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Self-consistent calculations of the Zeeman splitting in metals
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The electronic structure of metals in an external magnetic field has been investigated by means of a
version of the linear-muffin-tin-orbital method, in which the magnetic field, exchange and correlation
efFects, and spin-orbit coupling have been included in the self-consistent iterations. The Zeeman splitting
of cyclotron orbits has been calculated and compared to de Haas —van Alphen experiments for the alkali
metals, the noble metals, and the platinum group metals. Also the paramagnetic susceptibilities have
been calculated. Particular attention is paid to the importance of the orbital magnetic moment. A de-
tailed treatment of palladium is included in order to evaluate the calculational method. Detailed com-
parisons with experimental data have been made wherever possible. In some cases the agreement be-
tween theory and experiment is very good. Possible reasons for lacking agreement are discussed and
suggestions for improved theoretical procedures are made.

I. INTRODUCTION

Investigations of the electronic structure of metals in
external magnetic fields are important for our knowledge
and understanding of fundamental concepts in quantum
theory such as exchange, correlation, and relativistic
effects. The sharpening of the conceptual tools in turn
contributes to an improved interpretation of experimen-
tal data. Various experimental techniques such as sus-
ceptibility measurements, neutron diffraction, nuclear
magnetic resonance, and conduction-electron-spin reso-
nance can give information about the modifications of the
electronic structure when the system is subjected to an
external field. Of special importance for the band struc-
ture of metals is the de Haas —van Alphen (dHvA) effect,
which directly measures the geometry of the Fermi sur-
face. With the dHvA effect electrons in one specific cy-
clotron orbit on a Fermi-surface sheet can be studied.
This resolution in momentum space is unique for the
dHvA effect, and makes the results very suitable for com-
parisons with band calculations.

In systems without spontaneous polarization, i.e., di-
amagnetic or paramagnetic metals, the effect of the field
is twofold: to split the doubly degenerate states by a cer-
tain amount of energy, the Zeeman splitting (ZS), and to
induce diamagnetic currents. The ZS of cyclotron orbits
on a Fermi-surface sheet can be deduced with the dHvA
effect. Such investigations in the alkali metals show that
the ZS is enhanced as compared to the free-electron
behavior; no anisotropy can be detected, however. ' In
the noble metals the enhancement is small, but the anisot-
ropy of the ZS is evident. In the transition metals, the
amount of enhancement varies, but there is always strong
anisotropic behavior. '

These experimental findings have had no quantitative
counterpart in theory. The object of the present paper is
therefore to present a model that extends conventional

band calculations to include the effects of an external
magnetic field. Earlier calculations of the ZS were semi-
perturbational: they first established the self-consistent
band structure, Fermi surface, and cyclotron orbits in
zero field, and then applied the field in the last variational
step (and thereby exchange and correlation effects on the
ZS are not included) and calculated the cyclotron orbit g
factor by a time-weighted average of the energy splitting
around the nonsplit orbit. We recently presented a
self-consistent method based on a standard density-
functional approach in the local-spin-density approxima-
tion (LSDA) to calculate the energy-band structures.
The external magnetic field is included by adding a Zee-
man operator to the effective Hamiltonian, which also
contains a spin-orbit coupling operator and a local
exchange-correlation potential. The resulting equations
are then iterated to self-consistency. No attempt is made
to cover the diamagnetic effects.

In Sec. II we discuss some fundamental concepts in
density-functional calculations when an external magnet-
ic field is present. Section III treats the comparisons be-
tween dHvA experiments and calculations of the ZS.
Our method of calculation is presented in Sec. IV. Using
palladium as an illustration, we present in Sec. V a fairly
detailed interpretation of its magnetic structure as it
emerges from the combined results of theory and experi-
ment. The calculated paramagnetic moments and esti-
mates of the total susceptibilities are presented in Sec. VI,
and the ZS of cyclotron orbits are presented and com-
pared to experiments in Sec. VII for the alkali metals, the
platinum group metals, and the noble metals.

II. THEORY

We begin with a sketch of the fundamental framework
for the theory of the electronic structure of matter in
external magnetic fields. The presence of a magnetic field
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carries important implications at several conceptual lev-
els. The calculations to be described later are of density-
functional type and it will therefore be natural to concen-
trate on such modifications of eftective one-electron equa-
tions of Kohn-Sham type which will be necessary when a
magnetic field is present. We start out at a more general
level, however.

The Schrodinger equation,

h
V + V(r) .%(r)=E%'(r),

8m m

for an electronic system in the absence of any external
field is transformed to the following equation after the in-
troduction of an electromagnetic field, characterized by a
scalar potential P(r, t ) and a vector potential A(r, t ) (e is
the absolute value of the charge):

2

V+ —A +V+/ .%(r)=ET(r) .ih e
27T C

(2)

The electric field E and the magnetic field (strictly speak-
ing the magnetic induction) B are related to these poten-
tials in the following way:

E= —V4 ——;B=VX A .
1 BA
c Bt

The fields are invariant under gauge transformations of
the potentials:

A'= A —Vy; P'=P+—1 BY

c Bt

For the wave function the gauge transformation means
multiplication by a phase factor:

tivistic case —there should be a many-electron equation
and a many-electron wave function at the start of the
quantum-mechanical treatment of the problem.
Density-functional theory circumvents this aspect and as
we are primarily going to work within the framework of
that theory we will not have to dwell more on this ques-
tion here.

The use of density-functional theory for systems in
magnetic fields has recently been surveyed in a very
thorough way by Vignale, Rasolt, and Geldart. They
show how the role of the number density of the ordinary
density-functional theory must be taken over by the spin
and current densities when a magnetic field is present.
The e6'ects of spin polarization were incorporated rela-
tively early into what became spin-density-functional
theory, but the inhuence of the orbital current density
has only recently been taken into account. ' The gen-
eralized Hohenberg-Kohn theorem which is applicable in
the magnetic case states that the external scalar and vec-
tor potentials as well as the nondegenerate ground-state
wave function are uniquely determined by the density dis-
tributions n(r) and j (r). Here n(r) is the number densi-

ty, i.e., the ground-state expectation value of the number
density operator.

n'~(r)=%+(r)V(r) .

