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Electronic structure of cx-Sn and its dependence on hydrostatic strain
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The electronic structure of Q.-Sn is calculated within the local-density approximation. As a result
of the inadequacies of this approximation for the description of excitation energies, the band structure
is corrected to agree with energy differences at points of high symmetry by introducing additional
external potentials on the atomic sites as well as on the interstitial positions of the diamond lattice.
The resulting band structures are used to obtain efFective masses as well as hydrostatic deformation
potentials.

I. INTRODUCTION

The inverted band-structure model for Q.-Sn was first
put forward by Groves and Paul. In the Groves-Paul
model, n-Sn is a semimetal (zero fundamental band gap)
in which the ordering of the bands at I is I'7 I'7„
I'8„, increasing in energy, with the Fermi level lying at
I'8+„. The k. p interaction between the I'7 and one
of the I'8 levels gives the I'8 band positive curvature.
Two subsequent theoretical studies of the band struc-
ture, the nonlocal pseudopotential calculation of Che-
likowsky and Cohen and the relativistic orthogonalized-
plane-wave calculation of Pollak et al. , support the con-
jecture of Groves and Paul. In the present study the elec-
tronic structure of Q,-Sn is investigated self-consistently
by the linear-muffin-tin-orbital (LMTO) method within
the local-density approximation (LDA) including the
spin-orbit (SO) interaction as a perturbation. The treat-
ment of relativistic effects, in particular the SO interac-
tion, is essential to calculate accurate band structures for
a-Sn. We use the atomic-spheres approximation (ASA).
Additional potentials are introduced in both the occupied
and empty spheres in order to make up for the deficien-
cies of the LDA as discussed below.

In Sec. II results for the band structure of the material
with the equilibrium lattice constant are presented along
with a discussion of the additional potentials. The energy
levels at selected high-symmetry points are tabulated and
are shown to agree well, in most cases, with previously
published data. Section III contains a discussion of the
band structure under hydrostatic strain. In Sec. IV we
present the conclusions.

II. ENERGY BANDS

The calculations in this work are performed using the
LMTO method within the LDA including the SO in-
teraction and empty spheres. We include the combined-
correction term in order to account for the overlap of
the spheres. It is well known that LDA-based band-
structure calculations on their own are inadequate to ac-
count for measured excitation energies in semiconduc-
tors. As a consequence of this inadequacy, the band

gaps between valence and conduction bands are under-
estimated. In addition, the effective masses of all bands
are in error. The so-called scissors operator, which pro-
duces a rigid shift of the conduction bands, is an unsat-
isfactory solution to these problems as it does not cor-
rect the dispersion and thus leaves the effective masses
in error. A solution to this problem is provided, within
the microscopic theory, by the GW correction. It is
found that GW calculations give excitation energies close
to the experimental values. The implementation of the
GW correction, however, is computationally expensive.
A semiempirical solution to the deficiency in the LDA
mentioned above, adopted in this paper, is afforded by
adding to the LDA potential Vz, DA an extra potential
V,„& localized at the spheres and possessing the full crys-
tal symmetry. By varying the strengths and functional
form of this potential in the empty and occupied spheres,
control over the gaps is attained. V t is an additional,
externally introduced potential which is included in the
self-consistency iterations. We use the fact that the nec-
essary gap corrections to be imposed on - the LDA are
known from experiment or more complete calculations
such as those of Ref. 8.

We now describe the procedure by which the band
structure is corrected. In Ref. 6 V, t is composed of b-like
potentials Vj ——V (R /r) exp[—(r/B ) j, where r is the
radial distance centered at each sphere. In the present
work, Vq is nonzero only in the occupied spheres. R is
fixed at a small value and V is then adjusted for each dis-
tinct type of atom. Due to the b-like nature of the poten-
tials introduced in Ref. 6, mainly states possessing 8 char-
acter can be shifted by means of V t, i.e., via Vq, as it has
hitherto been implemented. Thus, in addition to Vj, po-
tentials V2 localized in the empty spheres growing rapidly
toward the occupied spheres are introduced. V2 is taken
to be V2 ——V, (r/B2) inside and zero outside the empty
spheres where B2 and V ) 0 are parameters to be de-
termined. This part of the potential should produce the
necessary shift between bonding and antibonding wave
functions of the valence and conduction bands, respec-
tively, i.e., between wave functions of the same angular
momentum, since the antibonding conduction-band wave
functions have more weight towards (and in) the empty
spheres than do the corresponding bonding valence-band

0163-1829/93/48(12)/8629(7)/$06. 00 48 8629 1993 The American Physical Society



8630 BRUDEVOLL, CITRIN, CARDONA, AND CHRISTENSEN 48

wave functions. In this way, the p-to-p gaps are adjusted,
and the I'8 and I'6 bands attain their correct positions
with respect to the top of the valence band. The form
chosen above for V2 is not unique; a potential able to
affect the uncorrected wave functions having significant
weight near the empty-sphere boundaries must be cho-
sen. The strength of V2 in our calculations achieves a
maximum of 0.153 Hartrees at the edge of the empty
spheres. Similar to the small modification to the wave
functions efFected by the GR' correction, V2 also leads
to only small changes in the wave function.

