density mode. Since we focus in this work
primarily on the dominant singularities near the Fermi
surface, we shall omit these terms. The effective polar-
ization II,s(k, ~) in dimension D is then

1II.g(k, cu) = ——,—U(q) + ib
Po g

Z"'(k, ~) =— g
U(q)ni, q, (34)

whereas the pure RPA term [Fig. 1(b)] yields

The result (33) agrees with the semiclassical calculation
presented in Sec. II. The imaginary part in (33) has been
chosen so as to reproduce the correct analytic properties
of II,ir(k, ur). The frequency integral in Eq. (19) is easily
performed. The Hartree-Fock (HF) contribution [Fig.
1(a)] to the self energy is real, i.e. ,

yRPA (k
2 m

g q [U(q)]"'
(2~) ~ e&+ sgn(eA'+ )(q[—"U(q)]"—i~)

Before evaluating (35), it is instructive to analyze the propagator within the RG approach. We apply the "poor
man's renormalization" method in momentum space. We introduce a ultraviolet cutoff A and reduce progressively,
together with A, the number of degrees of freedom in the system. In this process, the coupling constant gD does not
renormalize. At scale A, the response of the real part of the self-energy to a change of scale —bA is found to be

RPA (D p 6A (Dl
h ReZ (k, cu; A) — FD(D —1) — — DFa

I

—+ 1
[ vz(A)2' AD 2~ A q2p

where

F~(~) = r (n — , ')
2 vr (~ ) / I'(n) (37)

respect to A leads to

Z(A) A(P/2m)F~ (D/2) (41)

c) ln Z(A) p FD ( 2 )
BA 2~ A

(39)

c)lnv~(A) p Fa( , )
—DFa( , + 1)——

OA 2' A
(4O)

Noting that Fli ( 2 ) = DF~ ( 2 + 1) and integrating with

In deriving (36), we have linearized the spectrum near
the Fermi surface, neglected the curvature of the Fermi
surface, and made the assumption that the main contri-
butions to the integral in (35) come from the forward-
scattering processes. The first term on the rhs of (36)
corresponds to a rescaling of the chemical potential and
can be absorbed in the definition of the latter while the
two other terms generate a renormalization of the quasi-
particle weight Z(A) and of the Fermi velocity v~(A),
respectively. Writing the electron propagator at scale A
as

G(k, cu; A) = Z(A)
cd —v~ A bk

and comparing with its expression at scale A' = A —bA,
the RG Lie equations for the quasiparticle residue and
Fermi velocity follow, respectively,

v~(A) = const . (42)

From (41) and (42) we conclude that the quasiparticle
weight Z renormalizes to zero as A + 0 with an expo-
nent &ii =

2 F~( 2 ) while the Fermi velocity renormal-
izes to a constant. Equation (41) is consistent with the
hydrodynamical calculations of Sec. II.

We now consider the full RPA self-energy (19). In
two space dimensions, the direct evaluation of (35) near
the Fermi surface leads to 2 P (k, ur) = z~ Aurg ln (qA'),

where an infrared cutoff q & has been used and L
denotes the linear size of the system. The occurrence
of the logarithmic singularity in the self-energy signals
the IRC. The hydrodynamical calculations of Sec. II as
well as the RG arguments above suggest that this type
of singularity arises from the expansion of an algebraic
power in the electron propagator. Promoting the loga-
rithm to a power law, the electron propagator takes the

form G(k, w) = (w —eq) (qA) . The latter has there-
fore an isolated pole with a constant residue (indepen-
dent of frequency and momentum) that scales to zero as
L ~~ with increasing size of the system. The quasi-
particle is well de6ned, though its overlap with the bare
electron vanishes. Despite the single-particle properties
in this model are very different from those encountered in
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the standard Fermi-liquid theory, we expect the response
functions and the transport in the system to be similar to
those of the usual Fermi liquids. Therefore, the quantum
liquid we And may be called more appropriately a Z = 0

Fermi liquid.
We now discuss the general case 1 ( D & 2. It is conve-

nient to first evaluate the imaginary part of Z (k, w),
I.e. ,

gRPA (k )
gD
2~

dD
4 (ni, +~b(ei, +'~ —~ —~~) —(1 —nJ, +~)h(eI, +~ —ur + (u~) ),27(' q

(43)

where urz ——w„(q) denotes the frequency of the density mode. It is possible to give a rigorous discussion of the region
in the (k, u) plane where the imaginary part of the self-energy is finite. For our purposes, however, it is sufficient to
calculate ImZRP (k, w) by neglecting the curvature of the Fermi surface as k approaches kp. Taking into account the
most singular contributions in the integral (43) as hk = k —kP ~ 0 and Euri, ——w —ei, —i 0, we have

ImZ (k, ~) = —
D b,~i, ( 20[sgnhk A~i, —(u„(q,)]2D+'~D/' —'(2 —D) I'