The paramagnetic current density j (r) is the ground-
state expectation value of the corresponding operator:

j'i'(r) = — t'41+(r)VV(r) —[V%' (r)]'Plr)] .
Sam

This term, paramagnetic current density, is used to distin-
guish it from the diamagnetic current density,

4'(r) ='Ij(r)exp — y(r)
ich
27TC

n(r) A(r) .
mc

Neither the wave function nor the potentials are measur-
able. Quantities which are measurable must however be
invariant under gauge transformations, and to ensure
that invariance must be the primary requirement in all
theories of the electronic structure of matter in elec-
tromagnetic fields.

Spin obviously plays a central role in magnetic prob-
lems. Instead of the Schrodinger equations (1) or (2) we
should discuss the corresponding Dirac equations either
in their fully relativistic four-component form or in the
corresponding nonrelativistic two-component Pauli ap-
proximation. Lowdin has used a partitioning technique
to go from four to two components. That paper which
also contains a very clear discussion of spin-orbit cou-
pling and contact interactions including the role of gauge
invariance constitutes a good starting point for any treat-
rnent of matter in electromagnetic fields.

Another general aspect which should be kept in mind
concerns the connection between many- and one-electron
functions and equations. To combine relativity and
many-particle quantum mechanics is obviously one of the
great problems of the century and this is not the place for
it. But even though we work with one-electron equations
it does not hurt to remember that —as in the nonrela-

Together these two components form the orbital current
density, also called physical current density by Vignale
et al. ,

j(r)=j (r)+ n(r) A(r) .
mc

j (r)vx
n(r)

(10)

The Kohn-Sham type of one-electron equation associ-
ated with the orbital current density derived by Vignale
and Rasolt is of the form

This physical current density j(r) and the number den-
sity n(r) are gauge invariant, but the paramagnetic
current density j (r) is not gauge invariant That obvi-.
ously creates serious conceptual difhculties, which Vig-
nale and Rasolt have managed to overcome, however.
An essential aspect of that problem is the fact that the
exchange-correlation potential Exc is a functional of the
gauge-invariant combination
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V — [A,s(r) V+V A,s(r)]
8~~m 47Tmc

2

+ A (r)+ V(r)+ VH(r)+ Vxc(r) O';=8 Il; .
2mc

(1 la)

and should therefore also be identical to the experimental
result. According to Serene, the correct de Haas —van
Alphen oscillations are contained in the Vignale-Rasolt
exchange-correlation functional. Any differences be-
tween the "quasiparticle" results and a Kohn-Sham cal-
culation must be due to the highly nonlocal character of
that exchange-correlation functional.

Here the effective vector potential is the sum of the "ac-
tual" vector potential A(r) and the functional derivative
of Exc with respect to j~(r):

A, ft(r) = A(r)+ Axc(r) . (1 lb)

Similarly, the three scalar potential terms in (1 la) are the
"external" potential due to the nuclei, the Hartree term,
and the exchange-correlation term.

Vignale and Rasolt prove that this one-electron equa-
tion (1 la) is indeed gauge invariant. For applications to
crystals with translational symmetry that statement is de-
cisive, since it ensures that the density, the current densi-

ty, the effective scalar potential, and the exchange-
correlation part of the effective vector potential are all
periodic. All the usual theorems for the classification of
the solutions of (1 la), according to the representations of
the magnetic translation group, are therefore valid.

Combined with suitable modifications due to spin the
equation of Vignale and Rasolt, (1 la), provides a general
framework for applying density-functional theory to
magnetic problems. In our own calculations an operator,

p~B (I+2s), (12)

is included in the self-consistent treatment. The orbital
part of (12) is obtained from the terms A V+V A in
(1 la), in such cases when it is possible to define an orbital
angular momentum l=(2m. /h)rXp. Strictly speaking
that is possible only for free atoms and ions. In a method
like the linear-muffin-tin-orbital (LMTO) method, with
muffin-tin spheres as a basic notion, a similar formulation
can, however, be defended.

Finally, a word should be said about the use of
density-functional theories in treatments of the de
Haas —van Alphen effect. Recently, Serene ' has
developed the theory of this effect within the framework
of the current-density-functional theory of Vignale and
Rasolt. Serene discusses a number of rather subtle points
which cannot be disregarded in the interpretations of de
Haas —van Alphen experiments. In particular, he asks
the essential question of whether the de Haas —van Al-
phen effect can be treated in the framework of density-
functional theory. Perhaps his most important result is
that any local approximation to the Vignale-Rasolt
current-density-functional theory can at best yield de
Haas —van Alphen oscillations associated with the
Kohn-Sham band structure. That statement, which does
not sound too revolutionary, needs a few comments. Part
of the background is a paper by Mearns in which it is
shown that the Kohn-Sham Fermi surface is different
from what Mearns calls the quasiparticle Fermi surface.
The latter is what is obtained in principle from the full
many-body problem, in other words the Dyson equation,

III. COMPARISONS OF ZEEMAN SPLITTING
FROM dHvA EXPERIMENTS AND THEORY

The de Haas —van Alphen effect, an oscillatory contri-
bution to the total magnetization as a function of applied
field, carries information about the electrons at the Fermi
surface. The oscillations arise as subsequent Landau
tubes pass through the Fermi surface, and are periodic in
the reciprocal field. The frequency is proportional to the
extremal cross-sectional area of the Fermi surface per-
pendicular to the magnetic field. In an external magnetic
field, the Fermi surface is slightly split, giving rise to two
almost identical cross-sectional areas, 3, and Az. This
will appear as a modulation of the dHvA amplitude with
a cosine function (the spin-splitting factor) with the argu-
ment

(13)

where B is the magnetic-field strength. In the rigid-band
approximation the difference in area in the equation
above can be expressed in terms of the energy difference
between the split cyclotron orbits on k states confining
the zero-Geld areas, by introducing the cyclotron orbit
effective mass m, (expressed in units of the free-electron
mass). The energy difference is described by a propor-
tionality factor, the cyclotron orbit g factor, g, . The rela-
tion will then be

R= gcmc

2

By careful measurements of the dHvA amplitude the
angular variation of the spin-splitting factor for specific
Fermi-surface sheets can be obtained. When solving for
R or g, there will be an unknown integer in the expres-
sion, as an inverse cosine function is solved. Therefore,
the experimental results describe the anisotropy, but not
the absolute value, of R or g, . Estimates of the values of
R or g, can be made from the bulk susceptibility. They
can, however, vary considerably from one Fermi-surface
sheet to another. An extensive review of the dHvA effect
and applications has been written by Shoenberg.

