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We have used the augmented-space formalism (ASF) to discuss the configuration averaging of random
observables that one encounters in random systems, viz. the one-electron Careen function or other related
properties. The Hamiltonian of the constituents is obtained within the first-principles tight-binding
linearized-muffin-tin-orbitals scheme. A self-consistent approach for the cluster coherent-potential func-
tion has been developed for substitutional binary alloys. Configuration averaging for the single-site
coherent-potential approximation (CPA) and its cluster generalization (CCPA) is discussed using the
ASF.

I. INTRODUCTION

The linearized-muffin-tin-orbitals method (LMTO) has
been successfully used for the study of electronic band
structure and other related properties for pure metals and
semiconductors, and their disordered alloys, ' as well as
for solid surfaces and interfaces. ' It has been shown by
Andersen and others that the original infinite-ranged
MTO basis sets can be transformed into new basis sets
with different degrees of screening in real space. An espe-
cially simple and accurate description of solids can be ob-
tained within the so-called orthogonal LMTO representa-
tion in the atomic-sphere approximation (ASA) (the y
representation) and the most localized LMTO (the P rep-
resentation). In either of the two representations, one
may construct a tight-binding (TB) Hamiltonian having
basic parameters and canonical structure constants
describing, respectively, the scattering properties of the
lattice-site atoms and the geometry of the lattice.

Recently, Kudrnovsky and others have discussed in de-
tail the application of the LMTO formalism to the evalu-
ation of the electronic structure for disordered binary al-
loys and pseudobinary alloys within the coherent-
potential approximation (CPA) first introduced by Soven
and Taylor. ' The resulting single-site CPA (SCPA)
within the LMTO has many similarities with the tradi-
tional TB-SCPA theory. The parameters in the TB-
LMTO Hamiltonians for the solids (both ordered and
disordered) contain much more detailed physical features
regarding the bands of the constituents than the empiri-
cal TB Hamiltonian, so that one can rely much more on
these first-principles approaches than the parameter-
fitting exercises. In the TB-LMTO picture the detailed
band information of the pure constituents can be ex-
pressed in terms of the relevant potential parameters for
the band positions, bandwidths, and band shapes.

The importance of the generalization of the single-site
CPA has been realized for some time in various contexts
such as incorporating short-range correlations, cluster
effects, and off-diagonal disorders. " ' These works
concentrate mainly on traditional tight-binding mod-

els. ' ' ' Augmented-space formalism (ASF), first in-
troduced and originally developed within a tight-binding
framework by Mookerjee, provides a self-consistent clus-
ter coherent-potential approximation (CCPA) in which
one can go beyond the CPA in a systematic way. ' ' In
this method, the effective medium is determined by the
self-consistency condition that the average scattering
from all possible configurations of the real cluster embed-
ded in the effective medium is zero. Unlike the molecular
CPA, ' the ASF CCPA gives a translationally invariant
effective medium. ' ' The ideas of ASF are rather gen-
eral and can be combined with the conventional first-
principles methods, such as the Korringa-Kohn-Rostoker
(KKR), LMTO, etc. , methods. In this spirit a self-
consistent cluster theory within the KKR theory has pre-
viously been developed. '

In this paper we present a self-consistent cluster theory
which combines augmented-space formalism and conven-
tional TB-LMTO methods to determine the effective
medium corresponding to the potential function which
can be expressed in terms of the bare potential parame-
ters of the LMTO approach. Our motivation is to deter-
mine self-consistently the coherent-potential function of
the disordered alloys within a cluster generalized ap-
proach.

II. THE TB-LMTO FORMALISM

The conventional MTO and the screened version of the
same have been discussed in detail elsewhere in the litera-
ture. We quote here only those results which are of
direct relevance to the central issue of this paper, namely,
configuration averaging of the Green function in the most
localized or P representation. In this representation the
Hamiltonian is given by

H~=h~(I+oPh~)+(I+h~oP)E (o~hP+I),

and the overlap is given by

O~=(I +h ~o~)(orb~+I),

where
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RL +vRL )5RR'5LL'+(~RL ) RL, R'L'(~R'L')P— P P 1/2 P P 1/2

The parameters Czl and AzL introduced above are the
potential parameters directly related to the potential
function Pzl, which is in turn expressed in terms of the
phase shifts.