—0[sgnhk A~i, —~„(A)] —8[sgnhk A~i, —~„(~hk~)]
—0[—sgnhk A~i —~„(A)] + 8[—sgnhk A~i —~„(~hk()]), (44)

where wz(q) = gDp q is the dispersion of the density mode and 8(2:) = 1 if x ) 0 and vanishes otherwise. In
(44), Aurj, = ~ —ei, represents the excess energy with respect to the free fermion of momentum k. When the energy
b, wy exceeds the lower edge of the density mode frequency w„(q) ~z I, i, the imaginary part of the self-energy is finite
and the electron can decay by absorbing (eznitting) a collective density excitation of energy Awi. In two dimensions,
the electrons near the Fermi surface cannot decay since the plasma gap is finite (remember that we neglected the
particle-hole continuum) .

From (44) and the spectral relation for the retarded self-energy, we can derive ReZRP (k, u). Combining real and
imaginary parts together yields

gRPA (k )
y ~„(q,) —sgnhk Acui

2D+i~D/2(2 —D) I'( D
) wP (A) —sgnhk Aw&

~„(q,) —sgnh k D(ui, (u„(~b k
~ ) + sgnh k b ~g

+ln + ln
~„(A) + sgnhk Acug (uP(~bk~) —sgnhk beni,

(45)

We note that a logarithmic singularity similar to that of
(45) (which arises only for 1 & D & 2) occurs in the 2D
marginal Fermi-liquid theory proposed by Varma et al.
in the context of high-T~ superconductivity.

When ~A~g~ & urP(q, ) = gDp 'q, , E (k, (u) sim-
pli6es to

" CQ

G(k, cu) oc ' (49)

the logarithmic term in (48) may be promoted to an al-
gebraic power, i.e.,

Z»»" (S, ») = c»&t»~ 1» (
—),

where

'y

2D~D/21 (D) (47)

Though not rigorous, we believe here such a procedure to
be legitimate. The logarithmic singularity together with
its coefficient in (46) are consistent with the results (41)
and (42).

When ~Awi~ ) w„(q, ) = gDp q, , the self-energy
reads

The electron propagator is then

G(k, ~) = 1

a~, 1 —gDln(~) (48)

The hydrodynamical considerations of Sec. II as well as
the RG arguments in the above discussion indicate that

(50)

In this regime, Z P (k, w) has a finite imaginary part.
The origin of the branch cut singularity in (50) is unclear.
For convenience, we write this term in a compact form as
an algebraic power and the electron propagator becomes

gRPA(k )
D + I

q gD~ i A2 Dy— —
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G(k, (u) oc
1 —sgnbk A(ui,

' ~( ) g~p '[Sk]2 ~+ sgnbk Au)g

Ld —6k gDQ g~p I~kl —sgnak a~„
We emphasize that when discussing this result, one should keep in mind that (51) is confirmed only up to the first
order in q~. Clearly, as a function of m, the electron propagator has three regimes and Eq. (45) describes the crossover
between them. We may summarize the results for the propagator near the Fermi surface as follows:

] q CD
p(q. )

—~~)p~))
gD'7 —L A2 —D

g ~ —L+2 —D

(52)

~p(ak) «[~ —., l,

CaP —6k

e~p( —i 2'oo mO[(ur
- ~Di(2 —D)

G(k, cu) cx g (, ~)

(u„(q ) & ]su —ei, ] « ~p(8k)
~—~k)

SDexp( —1 2(g o) &)

where qy = sgn8k. In dimension D = 2, w, (q, ) is finite and, at low energies, the electron propagator (52) has a,

pole with a residue that scales to zero in the limit of a large system. In marked constrast, fo» & D & 2, G(k, ~)
exhibits three different regimes. For ]Awi,

l
» wp(q ), the single-particle propagator has a branch cut as in the 1D

t,uttinger liquids. i s 7 It is worth observing that (52) is consistent, in the first regime []co —ei, [
& wp(q )], with the

scaling arguments of the previous discussion. (See Fig. 2.)
In the same spirit, we evaluate the momentum distribution nI, = ni, +dna, (n& denotes the free-Fermi-gas momentum

distribution) for momenta close to k~ in RPA,

SnA, = i [Gp—(k, (u)] Z (k, cu) .
27r

Performing the frequency integral, we find

(2~) q
—

(eg+, —
eA,, + ~q)

g 1

(2~)D qsD —4 (e&+~ —eg + (u~)2
(54)

bk
bnk —— n'k ln

2D+17rD/2I (
D

)

bk—(1 —n )in-k

(55)

ImG

0
0 cop(q, )