The argument of the spin-splitting factor, R, is ex-
change enhanced but not renormalized from electron-
phonon interaction. In the literature two different ap-
proaches regarding the electron-phonon effect have been
made. The first one treats both g, and m, as if they were
unaffected by electron-phonon effects, and directly com-
parable to bare band quantities. This means that the
evaluation of g, from experiments relies on calculated
values of the mass. On the other hand, as the band struc-
ture in the vicinity of the Fermi level is distorted from
the phonon interaction, the second approach uses the ex-
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lations the field is applied in the same directions, but the
symmetry is expanded by studying the Fermi-surface
sheets located at the three different X point orientations.
However, data for the nonsymmetry (011) and (101)
planes are not included in the figures, which present only
the (010), (001), and (110)planes.

In order to estimate the general accuracy of the calcu-
lated band structures, extremal Fermi-surface areas can
be compared to experiments. The accuracy of the calcu-
lated Fermi-surface area can be expressed as the shift of
the Fermi level that is required to bring the calculated
( A „~,) and experimental ( 3,„)areas to agree,

Spin-orbit
interaction

Zeeman operator

No
No
Yes
Yes

spin only
spin and orbit

spin only
spin and orbit

0.0134
0.0134
0.0080
0.0092

0.0000
0.0008
0.0008
0.0016

TABLE I. Calculated spin and orbital magnetic moments for
palladium (in units of Bohr magnetons per atom) in an external
field of 10 T in a [001] direction, calculated without using the
OP correction.

exp calc

KVl

where I, is the calculated cyclotron orbit mass in units
of the free-electron mass.

For the alkali metals the calculated Fermi surfaces are
too large, with smaller errors in Na, K, and Rb (around
1.2 mRy) than in Li (6.0 mRy). Regarding Cs, cf. Sec.
VII and Ref. 23. In the late transition metals investigat-
ed here the error is always smaller than 10 mRy. The
largest value, 9.4 mRy, is found for the I 5 surface in Ir,
which is a very anisotropic Fermi-surface sheet. In the
noble metals the errors are quite small, except for the
neck orbits where the errors are around 10 mRy. Thus
the overall agreement is satisfactory. Regarding the va-
lidity and accuracy of Fermi-surface areas calculated
from local-density-approximation methods, there is an
overwhelming amount of papers published where the re-
sults in general are similar to the present work. Of par-
ticular interest are the papers by Ahuja and co-workers
where the inhuence of the choice of XC potential on the
Fermi-surface areas is studied. '

V. PALLADIUM

Palladium is a system with strong exchange enhance-
ment of the magnetization, and effects of spin-orbit cou-
pling are also evident. Therefore, palladium is used for
interpretation of the model in the present paper, and the
results are discussed in some detail. Thereafter, the re-
sults for other metals are presented in a more descriptive
manner.

The effect of the spin part of the Zeeman Hamiltonian
is to create a spin polarization of the conduction elec-
trons, where the magnetic spin moment is determined in
balance with the XC potential through the self-
consistency. The obtained moment for Pd, without SO
coupling and without the orbital term in Hz, in an exter-
nal field of 10 T is presented in Table I. When the orbital
part of IIz is added an orbital magnetic moment is also
created while the spin moment is unaffected (cf. Table I).
If SO coupling is included and only the spin term in IIz
considered, the spin moment drops and an orbital mo-
rnent, induced by the SO coupling as in spontaneous
spin-split metals, is developed. Finally, inclusion of the
orbital operator increases the spin moment somewhat via
the SO interaction, and the orbital moments from the

TABLE II. Calculated magnetic moments for Pd in external
field of 10 T in a [001] direction. OP and f orbitals are includ-
ed, except in the first row where orbitals up to d have been used.
The last column displays the corresponding SI susceptibilities.

Potential

BH spd
BH
BHJ
VWN
CxL

0.0094
0.0097
0.0144
0.0124
0.0141

0.0019
0.0019
0.0025
0.0022
0.0024

y (10 )

8.9
9.2

13.4
1 1.5
13.1

Zeeman operator and SO coupling are roughly added.
Thus, the magnetic moments depend on the interaction
between the Zeeman operator, SO coupling, and XC
enhancement, and self-consistency is required in order to
have correct results.

The effect on the calculated magnetic moments of us-
ing different XC potentials is presented in Table II, where
also the difference when f orbitals are included is indicat-
ed. The potential by von Barth and Hedin (BH) gives
the lowest magnetization, while using it with Janak pa-
rameters (BHJ) gives the largest moments, together
with the Gunnarsson-Lundqvist potential (GL). For
Pd, the XC potential giving a susceptibility nearest the
experiment value ( 10.5 X 10 ), is the Vosko-Wilk-
Nusair potential (VWN).

By comparing the last row of Table I and the first row
in Table II one can see that the effect of the OP correc-
tion is to increase the spin moment from 0.0092pz per
atom to 0.0094p~ per atom, and from 0.0016p~ per atom
to 0.0019pz per atom for the orbital part. Thus, OP is a
quite small correction to the system.

In palladium, and also in platinum, the calculated bulk
magnetization shows an anisotropy of about 2%. The
variation is near the numerical noise level, but at least in
Pd the anisotropic behavior is evident. The magnetiza-
tion in Pd has a maximum when the field is in a [001]
direction, and minima in the [110] directions. For plati-
num, the minimum appears to be in the [111]direction.
The anisotropy originates from the spin part of the mag-
netic moment, which is in contrast to the anisotropy in
ferromagnetic metals, where usually the orbital part of
the magnetic moment is anisotropic and the spin moment
isotropic.