The correction V1 on occupied sites depends on the
atom occupying the sphere; however, preliminary calcu-
lations show that the correction V2 on empty sites is at
most only weakly dependent upon the material with the
following caveat. A scaling of the correction V2 must be
carried out whenever the radius of the empty spheres
changes, such as from material to material or upon the
application of stress. We chose it such that
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FIG. 1. Energy bands of n-Sn calculated with V,„t, using

the parameters of Table I.

where C is a constant and the integration is over the
empty-sphere volume. Calculations show that deforma-
tion potentials for Ge using Eq. (1) are in significantly
better agreement with experiment than other LMTO cal-
culations using V1 in all spheres. In addition, V1 auto-
matically obeys a similar relationship due to its high de-
gree of localization at the occupied-sphere centers. With
the corrections V1 and V2 the energy levels at L and X
as well as at I' attain values close to those measured ex-
perimentally; however, we have found a systematic ten-
dency for the effective masses calculated from the cor-
rected band structures at I' to be overestimated, whereas
they are close to the measured values at L. The warp-
ing of the valence bands is also slightly larger than found
experimentally.

Crudely adjusting the energy levels results in efFective
masses in rough agreement with experiment. Further
refinement might be possible. If the energy levels and
effective masses are correct, one expects the details of
the band structure, the momentum matrix elements, and
consequently the optical properties, also to be correct.
The adjusted potentials can be used in calculating de-
formation potentials, both hydrostatic and uniaxial (the
latter provided the nonsphericity of the potentials can be
neglected), and, because C appears to be only weakly
dependent upon the material, to calculate the energy
bands of heterostructures.

The corrected band structure of o.-Sn is shown in Fig.
1 along with the double-group symmetry labels at points
of high symmetry. The values of the parameters for V, &

used are listed in Table I,. The energy levels at selected
high-symmetry points are given in Table II along with
results from the nonlocal-pseudopotential calculations of
Cohen and Chelikowsky and available experimental val-
ues. In addition, the uncorrected, i.e., with V t ——0, en-

ergy levels are included. We see that several of the energy
gaps are in significant error before correction, most no-
tably the ordering of the levels I'& and I 7„. SO splittings

and several other important energy differences calculated
with the LMTO and nonlocal-pseudopotential methods
as well as experimental results are also tabulated in Ta-
bles III and IV, respectively. We have not included the
value E(I's, ) = 2.72 eV as given in Ref. 11 as it seems
unreasonably high. Our adjustments are somewhat ham-
pered by the lack of a complete and consistent set of
experimental values for the energy gaps.

Selected effective masses are listed in Table V. We And
that the effective masses at I' are systematically higher
than the experimental values. This is due to two reasons.
First, the spherical charge symmetrization in the ASA
leads to momentum matrix elements that are too small.
Second, our correction to the LDA is somewhat crude.
We next consid. er the Luttinger parameters p1, p2, and
ps (Ref. 12) and momentum matrix elements (see Table
VI ). The Luttinger parameters are calculated directly
from the effective masses using

1
LE,HH

= +1 + 2+2)
(100)

1
LE,HH
(111)

The superscript LE denotes light electrons. These states
correspond to those which in cubic semiconductors with-

Occupied spheres:

Empty spheres:

R = 0.015 Bohr
V = 142 Hartree
Rq ——2.7 Bohr
V = 0.05 Hartree

TABLE I. Best-fit correction-potential parameters in
atomic units for o.-Sn. The occupied- and empty-sphere radii
are both 3.02 Bohr.
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TABLE II. Selected energy levels in eV at points of high symmetry for cx-Sn. The zero of energy
is taken at the top of the valence band (I's„,). The column labeled LDA contains values of the
energy levels obtained self-consistently with V,„&

——0. The values in the column labeled "Corrected"
include the additional potentials in V,„~ using the parameters listed in Table I.