The most singular contributions to the momentum dis-
tribution near k~ are due to the forward-scattering pro-
cesses and, again, can be obtained by assuming a Bat
Fermi surface, i.e. ,

where A denotes the ultraviolet cutoff in momentum
space and bk = k —k~. It is remarkable that, what-
ever the dimension D, the infrared cutoff q, cancels in
the calculation of Snab, . If we interpret the rhs of (55) as
the erst term in an expansion in powers of qD, we can
write

1 1 oni, = —+ — n„]k —k~]' —(1 —n„)[k —k~[' . (56)
2 2

The result (56) shows that the momentum distribution,
in the RPA, is a continuous function of k across k~ de-
spite the fact that nk is not analytic at k~. This strongly
supports the idea that a gas of spinless fermions interact-
ing via logarithmic potential in two dimensions is a Lut-
tinger liquid, though the precise structure of the electron
propagator at the Fermi surface differs substantially from
that of the 1D Luttinger liquid. ' Again, the power of
the algebraic singularity at the Fermi surface matches
exactly that of our previous calulations.

FIG. 2. The spectral function of the electron propagator
exhibits three difFerent regimes for 1 & D & 2 [see Eqs. (51)
and (52)]. The first regime [leo —eql & ~„(q,)] is a finite-
size efFect. As the size of the system increases to infinity,
the second and third regimes [leo —ei,

l
) cu„(q, )] survive. At

lw —sgl = 0, the spectral function is a h-function peak with a
vanishing weight proportional L 'o. The peak at lw —ei,

l

=
cu„(k —kp) is due to the resonance with the collective mode.
The broad distribution in the spectral function illustrates the
incoherence of the electron propagation.

IV. ANSATZ FOR THE ASYMPTOTIC FORM
OF THE %AVE FUNCTION

Correlated basis functions of the Bijil-Digle-3astrow
type have been studied extensively during the past three
decades. ' ' ' In particular, Feenberg has generalized
the Jastrow-type trial wave function to deal with fermion
systems. This author proposes to write the wave func-
tion of a strongly interacting fermion system as a product
of single pairwise correlations and a Slater determinant
of single-particle states illFs((x)), i.e. ,
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@o((x))= f(**—z~)@Fs((z)) (57) „) So(k)
1+CySO(k)

The Jastrow factor f(x) depends typically on the dis-
tance ~x~ between the particles and is chosen so as to
incorporate the correlation effects for the problem under
consideration [e.g. , in the case of repulsive interactions,
one may require f(~z] = 0) = 0]. Recently, it was pointed
out in Ref. 14 that the Feenberg-Jastrow-type wave func-
tion might exhibit some Luttinger-liquid behavior (see
also Ref. 15). In this section, we present a Jastrow-type
wave function that describes the long-wavelength behav-
ior of the ground state in the I uttinger liquids introduced
above.

Consider the wave function (8) associated with the
long-wavelength zero-point density fIuctuations. We see
that its form is dictated by the long-range part of the
interaction. Specializing (57) to the potential (18) and
using the definition (9), it follows that Ag ~~~ as k ~ 0.
Therefore, we have

(
40(&p~)) ~ exp ——). D lp~I' ~

2 -kD )
(58)

~4)=exp~ d xd y lnf(x y):p pz:
~ ~@Fs)

2

t'1= exp —).hI. : pj, pI. : ~@Fs),
)

(59)

where hg is the Fourier transform of ln f (x) and:: de-
notes normal order with respect to the Fermi sea. As
usual, p = ct c denotes the density operator and pp its
Fourier transform.

In the long-wavelength limit, comparison of (58) with
(59) suggests that f(z) = ~z~" and so we have

aDA
k = (60)

where a~ = 2D ~vrD~21' (
—). The ansatz (59) can be

rewritten as

4) = exp ——) ~:pap~: l@Fs)
.a

)
Equations (58) and (59) agree provided we identify

p=aDA (62)

We now present a more rigorous derivation of (62). Fol-
lowing Feenb erg, we evaluate the static form factor
S(k) = po (pgp g) for the trial wave function (61) as

where pI, represents a c number density fiuctuation at
wave vector k. For fermions interacting via the long-
range potential (18), the long-wavelength density fluctu-
ations in the system are controlled by the Jastrow factor
f(z). Therefore, we can determine the large distance
form of f(x) from the potential (18). The second quan-
tized version of (57) is

where So(k) represents the static form factor for the free
Fermi gas and Ck is the Fourier coefBcient in the expan-
sion of

A ln /z/ = — ) "e'" "
k

(64)

s.e.,

aD
Cp ——2App (65)

At long wavelengths, we have

1 kD
S(k) =

CI, 2ApoaD
(66)

Alternatively, we can infer S(k) from the results of
Sec. II. In the hydro dynamical approach, the long-
wavelength behavior of the static form factor follows from
(11),

S(k) =
~'YPo

(67)

Comparison of (66) and (67) immediately leads to (62).
The above discussion demonstrates that the wave func-
tion (61) correctly reproduces the long-wavelength den-
sity fIuctuations in the ground state for the interacting
system with potential (18).