Regarding the Zeeman Splitting (ZS) of cyclotron or-
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FIG. 5. The cyclotron orbit g factor for the I 6 Fermi surface
sheet in Pd. The experimental values (Ref. 14) (solid line) are
obtained with the arbitrary integer equal to 8, and have been
compensated for the electron-phonon interaction in order to be
comparable with the bare band g factors. Calculated values are
presented with (solid squares) and without (solid circles) XC
enhancement. The enhancement factor, obtained as a ratio be-
tween the two, is marked with crosses. The g, factor has also
been divided into its spin (empty circles) and orbital (empty
squares) components.

FIG. 7. The calculated (lines) and experimental (Refs. 48 and
50) (circles) magnetic form factors for Pd (open symbols and
solid line) and Pt (filled symbols and dashed line). The experi-
mental errors for Pd have not been marked in the figure as they
are of comparable size to the plot symbols.

also present the magnetic form factor for Pt (Fig. 7), tak-
ing the experimental data from Ref. 50.

VI. SUSCEPTIBILITY

mental ones in Fig. 7. For the three innermost reflections
the agreement is very good, but the lack of asphericity in
the calculations gives worse agreement for larger q vec-
tors. The calculated (using the VWN potential, f orbitals
and OP) magnetic moment at 5.72 T, the field strength
used in the experiment, is 0.0083@&, in good agreement
with the experimental moments of 0.0075pz and
0.0080'~ for the two different samples. In connection to
this the spin and charge densities of the conduction elec-
trons were calculated. As can be seen in Fig. 8 the spin
density is much more contracted than the charge density.
A similar treatment for the ferromagnetic transition met-
als gives worse agreement in form factor than for Pd,
since the calculated spin density is not as contracted as
the experiments indicate. In this context it is adequate to

BM 1 82F
aH V

(15)

At T=O the Helmholtz free energy F reduces to the
ground-state energy E0. Then the magnetization density
can be written as

l aE,M= ——
V BH

(16)

The magnetic susceptibility y relates the magnetization
density M of a system to the magnetic field H responsible
for that magnetization. In general g depends on the field,
even though in the most commonly studied case the mag-
netization varies linearly with the field so that the suscep-
tibility is constant with respect to the field. The suscepti-
bility can also be expressed in terms of the Helmholtz
free energy F (see, e.g., Ref. 51, Chap. 31). We thus have
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I I I I I For metals, attempts at calculating the magnetic sus-

ceptibility have focused on three contributions: the
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pocket in Pd, calculated with (solid squares) and without {solid
circles) XC enhancement. Two possible alternatives for g, from
experiments (Ref. 15) (compensated for electron-phonon in-

teraction) are also displayed (solid lines). The lower panel
shows the XC enhancement factor (cross) and the spin (circles)
and orbital (squares) contributions to the Zeeman splitting.
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paramagnetic Pauli susceptibility, which is obtained from
considering only the spin magnetic moments of the elec-
trons in an electron gas, the Landau diamagnetic suscep-
tibility due to the orbital effects of the electrons, and the
Larmor diamagnetic susceptibility due to the closed ion
core shells.

A more complete calculation of the magnetic suscepti-
bility should start —at least in principle —with (16).
From the total energy in the ground state of the system
as a function of the magnetic field, one gets the magneti-
zation density from (16) and the susceptibility from (15).
In band calculations of LMTO type that program can be
carried out by calculating spin and orbital contributions
to the magnetization density in each sphere from all oc-
cupied wave functions. ' The results are then integrat-
ed over all occupied energies and over all spheres. Such
calculations are done only to first order in the magnetic
field and the resulting susceptibility, which is dominating,
therefore corresponds to the Pauli paramagnetic contri-
bution.

The Larmor diamagnetic contribution to the suscepti-
bility is calculated from the formula

2

q„„.„=—ZX (r'),
6m

where 1V is the number of atoms per unit volume and the
expectation value (r ) is calculated from the ion core
charge density.

To calculate the Landau diamagnetic contribution to
the susceptibility is a considerably more difficult task, as
discussed by Misra and Roth. In a free-electron system
it equals —

—,
' of the Pauli spin susceptibility (see, e.g. ,

Ref. 54, pp. 144—149). For the alkali metals where it is
possible to use a pseudopotential method, Misra and
Roth have calculated the Landau diamagnetic suscepti-
bility. Their results did not differ very much from the
free-electron values, however. For the noble metals
copper and silver, Svechkarev, Poltoratskii, and
Mar'yanina have presented calculations of the magnetic
susceptibility including the diamagnetic contribution.
Their calculations are based on a band structure obtained
from a free-electron approximation complemented with
perturbations from the main Brag g planes. To our
knowledge, no calculations of the diamagnetism of the
conduction electrons in a transition metal have been per-
formed.

TABLE III. Calculated SI susceptibility of the alkali metals,
derived from the magnetic moments in an external field of 10 T
in a [001] direction, using different XC potentials. The
unenhanced Pauli spin susceptibility (proportional to the densi-
ty of states at the Fermi level) is also presented.

Metal
BH

SI susceptibility (10 ')
BHJ VWN GL Pauli

Li
Na
K
Rb
Cs

3.0
1.4
1.3
1.2
2.2

3.6
1.5
1.5
1.5
3.2

3.1

1.4
1.2
1.2
2.0

3.9
1.6
1.5
1 ' 5

3.2

1.55
0.84
0.71
0.68
0.89

B. Platinum group metals

The magnetic moments for Rh, Pd, Ir, and Pt in an
external field of 10 T have been calculated and are
presented as susceptibilities in Table V. The orbital con-
tribution to the total magnetic moment is large, in order
of half of the total magnetization (see Table VI), as d
states give large moments from the orbital part of the
Zeeman Hamiltonian (cf. the discussion below). For Pd,
however, the spin enhancement is so large that the rela-
tive contribution from the orbital moment is lower, 17%%uo.

In order to compare with experimental susceptibilities an
estimate of the Landau diamagnetism has to be used. In
this case a correspondence to the free-electron value is
used, one-third of the Pauli spin susceptibility. However,
the diamagnetic corrections are quite small compared to
the paramagnetic contribution in these metals. The com-
parison is presented in Table VII. All XC potentials un-
derestimate the susceptibility in Pt, and overestimate it in
Ir, while Rh shows good agreement with experiments.

electrons, as calculated by Misra and Roth, and the to-
tal susceptibility, i.e., the sum of the three contributions
previously discussed, using the value calculated with the
BH potential, are presented in Table IV. As a final com-
parison the experimentally determined susceptibilities are
displayed.