Level

E(1's.)
E(r+„)
E(r;.)
E(r;.)
E(r;.)
E(r+„,)
E(Xs )
E(Xs )
E(Xs,)
E(Ls.)
E(Ls.)
E(L..)
E(L.s.)

E(Ls.)
E(L',s.)
E(L,,)

LDA

—10.978
—0.744
—1.280
+1.740
+2.299

0.000
—7.961
—2.765
+0.569
—9.406
—6.749
—1.621
—1.148
—0.434
+2.912
+3.150
+6.332

Corrected

—10.432
—0.726
—0.406
+2.055
+2.610

0.000
—7.465
—2.560
+1.030
—8.880
—6.301
—1.508
—1.042
+0.175
+3.288
+3.537
+6.637

Nonlocal
Pseudopotential

—11.34
—0.80
—0.42
+2.08
+2.66
0.000
—7.88
—2.75
+0.90
—9.44
—6.60
—1.68
—1.20
+0.14
+3.48
+3.77

Experiment

—0.8
—0.413, —0.634'
+1.98
+2.48

+0.115, +0.09, +0.092"

From Ref. 2.
Estimated from the energy splitting at L in Ref. 16.
E(r;, )

—=E, .
Prom Ref. 16.
From Ref. 27.
From Ref. 28.

I From Ref. 29.
h Prom Ref. 30.

out an inverted band structure are called light holes. HH
stands for heavy hole. We find

1 ( 1 1

4 ~LE ~HH
(111) (ill) )

= —6.84.

HH LE
(111) (111))

P2 — LE HH
(100) (100) )

= —12.00,

= —8.45,

(Alternatively, pl ——
2 [(m(100) ) + (m(100) ) j = —12.14.)

The signs of the Luttinger parameters have been chosen
to conform with the standard convention. [In our dis-
cussion of the effective masses and momentum matrix
elements, we use atomic units, i.e., mo ——e =5 = 1, energy

TABLE III. Spin-orbit splittings in eV for n-Sn. The column labeled LDA contains values of the
energy levels obtained self-consistently with V,„t——0. The values in the column labeled "Corrected"
include the additional potentials in V, t using the parameters listed in Table I.

Split ting

a.(r+„.—1+„)
Al(A4, s —As )
a,'(r;, —r;.)
A', (L4 s, —Ls, )

LDA

0.744
0.483
0.559
0.238

Corrected

0.726
0.472
0.555
0.250

Nonlocal
Pseudopotential

0.80
0.48'
0.58
0.29

Experiment

0.8
0.482
0.300, 0.50
0.228

From Ref. 2.
Estimated from the energy splitting at I in Ref. 16.
Actually the energy splitting at L in Ref. 2.
Reference 11.

'From energy levels given in Ref. 16 as listed in Table II.
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TABLE IV. Other energy gaps in eV for n-Sn. The values in the column labeled "Corrected"
include the additional potentials in V,„~ using the parameters listed in Table I.

Gap

Z(A6 —A4, 5 ) = Zi
Z(A6, —A6„) = Zi + A]
z(r;, —r+„.) = z,'
z(r;, —r+„.) = z,'+ ~',
z(z6. —&p. )
z(xg —xj„)= zg
z(LS. —L4 s.) = zi

Corrected

1.209
1.681
2.055
2.610
3.040
3.590
4.330
4.579
5.045

Nonlocal
Pseudopotential

2.08
2.66

3.65
4.68
4.97
5.45

Experiment

1.316
1.798
1.98,'2.25
2.48
2.94
3.681
4.28
4.51, 4.8, 4.20, 4.4, 4.39
4.89

From
b From
'From

From
From

~From

Ref. 2.
Ref. 11.
Ref. 16.
Ref. 31.
Ref. 32.
Ref. 33.

P= (r".
,.Ip*lr )

Q= (r",.I& Iran. ,.)
using single-group notation. (The phases of the wave
functions which correspond to the values of the matrix
elements given here are defined in Fig. 1 of Ref. 9.) From
k p theory, P and Q are related to the k p parameters
F andMby

2P2

EQ

Hg+ H2,
2Q2

E/ + 2~/ '

2

9 E/+ 2~/
0 3 0

1 1 9
(F —G —M)——————q,

6 3 4
F1

):I(*l& l~g) I'

—2 '

The energies are referred to as 18,. See also the defini-

tions of EQ, EQ, and LQ in the tables. The k ~ p param-
eters are related to the Luttinger parameters by

1 1
pi ————(F + 2G+ 2M) —1+ —q,3 2

'