We were motivated by the above to inquire about the
exact analytical structure of the singularities in the mo-
mentum distribution ng near k~ for a wave function of
the Feenberg-Jastrow type. The above arguments, an
exact solution in 1D (Ref. 16) as well as recent varia-
tional Monte Carlo calculations in 2D, suggest that if
we choose the two-body Jastrow function f (x) as alge-
braic function of ]x~ as in (61), n~ should be continuous
at the free Fermi momentum k~. Nonetheless, we expect
the Fermi surface to exist in the sense that nl, has a weak
singularity (weaker than a step function) at k~.

In a remarkable series of papers, Sutherland has
solved and discussed the problem of 1D spinless fermions
(or bosons) interacting via a r 2 potential (more pre-
cisely, a periodic version of this potential; a r po-
tential with an harmonic restoring force has been con-
sidered by Calogero ). The ground-state wave func-
tion for this problem is given in (57) with f (x, —z~) =
~e'~ ~+1~* —e'~ ~+1~&]", where L denotes the size of the
system and A = 0 for noninteracting fermions (this def-
inition of A differs by a constant unity from that given
by Sutherland ). The ground-state wave function (57)
is of purely Bijil-Dingle- Jastrow form.

The asymptotic form of the equal-time electron prop-
agator in one dimension can be evaluated by a number
of different methods. A calculational strategy which
does not require knowledge of conformal field theory,
Bethe ansatz, or bosonization techniques is the use of
the plasma analogy. The electron propagator can be
written explicitly as the partition function of a one-
component plasma on a one-dimensional ring interacting
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with external charges. Noting that the one-component
plasma behaves like a metal and assuming a continuous
distribution of charges on the ring, we can evaluate the
energy required to add an external charge to the system
by the method of images. Exploiting the holomorphic
properties of the norm of the wave function, the large
distance form of the propagator follows as

G(x, 0 ) oc
sin(kFz)

(68)

where n = 4li" &i. The result (68) implies an algebraic
singularity in the momentum distribution at k~ as seen
by simple Fourier transform, i.e.,

ni, —+ const)k —kF
i

1 2'
2

To conclude the discussion of the one-dimensional case,
we note that the Calogero-Sutherland wave function re-
produces the correct long-wavelength behavior of the
electron propagator for the Luttinger liquids in one di-
mension, including models solved by Bethe ansatz. The
Bethe ansatz wave function is notorious for its complex-

ity. The simple Calogero-Sutherland wave function can
be viewed as a universal wave function for all 1D spin-
less Luttinger liquids. For Luttinger liquids with spin,
a new wave function (which is not of, but related to, the
Jastrow form) is proposed in Sec. V.

In order to extend the analysis to higher dimensions,
where no such methods as Bethe ansatz or bozonisation
are available, we start with the wave function (61) in
second quantization. Let us first take a naive point of
view and evaluate the equal-time electron propagator nk,

(e» ~e""c',c„e""
~
e»)

(@ ~e2AA
~

@ )

in a small A expansion. In (70), A is given by

(70)

A= — d xd y 1n~z —y~:p p„:
2

GD

k

Applying Wick's theorem, a straightforward yet tedious
calculation to order A yields

2

n~=n~+ 2 ).f (ki)n~+~, n~, ~, (1 —n~, )
k1,kg

+ 2 ) f(ki)f(k2)[n&+& +& (1 —nk+i, )(1 —n&+I„)—(1 —n&+& +I, )nI, +k nI, +&, (1 —n&)j + O(A ), (72)
k1,k2

where f (k) = f d z e'" ln ~zi and V denotes the volume
of the system. In deriving (72), we have used f (z)
f( x) = f—*(z). Notice that in (72) there is no term
linear in A, i.e., the first corrections to nk are of order
A . Specializing to one dimension, Eq. (72) reduces near
kF to (with 8k = k —kF)

iG(x —y, t = 0 ) = ig(z —y, r = 0 ) . (75)

By definition, the w-ordered Green's function is

ig(z —y, 7-)

can be written in terms of a w-ordered Green's function
as

1+ &'~(k) + —" 1+ —ln~hk~
2 2 2

(1 —no) A~

2 2
1+ —ln ~hk~

d&A(&)
—A

d~A. (~), +Fs

@Fs T7- c v c~ 0 exp

where only the most singular terms have been kept and
H(k) is finite near kF. Equation (73) is consistent with
the result (68) obtained from the exact solution. Despite
the fact that the perturbation theory works well in one
dimension, we find that it fails beyond D = 1.