As seen in Table IV, the susceptibilities of Li and Cs
are overestimated, whereas the agreement is very good
for Na, K, and Rb. The situation for Cs will be discussed
later in the present paper.

A. Alkali metals

For the alkali metals the magnetic moments are of al-
most pure spin character, as expected from the dominant
s character of the eigenfunctions. The paramagnetic sus-
ceptibilities, derived from the calculated magnetic mo-
ments using different XC potentials, are presented in
Table III together with the Pauli susceptibility
[pyssD(E~), where D(EF) is the density of states at the
Fermi level]. Generally the BH and VWN potentials give
smaller magnetizations than the BHJ potential does, and
the GL potential gives the largest magnetic moments.
The calculated diamagnetic susceptibility of the ion
cores, the diamagnetic susceptibility for the conduction

Metal
core

SI susceptibility (10 )

dia CE' Tot BH Expt.

Li
Na
K
Rb
Cs

—0.08
—0.29
—0.46
—0.61
—0.77

—0.29
—0.26
—0.22
—0.20
—0.18

2.7
0.81
0.57
0.43
1.2

1.4
0.85
0.57
0.38
0.52

' Reference 53.

TABLE IV. Estimated total susceptibilities for the alkali
metals from the present calculation are compared to experimen-
tal values. The first two columns show the diamagnetic correc-
tions to the calculated susceptibility from the ion core and the
conduction electrons (CE).
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TABLE V. Calculated susceptibility for Rh, Pd, Ir, and Pt
obtained from the magnetic moments using four diferent XC
potentials and a magnetic field of 10 T in a [001]direction. The
Pauli spin susceptibility as calculated from the density of states
at the Fermi level is also presented.

Metal
core

SI susceptibility (10 ')
dia CE Tot. BH Expt.

TABLE IX. Diamagnetic corrections and the estimates of
the total susceptibilities for the noble metals.

Metal
BH

SI susceptibility (10 )
BHJ VWN GL Pauli

CU

Ag
Au

—0.79
—1.1
—1.8

—0.89'
—0.28'
—0.39

2.6
0.64
0.78

—0.96
—2.4
—3.4

Rh
Pd
Ir
pt

2.1

8.9
1.5
2.9

2.2
12.9
1.5
3.1

2.2
11.1
1.5
3.0

2.2
12.7
1.5
3.1

0.63
1.1
0.44
0.80

'Reference 55.
"Minus one-third of Pauli spin susceptibility.

C. Noble metals

Metal

Rh
Pd
Ir
pt
Cu
Ag
Au

Relative orbital
moment (%)

47
17
55
31
53
37
53

TABLE VI. The amount of orbital contribution to the total
paramagnetic moment for some of the late transition metals and
the noble metals, as calculated in the present work.

The magnetic moments in the noble metals are small,
and therefore more dificult to calculate. Numerical
noise and uncertainties in the model can produce large
relative errors. As can be seen in Tables VIII and IX the
calculated susceptibility is exaggerated for the noble met-
als. This can be due to two reasons.

(i) The calculated paramagnetic moments are too large.
(ii) The diamagnetic corrections are underestimated.

Svechkarev, Poltoratskii, and Mar'yanina have calculat-
ed the total susceptibility of copper and silver. Their
values of the the diamagnetic contribution from the con-
duction electrons are slightly larger than one-third of the
Pauli susceptibility in Cu, while it is somewhat smaller in
Ag. This might indicate that the diamagnetism can be
unexpectedly large, but not large enough to explain the
discrepancies in the present paper. Studies of the ZS over
the Fermi surfaces, presented in a later section, indicate
that the first error is present but not at such a large
amount as to exclude the second source of error.

Metal
core

SI susceptibility (10 )

dia CE' Tot. BH Expt.

Rh
Pd
Ir
pt

—0.16
—0.14
—0.25
—0.22

—0.21
—0.37
—0.15
—0.27

1.8
8.4
1.1
2.4

1.7
10.5
0.38
3.0

'Minus one-third of the Pauli spin susceptibility.

TABLE VIII. Calculated susceptibilities for the noble met-
als, as in previous tables.

Metal
BH

SI susceptibility (10 ')
BHJ VWN GL Pauli

Cu
Ag
Au

4.3
2.1

2.9
2.1

3.0

4.3
2.0
3.0

4.4
2. 1

3.0

1.7
1.0
1.2

TABLE VII. The calculated diamagnetic components to the
susceptibility from the core electrons and the conduction elec-
trons (CE) are shown, and also the total estimated susceptibility
using the BH potential. Finally, experimental data are present-
ed.

VII. ZEEMAN SPLITTING OF CYCLOTRON ORBITS

A. Alkali metals

Many local-density-approximation (LDA) calculations
fail in reproducing the Fermi surface of caesium. In the
present work, as well as in Ref. 23, the calculated Fermi
surface is open around the N point and forms a belly—
neck structure similar to the noble metals. It is, however,
well known from experiments that the Fermi surface of
caesium is closed and distorted from a sphere with a radi-
al distortion of approximately 7%. The present calcu-
lation also gives poor agreement for Cs regarding the to-
tal susceptibility, as presented in an earlier section. The
origin of the failure of the LDA is not obvious. Due to
this mismatch between theory and experiments for Cs, no
attempt has been made to perform calculations of the ZS
on the Fermi surface in the present work as the results
would be very unreliable. A hint to the behavior in Cs
can be found by studying the results in Ref. 23 where cy-
clotron orbits for lower energies than the Fermi energy,
in order to make closed orbits, have been studied. In Ref.
23 studies of the heavier and, due to radioactivity, unsta-
ble metal francium are also presented.

The calculated values of R and g, and the amount of
anisotropy for the rest of the alkali metals, using the BH
potential, are presented in Table X, together with the ex-
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TABLE X. Calculated values of R and g, using the BH potential with the external field in the [001]
direction for the alkali metals are presented, together with the anisotropy and the experimental deter-
mination of the g, factor.