1 1
p2

————(F + 2G —M) ——q,6 2
1

p2 —ps ————(3G —2M) —q.
6

(2)

in Hartree units, and Luttinger parameters in units of
h /(2me). j

The inomentum matrix elements P and Q are defined
as

Since we do not include f orbitals in our LMTO calcula-
tion, we take H2 ——0, i.e., the k.p coupling to the high-
energy f-like l 2s band is neglected. We find F = 46.366
and P = 0.588. %le also have M = —5.48, q = 0.279,
Q=0.494, and G= —0.992. The value of q is close to that
calculated in Ref. 13. A formula for the inverse mass of
the split-off valence band can be obtained by noting that
this quantity is essentially pq modified by the appropri-
ate gap in E, G, and M, and including the effect of q.
One finds

1 1t EF
o =1+-msa 3~ E

2Ez G 2(E0+ sAo)M l

(3)

Er, not given in the tables, is Er (I's ) = 8.435 eV.
Solving Eq. (3) for F, we can check our numerical band-
structure results for consistency by comparing with the
value of F obtained from Eq. (2). We find from Eq. (3)
that P = 0.555, representing a deviation of 6 % be-
tween the two values of P. This indicates that the k-p
theory, including the bands mentioned above as interme-
diate states, has a minor diKculty in fitting the numer-
ical results for n-Sn. A possible explanation is that the
SO band, lying lower in energy than I'&, has a slightly
stronger k - p coupling to the 4d core levels. This effect
has not been included in the parameters above. Consid-
ering the energy difference involved, however, the effect
does not appear to be large enough to account for the
entire discrepancy.

III. DEFORMATION POTENTIALS

The absolute hydrostatic deformation potential is de-
fined as the logarithmic volume derivative of a given en-
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ergy level with respect to an absolute energy reference,
(discussed next) while relative hydrostatic deformation
potentials are given by the logarithmic volume deriva-
tive of band gaps and splittings at constant temperature.
Usual optical experiments measure energy gaps and split-
tings and thus only relative deformation potentials are
directly accessible by these means. Nevertheless, abso-
lute deformation potentials have important implications
as discussed in Ref. 18. Our absolute deformation poten-
tials are obtained using as the energy zero the reference
of the LMTO-ASA energy scale, where the potential out-
side a single atomic sphere with charge Q is Q/r, with r
here the distance from the sphere center. The ones rel-

evant to scattering by longitudinal phonons in transport
eKects must actually be referred to the dielectric midgap
energy (DME). In order to convert the values of Table
VII to those referred to the DME, one must add to them
5.9 eV."

Selected absolute and relative hydrostatic deformation
potentials are listed in Table VII together with calculated
values from Refs. 19 and 20. The data in the literature
are rather sparse, so a critical examination of our values
is diKcult. One notes, however, qualitative agreement
for the absolute hydrostatic deformation potentials clos-
est to the Fermi level of the three levels at I' with the
calculations of Ref. 20 which were obtained using the

TABLE V. Effective masses from the corrected band structures in units of the free-electron
mass m0 for o'-Sn.

Electrons
I's", (Light electrons)

LE
$100)

P10)
m(111)

This work

0.0344
0.0377
0.0389

Experiment

0.0233
0.0244, 0.028
0.0251

Lo+, (Heavy electrons)'
dmoos
f
opt
HE

mJ

0 ~ 202
0 ~ 109
1.478
0.075

0.21'
0.13,g0.15"

Holes
p+
HH
$100)

P10)
m(

0.2102
0.3996
0.5974

0.195, 0.26~

r„-

(100)7 (110)) (111) 0.087 0.058

I'+
so so so
(100) & (110)& (111) 0.051 0.041

Valence bands at L
Longitudinal masses, m~~ (111)

4,5v 0.5361
0.5361

Transverse masses, m~
495v

L6v

0.1149
0.1688

From Ref. 27.
An average value from Ref. 16.
L6, refers here to the L6 level 0.175 eV above I'8, .

'm = ~ m" mH m"
II

Prom Ref. 30 ~

HE HE(m~ m" )
Directional average from Ref. 28 ~

"Directional average from Ref. 16.
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This work Other work

3'1

'Y2

'Y3

M
q

G
P

-12.00
-8.45
-6.84

+46.366,+41.23"
-5.48
0.279
-9.77
-0.992

+0.588,+0.555
+0.494

-14.9?
-10.61
-8.52

0.30
-11.84

From Ref. 13.
From the split-ofF band.

empirical-pseudopotential method. Preliminary calcula-
tions of hydrostatic deformation potentials for Ge using
the present method of correcting the band structure indi-
cate that the calculated deformation potentials are more
accurate than those having a Vj-like potential also in the
empty spheres.