In higher dimensions, we need to perform a non-
perturbative calculation. Our strategy is quite general
and applies to arbitrary dimension, so we implicitly as-
sume that the dimension of space is D ) 1. The crucial
point is the obsevation that the equal-time propagator
iG(x, 0 ), i.e. ,

W. , (v) = iA = —f d ed T'B(z, x'): p p (77)

where U(z, x') = i ln ~z —z'~. In Fourier space, the "po-
tential" is

(76)

where T denotes a w ordering operator. In this formu-
lation, all the operators in the "interaction picture" are
7 independent since the "free Hamiltonian" Ho vanishes
identically. This property guaranties dramatic simplifi-
cations in the calculations. The "interaction" part of the
Hamiltonian is also w independent, i.e.,

(@FS~e" ctc e" ~@»)
(y ~e2AA~@ s)

(74) U(q) = i— (78)
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where aii = 2 vr ~ I'
( 2 ). Since we are interested in

the long-wavelength regime, we shall sum over the lead-
ing divergences at small momenta. This procedure is
equivalent to a RPA calculation and we must evaluate
the diagrams of Figs. 1(a) and 1(b).

The w-ordered propagator for the "noninteracting" sys-
tem is defined by

.
g (k )

—(1 —n„), 7-&0
ng )

7- (0.
The lowest order polarization bubble is

(s2)

mixed representation (q, ~) where only the space cornpo-
nent has been Fourier transformed. Notice that in this
representation

igp(x —y, &) = (@FslT (c (7)c (0)) l@Fs) . (79) dDk
'Pp(q) = i — gp(k, 0+)gp(k+q, 0 ) . (83)

With c (w) = c (0), we have

( )
igp(x —y, O+), 7 & 0
igp(x —y 0 ), 7 (0.

The ~ integrals in the bubble diagrams are trivial, for all
integrands are 7 independent. The efFective polarization
is then a geometric series, i.e. ,

Equation (80) implies that the zero-order "polarization"
'Pp(q)

1 —2AM (q)'Pp (q)
(84)

Pp (x, ~; x', 0) = —igp (x, 0+ )gp (x', 0 ) (s1)

is w independent. It is therefore convenient to work in the

The Hartree-Fock contribution [Fig. 1(a)] to the 7-
ordered propagator is easily seen to vanish whereas the
pure RPA contribution [Fig. 1(b)] leads to

ibg(k, r) =— dqD

2 )~&'(q)P.~(q) O'T2 p k) 7 72 p k —q, 72 —7 j p k, %1 ~ (s5)

Because of the form of the free propagator (82), the r integrals are elementary and we find

ibg(k, 0 ) = iA—D U2(q)'P, (q) n„(1 —n„) —n„q(1 —n„)2~ ~ (s6)

For our purposes, it is suKcient to evaluate (86) with the
approximation

(87)

which is valid for q —+ 0. Since we are interested in the
most singular terms only, the integral in (86) can be per-
formed by assuming a fl.at Fermi surface and expanding
around k~. In dimension D, the dominant singularity of
the momentum distribution near k~ is then

aDA
bnI, = —i (k, O

2D+1~D/2I'( Q )2

x nr, ln lbkl —(1 —n&) ln lbkl

(88)

The result (88) is interesting in two respects: (i) it is non-
perturbative in A; in the naive perturbation approach
discussed prior to this analysis, we saw that the first cor-
rections to nI, are of order A, a result which in view of
(88) is clearly false. (ii) Since we can identify the di-
mensionless constant introduced in Sec. III as p = aDA
[compare with (62)], Eq. (88) agrees with (55), i.e. , the
trial wave function (61) reproduces the Luttinger-liquid
exponent of the momentum distribution at k~ for a gas of
spinless fermions interacting via the long-range potential
(Is).

V. FERMIONS WITH SPIN

This section is devoted to a generalization of the re-
sults of the previous discussions to fermions with inter-
nal degrees of freedom (spin, isospin, and so forth). Since
the algebraic manipulations oKer no diKculty other than
those encountered so far, we content ourselves with a
brief account of the calculations. In the following, we
investigate a model with charge and spin-dependent in-
teraction

Hg ——— d xd x' ~x „x'Uxx'gp „„
x @„(x')Q), (x) (89)

The wave function (61) (with appropriate changes re-
quired for D = 3) was in fact proposed as early as 1954
in a famous paper on the RPA by Bohm and Pines. In
Ref. 21, the authors show that the plasma mode of the
three-dimensional electron gas with long-range Coulomb
forces leads to the wave function (61) in the high-density
limit. Note that the wave function (61) describes a
Wigner crystal in the limit of large interaction strength
A » 1. Yet remembering (62), this corresponds to the
regime of low densities while our analysis focuses on the
high-density limit, i.e. pp )) m, gD.
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where the two-body potential U(x, x') is SU(2) symmet-
ric, q

(91)

U(x, x') pp „„=U, (x x'—
)bye h~„+U, (x x—') o pp o.„„

(90)

We assume U, (q) and U, (q) to be long range, i.e. ,

For simplicity, we focus here on spin s =
2 fermions.