Metal

Li
Na
K
Rb

R [001]

3.00
1.57
1.83
1.98

AR
R [001]

( X 10-')

20
0.5
2

12

g, [001]

3.75
3.10
3.39
3.48

Ag,

g [001)

( X10-')

11
7

12
14

g, [001]
1+A,, ph

2.72
2.56
2.97
3.13

Rc exp

2.636'
2.800
2.83b

'Reference 1.
bReference 2.

B. Platinum group metals

In the present work the fcc metals rhodium, palladium,
iridium, and platinum have been studied. Palladium is
presented in an earlier section of the present paper.

(110)
5

(001)

4
(

n+1
)

3

perimentally determined values. In order to compare g,
values electron-phonon effects must be taken into ac-
count, and therefore also the electron-phonon renormal-
ized values are presented. The values of the coupling
constants are from Ref. 23.

The agreement in g, is very good for sodium, but
discrepancies are getting larger when going from potassi-
um to rubidium. The anisotropy of R found in the calcu-
lations originates almost only from the anisotropy of the
cyclotron orbit mass in the two latter metals. No anisot-
ropy of R (and hence g, ) could be detected in the experi-
ments, as the difference between the values from different
experimental techniques was larger than the differences
for different orientations of the samples. In Table XI R
for a field in the [001] direction has been calculated using
different XC potentials. Comparison with Table III
shows that R scales approximately as the total suscepti-
bility, and the potential giving best agreement with exper-
iments is the VWN potential.

For more details on Fermi-surface properties of the al-
kali metals related to external magnetic fields, cf. Ref. 23.

Calculated and experimental' values of R on the I 6
sheet in Pt are presented in Fig. 9. As can be seen in the
graph the experimental data vary rapidly, while the only
drastic behavior of the calculated data is near the [110]
direction. The present calculations show a minimum in
the [110]direction, as both theory and experiments do for
the 1 6 sheet in Pd (cf. Fig. 2), while the experiments
show a maximum. This could be due to a misinterpreta-
tion of the experimental data.

On the a orbit in Pt, presented in Fig. 10, the calculat-
ed anisotropic behavior is correct, but the calculations
fall between two possible experimental curves. However,
as seen in Table VII the total susceptibility is underes-
timated with a factor of 1.25. Enhancement of the calcu-
lated values with 1.25 then gives perfect agreement with
experiments. For the I 6 sheet a similar operation makes
no substantial difference.

Similar to the situation for Pd (cf. Fig. 4) the agree-
ment between theory and experiments for the X4 hole
pocket is poor. As can be seen in Fig. 11, the experimen-
tal anisotropy' is much larger than the calculated one.
In the experiments there is rotational symmetry, while
the calculations show anisotropy in the (001) plane. This
could be a consequence of the difI1culty of calculating
such a tiny Fermi-surface area correctly. In this case the
calculated area is twice the size of the experimental one.
Making the area smaller would contract it towards the X
point, and the spherical asymmetry would then reduce.
This is consistent with the experimental data for the X
pocket in Pd (Fig. 4), which is larger than the corre-
sponding surface in Pt, where anisotropy in the (001)
plane is found.

It is also interesting to note that the inclusion of OP
generally increases the ZS, except near [001] on the X
pocket in Pt where a decrease is noted. This is a conse-

TABLE XI. R for the [001] direction calculated using
di8'erent XC potentials.

0
[001]

30 60
0 (deg)

90 0
[110] 4 (deg) [100]

Metal
BH BHJ

R
VWN CxL Expt.

FIG. 9. R for orbits on the I 6 sheet in Pt. Calculated values
are presented with (full symbols) and without (empty symbols)
OP. The experimental data (solid line) are from Ref. 18, and in
the graph the arbitrary integer is chosen as 3.

Li
Na
K
Rb

3.00
1.57
1.83
1.98

3.64
1.79
2.22
2.45

3.05
1.57
1.79
1.91

3.89
1.84
2.25
2.46

1.63
1.72
1.77
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(110)
I

I
I I

(001) TABLE XII. Calculated values of R using difterent XC po-
tentials for some orbits in Pd and Pt with the magnetic field in
the [001]direction. For the X pockets two diff'erent orientations
are possible.

n=2

45 30 15 0 15 30
O(deg) [001]/[100] C (deg)

45

FIG. 10. Same as Fig. 9 but for the a orbit in Pt. Two possi-
ble variations of the experimental data (Ref. 18) are plotted,
with the arbitrary integers equal to 2 or 3.

Metal

Pd
Pd
Pd
Pd

pt
pt
pt
pt

Orbit

r6
e5

X4 [001]
X4 [100]

r6
a5

X4 [001]
X4 [100]

BH

8 ~ 17
9.14
1.54
2.01

4.05
2.43
0.19
0.18

BHJ

11.92
13.46
2.35
2.92

4.35
2.61
0.21
0.19

VWN

10.26
11.57
2.00
2.54

4.24
2.55
0.21
0.18

GL

11.72
13.33
2.38
2.89

4.43
2.68
0.24
0.19

quence of the negative orbital contribution to the ZS that
is present also on the X pocket in Pd, (cf. Fig. 6). In Pt
the enhancement of the orbital contribution from OP is
large enough to decrease the total splitting.

In Table XII the inhuence of different XC potentials on
R is presented, both for Pd and Pt. The trend of increas-
ing splitting in the order BH, VWN, BHJ, and GL found
in all systems studied is valid also for Pd and Pt, with ex-
ception for the X4 pockets, where the orbital effects dis-
cussed above complicate the behavior.

Iridium has two I -centered electron sheets, I 5 and
I 6. The larger surface, I 5, is difficult to study in dHvA
experiments and therefore an experimental determination
of the ZS exists only for the smaller surface. The calcu-
lated values of R for the two surfaces are presented in
Fig. 12, together with the experimental variation for the
I 6 surface. ' However, it should be made clear that the
interpretation of the experiments was done with the cal-
culations in Ref. 20 as a guide. Similar to the Pt case, the
experimental curve varies more than the calculated
curves do.

On the larger one of the two X pockets, X4, the agree-
ment between theory and experiment is satisfactory, as

can be seen in Fig. 13. For the X3 pocket, being a very
small surface, the calculations are almost isotropic, while
experiments indicate an increase around the belly of the
pocket compared to the [001] direction.