TABLE VI. Luttinger parameters, momentum matrix el-

ements, and k p parameters (in atomic units) obtained from
the energy levels and effective masses of Tables II and V, re-

spectively, compared with published values.

Insight into the deformation potential for the SO split-
ting dAo(rs+„. —r~+„)/d ln V for n-Sn can be gained by a
comparison with Ge. In Ref. 21 it was found that simple
scaling arguments fail to give a good estimate of this
quantity and overestimate the deformation potential by
a factor 4. The reason for this is that the valence-
electron density near the core is not affected by volume
changes to the degree implied by the simple scaling ar-
guments. Self-consistent band-structure calculations be-
ginning with free-atomic potentials gave the value —0.17
eV, in reasonable agreement with experiment. One notes,
however, that in Ref. 23 this deformation potential was
found to be +0.02 eV, also starting with free-atomic po-
tentials.

Finally we comment on the deformation potential
for the SO splitting dA&(L4+s, Ls, )/—din V. ' As a
rule of thumb, dAo r/din V = —0.5 eV. The agree-
ment with this rule is not bad, except for the case of
dA&(L4s, —Ls, )/din V = +0.08 eV which shows strong
deviation from that rule, both in sign and magnitude. In
Ge the value +0.067 eV was obtained. Experimental re-
sults for this deformation potential were not available. It
is possible that the small value is related to the admix-
ure of higher d orbitals into the conduction-band wave
functions.

IV. CONCLUSIONS

d z(l —r+„)
din V adZ(1+ —r+ )
din V

da(r, —r+ )
din V

d E(X5 —I'+„)
d1n V

d Z(L, 6+. —I.4,.)
din V

dz(x5 —x5„)
din V

de(rs+. .)
d ln V

da(r7. )
d ln V

dz(r )
din V

dip (I'+ —I'+„)
din V

dip'(r;. —r;.}
gf ln V

dD~ (A45v —Aov )
de V

dD~ (645 —L6 )
gin V

dZ(I 4 —I'+„)
d ln V

dz(L, .—r,+„,)
d ln V

This work

-7.04

-2.14

-0.514

+1.11
-3.76
-2.46

-7.77

-14.81

-8.41

-0.36

-0.12
-0.24

+0.08

-0 ~ 52

-0.41

Other calc.

-1.89

-3.3
-13.7'

-5.8'

L6 refers here to the L6 level 0.175 eV above I 8„,.
From Ref. ]9.

'From Ref. 20.

TABLE VII. Selected deformation potentials in eV for
o.-Sn under hydrostatic strain. The values in the column la-
beled "This work" include V,„t as determined from the cor-
rected band structure. 5.9 eV must be added to the absolute
deformation potentials in order to obtain them within the
DME model (Ref. 19).

We have presented results for the band structure of
o.-Sn calculated using the LMTO method including cor-
rections for the inadequacies of the LDA. Additional po-
tentials V2 on the empty spheres were introduced in order
to be able to adjust calculated energy gaps possessing sig-
ni6cant p-to-p character. After the introduction of this
potential, band structures in good agreement with empir-
ical pseudopotential calculations were obtained. The ef-
fective masses are overall in agreement with experiment.
Having obtained. reasonable values of the energy gaps
and effective masses, one also expects reasonable values
for the optical matrix elements and hence the dielectric
function.

Total-energy calculations in the LDA have recently
been carried to obtain the structural parameters of Sn
under hydrostatic pressure. The introduction of the
external potential V t is not expected to improve the
agreement with the experimental data in this regard. A
better route to more accurately calculate energetically
global properties, such as cohesive parameters, is via the
GR' approach not in the average way carried out here.
For calculating energetically more local properties, such
as optical spectra, the present approach is of considerable
utility.

Selected. de formation potentials und. er hydrostatic
strain are presented. Due to the sparcity of data with
which to make a comparison, it is diKcult to evaluate the
accuracy of calculated values; however, based on calcula-
tions for Ge (Ref. 26) we expect the hydrostatic deforma-
tion potentials obtained here to be more accurate than
previous LMTO results. The Ge results also supports



ELECTRONIC STRUCTURE OF a-Sn AND ITS DEPENDENCE. . . 8635

the conjecture that the potential V2 on empty spheres
obeys the scaling law of Eq. (I). In addition, because
calculations show that C does not depend strongly on
material, the potential V„& can be used in the empty
spheres at heterojunctions, for both lattice-matched and
pseudomorphic structures.
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