The extension to fermions with arbitrary spin s inter-
acting via a long-range SU(2s + 1) symmetric potential
is presented at the end of this section. We employ the
standard notation for the polarization tensor

II(xy, Cy) x2qt2)np, pb = —z(T (@~(xy( t1)fp(xy, ty)'lp~(x2) t2)'l/Jb(x2q t2))) (92)

The polarization in RPA follows from solving

II. ( , ) ,
= IIo(q, ) + II (q, ) „„U, (q, )„ „II (q, )

UefF (q &
~)cap, p~

U, (q)
1 —2IIp(q, ~)U, (q)

U, (q)
1 —211p(q, cu)U, (q)

where the effective interaction is readily evaluated as

2 —D~.(q) = gr.~. q (100)

for spin. Equation (98) together with (99) implies that,
at small q, the charge and the spin density Huctuations,
respectively, have the following dispersion:

The zero-order polarization is given by
—1 2 —D~8(q) = qas'7, 'q (101)

IIp(q, (u) p ~b = IIp(q, (u)b bbp~, (95)

with the definition

11p(k, ~) = —i q

(2vr) ~ —Gp(q + k, e + ~)Gp(q, E)
27r

(96)

A straightforward calculation for II,s(q, u) yields

IIp(qcu)"'(' ")-&"=
1 2n, (q,.)U.(q)'-"&

IIp(q, cd)

1 —2IIp(q, ~)U, (q)
(97)

for charge and

11:e(q ) =- .'p& ~(q ~)-~, b

By appropriate contractions of the tensor indices, we ob-
tain the density correlation functions as

2IIp(q, irJ)
vtI;~(q, (u) = II,g(q, (u)

1 —20pq~ U, q

(98)

(pg p —A:) z
A:

11:,(k, ) =
2m ' ' 2~. ' (102)

(s&s &) =i 3A:D"11:„(k,)="
Qs

(103)

Equations (102) and (103) are accurate at long wave-
lengths only. The Hartree-Fock contribution to the self-
energy is frequency independent and diagonal in spin
space, i.e.,

dD
Z (k, ur) p = —h p ~ [U, (q) + 3U, (q)]nI,

where pz
——[

g ']ii2 for j = c, s. Note that below two

dimensions (100) and (101) lead to different dispersion
laws for charge and spin density modes while at D = 2
the density fluctuations acquire a finite gap, both in the
charge and spin channels. The model Hamiltonian with
interaction (90) has a certain "spin-charge separation"
in the sense that the collective density modes propa-
gate with different dispersions. However, we emphasize
that the situation here is very different from that in one
dimension.

Integrating (98) and (99) over frequency, we infer the
static charge-charge and spin-spin correlation functions,
respectively,

3 2IIp(q ~)
4 1 —2IIp(q, ~)U, (q)

(gg)
The pure RPA contribution is

(104)

ZRP"(k, ~) ~ =x d q de

(2vr D 2vr
U(q)~~i ~~II,fr—(q, )p p ~~ (q)„p p pGp(k —q, (u —e)~„ (105)
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where Gp(k, ld) p = b pGp(k, u). On substitution of (97) into (105) it is readily seen that the full self e-nergy is
diagonal in spin space. Performing the frequency integral in (105), we have

- X/2

Zp (k~) p = b pl/2
m

dDq

(2vr) ~
q [U-(q)]" (q)

( - - 1/2
~ —e„,—sgn(ek+, ) ~ q '~'U, (q) —ib

l

3 q [U, (q)]
/'

( - -1/2
u) —ok+~ —sgn(eg+~) l q

~' U, (q)

(lo6)

Applying the same scheme of approximations as in Sec. III and keeping only the most singular terms, we arrive at

2 +'~ '(2 —D)I'( —)

). a„(q,) —sgnbk

a„ (A) —sgnbk
~„(q,) —sgnbk b, (ug ay (lbkl) + sgnbk 0 ~A,+ ln +ln
~„~(A) + sgnbk A~q ~„~([bkl) —sgnbk A~q

(lo7)

E (k, ~) = qgA~aln( —') (lo8)

where w„(q) = g~ p q for a = c, s. When lAwgl (
ur„, (q, ) and lAur~l ( at&, (q, ), the self-energy can be ap-
proximated by

bng = -i

v, (k —k~) [v, , denote the velocities of the charge (c)
and spin (s) density fluctuations].