For rhodium, the experimental data are limited to
three spin-splitting zeros on the I 6 sheet, ' presented in
Fig. 14 together with calculated values for the I 6 and I 5
sheets. The two spin-splitting zeros near 30' away from
[001] do not fit in the theoretical behavior. For complete-
ness, R on the X3 and X4 surfaces from the present work
are presented in Fig. 15 although no comparison with ex-
periment is possible.

As can be seen in Table XIII, the effect of using
different XC potentials is similar to Pd and Pt. The only
exception is the I 5 sheet in Ir, where the BHJ potential
gives the largest value.

C. Noble metals

A comparison of the ZS from dHvA measurements (for
Cu Refs. 4, 5, and 6, for Ag Refs. 4 and 6, and for Au
Refs. 4 and 6—9) and the present calculations for the no-
ble metals, presented in Figs. 16, 17, and 18, first reveals
that the calculated values generally are too large. How-
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FIG. 11. R on the X hole pocket in Pt, calculated with (large
solid circles) and without (empty circles) OP. Experimental
data (small solid circles) are from Ref. 19. Any value of the un-

known integer other than zero is very unlikely.

FIG. 12. Calculated values of R on the I 5 (squares) and I 6
(circles) Fermi-surface sheets in iridium. The experimental vari-
ation for the I 6 sheet (Ref. 16), placed around the integer 2, is
also presented (solid line).



860348

(110)
I

' I
'

I
'

I
'

I

(110)
8

I
'

I
'

I
'

I
'

I

(010) (001)
n+I12 I I I

I
I

I
I

~ ~ ~ 5 II1 ~ g ~ ~

~ '%
Q 0 I

~ ~ ~~ ~ ~
~ gs ~

~ ~
~ ~

~ ~ ~ ~ ag ~ II

~ II
~ ~

~ ~~ ~
~ ~

~ ~0.8 ~ ~~ ~
~ ~ ~

~ ~R o.6—

0.4 ~ ~ + ~e ~ ~ II

'yP
o ~ ~ 0

o o o o o o o (I o o o» (' o o.o 8 o o o OQ yqy~I
CP~ 0 0

0 4 i I i I i I i I i i I a I i i I I I i I ~ I i I0 0

0 30 60 90/0 45/90 60 30 0
[001] 0 (deg) [100] @ [110] 0 [001]

()
X X

o o
o o o o &)

00 o O

2 I ~ I i I i I s I

0 30 60 90/45
[001] 0 (deg) [110]

0
N (deg) [100]

FIG. 13. Calculations and experiments (Ref. 17) for the X3
and X4 hole pockets in Ir. The X4 pocket is marked with
squares and the X3 pocket with circles. Calculational data are
presented with larger symbols, and the experiments with smaller
symbols.

FIG. 14. I 6 and I 5 in rhodium. The experimentally deter-
mined (Ref. 13) spin-splitting zeros, corresponding to a value of
R that is an integer plus one-half is marked with x.

ever, the overall error is not as large as in the estimation
of the susceptibility (cf. the preceding section). The an-
isotropic behavior is in good agreement with experi-
ments. The belly orbit shows little anisotropy, while the
neck orbit shows a pronounced "U shape. " The neck or-
bit in gold also shows the same behavior, but if the g, fac-
tor is studied the theoretical curve turns "up-side down, "
while the experiments show a minimum in [111]. The
reason for this is that the cyclotron mass increases rapid-
ly when the field direction is moved from the [111]direc-
tion, and the experimental estimation of R shows a more
anisotropic behavior than the calculations do. This
serves as an example of why it is advantageous to corn-
pare spin-splitting factors (i.e., R) from theory and exper-
iments, rather than the g, factors. The dog's bone and
rosette orbits all show a "parabolic" increase in R as the
field is moved from the symmetry directions. This is
similar to the behavior on the a orbits in Pd and Pt, and
is mostly due to an increasing mass, while the g, factor is
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FIG. 15. R on the X4 (squares) and X3 (circles) pockets in
rhodium.

TABLE XIII. Various XC potentials have been used for cal-
culations of R for some Fermi-surface sheets with the field in
the [001]direction in Rh and Ir.

(110)
I

I
I

I
I

I
I

I
I

I
~

(001)
2.5

Metal 0
VWNBH BHJ h h

h h h

+kh h
0 0

0 (~ ~ hJ.5
Rh
Rh
Rh
Rh
Rh
Rh

rs
r6

X3 [001]
X3 [100]
X4 [100]
X4 [001]

5.45
3.84
0.34
0.44
1.92
1.66

5.62
3.86
0.35
0.44
1.95
1.66

5.25
3.72
0.32
0.41
1.85
1.58

5.38
3.77
0.33
0.42
1.89
1.63

0.5

0
[001]

30 60
0 (deg)

90/45
[110]

0
@ (dcg) [100]Ir
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FIG. 16. Calculated (open symbols) and experimental (solid
symbols) values of R in copper, for the belly orbit (triangles),
dog's bone orbit (circles), neck orbit (squares), and rosette orbit
(diamonds). See text for references to experimental data.
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(001) TABLE XIV. Calculated values of R for the [001] direction
for the belly and rosette orbits in the noble metals, using the
four diff'erent XC potentials.

Metal Orbit
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0
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Cu
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1.56
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1.24
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1.19
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1.51
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1.17
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1.61

1.30
1.27
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1.20

FIG. 17. Calculated (open symbols) and experimental (solid
symbols) values of R in silver, for the belly orbit (triangles), dogs
bone orbit (circles), neck orbit (squares), and rosette orbit (dia-
monds).

more or less constant.
In Table XIV the inhuence of the XC potential to the

ZS in the noble metals is shown. As in previous systems,
the GL potential gives the largest values, and the BH and
VWN potentials give the lowest splittings.