The momentum distribution nJ, ——nk + bnA. is deter-
mined from the trace of the self-energy

[Gp(k, cu)]' ZR (k, ~) . (111)

Subsituting (106) into (111),we conclude
109cs pc+ ps

2D~D/2I'( D
) 2[p, +3p, ] p bk bk—(1 —n„) ln—

AThe electron propagator in this regime takes the form

G(k, ~) p = (llo)

The result (110) is similar to that of Sec. III for the
spinless fermions [compare with (48)]. In two dimen-
sions, the electron propagator exhibits an isolated pole
with a spectral weight that scales to zero as the size of
the system increases. For 1 ( D ( 2, there are vari-
ous regimes as in the spinless case and there is a region
where the propagator shows no quasiparticle structure
but a branch cut reminiscent of that occuring in the 1D
Luttinger liquids. ' The spectral function has three sin-
gularities at w = v~(k —k~), vp (k —ky) + tv„, (lk —ky l),
and v~(k —kF) + ay, (lk —k~l), while in one dimension
there are two singularities located at a = v, (k —k~),

(112)
Following the ideas of Sec. IV, we now consider a wave

function related to, but not of, the Jastrow type to de-
scribe the long-wavelength charge and spin density Huc-
tuations, i.e. ,

(113)

where S denotes the usual spin operator S
2gt (x)cr p@p(x). The ansatz (113) is clearly a spin sin-
glet (S' = S = 0). The strategy of Sec. IV applies with-
out essential modifications. Again, it is convenient to
introduce a w ordered Green's function,

le) = exp
l

— d x d y 1nlx —yl: p py + SSy '. l—(A

(2 x y 4 x y

&&
I @Fs),

FS T XV p yo
ig(x —y, ~) p =

(+Fs T exp

(
exp drA(r) l @Fs

)
dr%(v) @ps)

)

(114)

where

A = — dDx dDx' 1n lx —x'l: p p' + —S S
aV 4

I

A-dependent polarization 'P,~(q, A) p ~s has a structure
analogous to that of (97) and leads to the charge

We evaluate (114) within a RPA-like calculation. The
»p(q)+:s'(q ) = +.~(q»)-,» =

4p~ (116)



8648 P.-A. BARES AND X.-G. &EN

and spin

&:~(q, A) = —Cp &.~(q A)-p, ~s ~,'s
3 2'Pp(q)
4 1 —4A'Po (q) U, (q)

' (117) ab 1
O-

p
——6 blab

— bbb P.28+ 1
(128)

is adopted. In (127), o b&, with n, p = 1, . . . , 2s + 1 and
a, 6 = 1, . . . , 28 + 1, represents a set of traceless tensors
(in both the upper and lower indices)

density correlation functions at finite interaction strength
A. In (116) and (117), we have

M (q) = —i

The greek indices refer to the "matrix" indices while the
latin ones parametrize the "basis" set. Notice that there
are 4s(s + 1) linearly independent traceless tensors and
so the matrices o are not all linearly independent. To
verify that (127) is invariant under the special unitary
group, we note that

U, (q) = —i ab ba 1
o po.q

——b gbp~— 28+ 1
(129)

(pbp b) = i'P'~(k, A) =
2AaD

(120)

(SI,S I, ) = i'P;s(k, A) =
8AaDz

(121)

and ao is given in Sec. IV. The long-wavelength behavior
of the static charge and spin correlation functions follows
from (116) and (117) as

where P p ~s = b s8p~ is the permutation operator act-
ing on the tensor-product space of two interacting parti-
cles. But P p ~g is clearly connected to the fundamental
representations of SU(2s + 1) and can be expressed as a
polynomial of degree 2s in the scalar product S(x) .S(y),
where S(x) denotes the usual spin vector operator.

Within RPA, the long-wavelength behavior of the
charge and spin tensor correlation functions are readily
found,

p. = aDA, (122)

On comparison of (102) and (103) with (120) and (121),
we infer the relation between the interaction charac-
terized by p and p, and the ansatz wave function
parametrized by A and LA,

(PbP-b) =
2pc

b b 4s(s+ 1) kD

28+ 1 2p,

(130)

(131)

p, = aDAA.

Equations (122) and (123) imply that

where p~ =
[12 s~&1~ ]~/ for j = c, s. In (131), Sbb repre-

sents the Fourier transform of the tensor spin operators
S." = &t (x)&.p&/3(x).

For the momentum distribution deviation bni„we find
2

9Ds = + gDC. (124)

hnb = —iTr 8g(k, 0 ) (125)

The mean occupation number distribution in momentum
space is determined from

(2s + 1) [p, + 4s (s + 1)p. ]
2D+17rD/2I (

D
)

bk bk
x nI, ln ——(1 —nl, ) ln

A A
(132)

Substituting the results of our calculations into (125), we
Gnd

bnI, = 2nDA [1+3A]
2D+z~D/21 (D)

n'„In~ok~ —(1 —n'„) In~ok~ .
2

(126)

Equation (126) is seen to agree with the RPA result (112)
on account of (122) and (123). We note that, for D = 2,
the introduction of internal degrees of freedom in the
problem does not modify in an essential way the picture
obtained in the spinless case.

We now extend these results to fermions of spin 8 in-
teracting via long-range spin-dependent forces. Consider
(89) with the SU(2s + 1) symmetric potential

/A
/e) = exp/—

(2
d xd y 1n~x —y~: p py+AS S„

x ~@Fs) (133)

The state (133) transforms as the singlet representation
of SU(2s+ 1). Following the strategy developed earlier,
we calculate the small momentum behavior of the charge

(PIP—b) =
2AaD

(134)

The full propagator near the Fermi surface can be eval-
uated. For brevity, we omit the corresponding discussion
here, for no new elements appear in the analysis. We
proceed with the ansatz for the wave function associated
with the density Huctuations,

U(q) /3 ~s = U, (q)b p6~s+ (2s+ 1)U, (q)o po

(127)

where the convention of summing over repeated indices

and the spin tensor

b 4s(s + 1) kD

28 + 1 2AaDL
(135)



BREAKDOWN OF THE FERMI LIQUID DUE TO LONG-RANGE. . . 8649

correlation functions. Comparing (130) and (131) with
(134) and (135) leads to

AaD (136)

p, = AaDL, (137)

(2s + l)a~A [I + 4s(s + 1)4]
2&+~~&l21 (Q)

x nq ln ~8k~ —(1 —nl, ) ln ~bk] (138)

Taking into account (136) and (137), Eqs. (132) and (138)
agree. Our results provide strong support to the idea
that, in two dimensions, a system of fermions with spin
s interacting via SU(2s+ 1)-symmetric long-range forces
is indeed a liquid of Luttinger type.

VI. CONCLUSIONS

In this work, we have demonstratively given evidence
for the existence of Luttinger liquids in space dimension
higher than one. We have invoked the infrared catastro-
phe as an intuitive guide to the breakdown of the Fermi-
liquid fixed point. In two space dimensions, fermions
(with and without spin) interacting via long-range loga-
rithmic forces form a liquid of Luttinger type (more pre-
cisely a Z = 0 Fermi liquid). The single-particle propaga-
tor has an isolated pole with a residue that scales to zero
as the size of the system increases. For 1 ( D ( 2, an in-
teraction of the form gr ~ ~ changes the Fermi liquid
into a Luttinger liquid. In this case, the electron propa-
gator is fully incoherent and exhibits a branch cut struc-
ture reminiscent of that occurring in the 1D Luttinger
liquids. ' The spectral function has singularities at u =
vp(k —kp) and w = v~(k —k~)+su„(k k~) in the spi—nless
case and at w = vp(k —k~), v~(k —k~) + u, (k —k~),
and v~(k —k~) + w„, (k —k~) for spin s =

2 electrons.
The singularities at the charge ek + w„, and spin eI, +u„,
fluctuation energies also occur in the spectral function
of the 1D Luttinger liquid. However, the typical Fermi-

as in the spin s =
2 case. This in turn requires (124) for

the ansatz (133) to be applicable to the model Hamilto-
nian with interaction (127). The momentum occupation
number distribution function is evaluated similarly,

liquid dispersion singularity at ~ = v~(k —k~) is absent
in one space dimension. The Luttinger-liquid exponent
qD that controls the electron propagator and the momen-
tum distribution singularity near the Fermi surface has
been obtained by four difFerent methods for 1 (D & 2.

As a matter of fact, our results are limited by the ap-
proximations we employ and terms may arise which have
escaped our scrutinity. Nonetheless, our results provide a
mechanism for the breakdown of Fermi liquid beyond one
space dimension. The models we have been investigat-
ing all involve long-range forces and may be considered,
at first sight, as irrelevant to real physical systems. We
share the conviction that this not so, however. For ex-
ample, in two spatial dimensions, U(k) = ~&', represents a
logarithmic potential which corresponds to the longitu-
dinal part of a two-dimensional gauge interaction. The
IRC discussed here might have some consequences for
the two-dimensional gauge theories of high-T supercon-
ductors as well as for the quantum Hall state at filling
fraction v = —.2'

In addition to addressing the question of the existence
of Luttinger liquids in D ) 1, we propose an ansatz wave
function that correctly reproduces the Luttinger-liquid
exponent of the momentum distribution singularity at
the Fermi surface as well as the long-wavelength behavior
of charge and spin correlation functions in the ground
state of the interacting system. Starting from this wave
function, we have deviced a strategy to evaluate static
properties. The method applies to both fermions with
and without spin. In the case of fermions interacting via
long-range spin-dependent forces, the ansatz we adopt is
not of, but related to, the Jastrow-type wave function.
Our approach should be useful for dealing with three-
dimensional strongly correlated sytems such as nuclear
matter and liquid helium.
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