VIII. DISCUSSION AND CONCLUSIONS

The large contribution to the magnetization from the
orbital moments in the late transition metals and the no-
ble metals can easily be understood from a study of how
the Zeeman Hamiltonian interacts with a model d band
when spin splitting is small (i.e., not spontaneously spin-
split metals) and spin-orbit coupling can be neglected. In
that case spin and orbital splittings can be treated sepa-
rately. The model d band will have a density of states at
the Fermi level called D(EF), with equal weight in each
of the 10 subbands, D =D(EF)/10 The total s. pin mo-
ment (in Bohr magnetons) will then be the sum of the en-

ergy splitting times the density in each spin channel, i.e.,
2p&B X 5D =p&BD(EF ), the Pauli spin susceptibility.
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FIG. 18. Calculated (open symbols) and experimental (solid
symbols) values of R in gold, for the belly orbit (triangles), dogs
bone orbit (circles), neck orbit (squares), and rosette orbit (dia-
monds) ~

Exchange enhancement can be included by a factor S,
and hence the total spin moment is 10p&BDS.

For the orbital moment a similar expression can be ob-
tained. If the states with orbital quantum number +2
and —2 in one spin channel are considered we find that
the difference in occupation for these two states are
p&B X4D, and their orbital moment will thus be pz X SD.
The states with m& = —1 or + 1 will similarly give

pz X2D. For the entire d band the orbital moment thus
is 20p&BD. At this stage we might also include an orbit-
al polarization enhancement factor, 0, and the enhanced
orbital moment is written 20p~BDO.

If we now consider the amount of orbital magnetiza-
tion contributing to the total paramagnetic moment we
find 20p~BDO/p~BD(200+ 10S). The orbital polariza-
tion enhancement is usually small. If also exchange
enhancement is small as in the noble metals or iridium we
can write S=O=1, and find that the amount of orbital
moment in a typical d band is —",„or 67%. For a p or f
band the corresponding values are lp and 7p or 40%%u~ and
80%, respectively. The corresponding values from the
self-consistent calculations, also including spin-orbit cou-
pling, are presented in Table VI. For Ir, where S is close
to 1 and the state density at the Fermi level is dominated
by d electrons, the self-consistently calculated amount of
orbital moment is indeed large, 55%. However, Ir is a
quite heavy atom where also spin-orbit coupling contrib-
utes to the orbital moment significantly. For the noble
metals, a similar study requires that the amount of s, p,
and d character of the density of states at the Fermi level
is taken into account, giving orbital contributions of
49%, 40%, and 48% for Cu, Ag, and Au, respectively.
For gold, spin-orbit coupling can explain the difference
between the simple estimate above and the value in Table
VI. For silver the agreement is good while the orbital
part is 7% too small in the estimate for copper. It
should, however, be kept in mind that the self-
consistently calculated total moments for the noble met-
als seem to be too large as compared to the experimental
susceptibility.

For the systems studied here, with more than half-filled
shells, the spin and orbital moments are always parallel,
and both the spin-orbit coupling and the orbital part of
the Zeeman operator contribute to the creation of the or-
bital magnetic moments. In the early transition metals
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and the actinides, however, spin-orbit interaction tends to
prefer an antiparallel arrangement while the Zeeman
operator still aligns the moments in the same direction.
The direction of the orbital magnetic moment will then
be determined by the effect giving the largest energy gain.
Preliminary self-consistent calculations for a-Ce in a field
of 10 T show that the spin and orbital moments are paral-
lel, with values of 0.0017 and 0.0050 Bohr magnetons per
atom, respectively. This is consistent with the magni-
tude of the spin-orbit and orbital Zeeman energies, as the
spin-orbit splitting parameter g in ct-Ce is 0.0742 eV, and
thus g( l ) (s ) is smaller than p&8 ( l ).

It is always interesting to speculate in the possibilities
to improve the current model. Even if the results in gen-
eral show good agreement with experiments, and follow
the trends from experimental data when going from one
element to another, there are some drawbacks in the
present results, and plenty of room for improvements. In
the alkali metals Li and Cs show poor agreement, while
Na, K, and Rb better follow the experiments. However,
the results for the three latter metals could be expected to
be even better than they are as they are thought of as
"simple metals. " MacDonald has carried out detailed
many-body calculations with three different approxima-
tions for the self-energy operator. His results indicate
that in order to achieve a good agreement with experi-
ment it is necessary to use a nonlocal and energy-
dependent self-energy operator. The larger deviations in
Li and Cs are explained by MacDonald as effects of an
unusually large electron-electron renormalization. It is
also well known that the LDA overestimates the band-
widths in the alkali metals in contrast to self-energy cal-
culations. ' Clearly the alkali metals should be treated
in a model that is "beyond the LDA."

In the transition metals investigated here, the results
are very good for Pd, while discrepancies are larger for Ir
and Pt. For Rh the experimental situation is still not in-
vestigated, and comparisons are impossible. The failure
of the present model in Pt is more difficult to understand
than for the alkalis, as the band structure and Fermi sur-
face are quite well described by the LDA. One way to
improve the results could be to extend the basis set to
also include f orbitals, which might be a way to provide
the system with the possibility of an increased anisotropy.
However, the f-projected density of states at the Fermi

level for the sixth band is only 1.5% of the total. In a
later paper we will present calculations for Pt where also
f orbitals are included. It is also possible that the
muffin-tin approximation reduces the anisotropy. Previ-
ous investigations of the contribution from non-muffin-
tin terms to the potential show that the 5d angular wave
functions are well mixed in the metallic state and aniso-
tropic effects in the potential are averaged out when cal-
culating single-particle energies. This cancellation of the
anisotropic contributions might not occur for the Zee-
man splitting, which would result in larger anisotropy.
Hence, we might have an explanation why the Fermi-
surface anisotropy is better described than the anisotropy
of the Zeeman splitting. This question can be sorted out
by a full potential calculation. It is also possible that
discrepancies occur when comparing calculations and ex-
periments, as the LDA Fermi surface can be different
from the physical one. Finally, in the noble metals the
anisotropy of the Zeeman splitting shows good agreement
with experiments, but the splitting is approximately
10—20% too large.

It is obvious that the most rigorous approach when an
external magnetic field is present would be an implemen-
tation of current-density-functional theory, where it also
could be possible to include the Landau condensation and
diamagnetism in a band calculation a priori. ' From what
is stated above it is also evident that a local-density ap-
proximation is not sufficient. A realization of a nonlocal
current-density-functional model with no shape restric-
tions on the potential would be very interesting to use for
studies of the electronic structure of metals in external
magnetic fields.

With these facts in mind, it is surprising that the re-
sults from the model described in the present paper are as
good as they are.
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