In practice, S+L z L, the structure matrix element, van-p

ishes beyond second-nearest neighbor for close-packed
lattices. The feasibility of the representation is
that the quantities X~I. =XI.61.L., PzL =P1.5LL., and

pRL pL5LL' which enter into the calculation of Green
functions and which are described below, are also diago-
nal matrices. The Green function in the g representation
has the following form:

GwL„z'L, =XI.(z)5zz'5LL, '+pL(z)gttL„z'L, 'pL'(z) ~

P — P P

where

gL„tt I,'= I[P (z) —S ] 'I

Xg(z) =(yL, —
PL, )p~g(z) I&L ',

(4)

Pt'(z) =
[b I, + ('YL, pL, )(z —

cL, ) ]

Note that this is a very useful representation for per-
forming averaging of the Green functions of random al-
loys. In this representation PL(z), XL(z), and pL(z) are
all site diagonal and the structure factor matrix is non-
random.

In a binary random alloy, A 8, , characterized by
the random site-diagonal potential parameters, viz. ,
band-center position CL, bandwidth AL, and band-shape
parameter yl, regularly takes two values with probability
x for type A and (1—x) for type B.

III. CONFIGURATION AVERAGING
YVITHIN THE AUGMENTED-SPACE FORMALISM

AND THK GENERALIZATION
OF THE COHERENT POTENTIAL

APPROXIMATION

where

(z) =
& Pg(z) & + [P~ (z) P—g(z) ]yt (z)

X [Pg, (z) —Pt'(z) ],

P', (z) =—g [[Pt'(z) —Si'(k)]-']„—1

k

with P (z)= [5LL Pl (z)] and Sp(k)= [SgL, (k)], where
SLL (k) is the Bloch transform of Sg~ z.~,.

There exists considerable literature on the use of the
ASF for configuration averaging of any random function
which contains random physical parameters of the sys-
tem. " ' It has been discussed in the literature how one
can incorporate cluster effects, off'-diagonal disorder, and
short-ranged order within this formalism. Here we shall
give an outline of the procedure for obtaining self-
consistent cluster CPA generalizations.

For a binary-alloy problem the random occupation
variable for each site ni on the lattice enters the Hamil-
tonian. The binary probability distribution p(n, ) is ex-
pressed as

p (n; ) =x5(n; —1)+y5(n; )

= —I/aim& fo' l(n;I M') lf—o' &,

where n; = 1 or 0 according to whether site i is occupied
by an 2 or a 8 type of atom, respectively. The operatorM" is the analog of the tight-binding Hamiltonian H and
can be expressed as

M"=xlfo&&fol+ylfI &&fgl

+(xy)'"(Ifo&&f jl+If j &&f01) .

Note that for a binary alloy the basis states are
lf0 &

and f ', &. The total configuration space 4& for n sites of a
binary random alloy is the direct product space 11P;
and is spanned by states like

lfo f1

Any member of the basis may be completely determined
by the sequence [i„i2, . . . , icI =a, which is called the
cardinality sequence, where C is the cardinality. The
augmented-space theorem gives us

In a binary alloy, A 81, characterized by the ran-
dom site-diagonal potential parameters, viz. , band-center
position CL, bandwidth AL, and band-shape parameter
yL, regularly takes two values with probability x and
1 —x for 3 and B types. The quantities PL'(z), XgL'(z),
and pg'I (z) also take on two values with probabilities x
and 1 —x, where i = A or 8, respectively. The structure
matrix element SzLz.L ~ is not random. As a conse-
quence, the configuration averaging of the Green func-
tion is configuration averaging of an auxiliary Green
function g which involves the site-diagonal random po-
tential function Pg'(z) only. It has been shown by Ku-
drnovsky et al. that the CPA matrix P~(z) for cubic ran-
dom alloys may be determined by a set of coupled CPA
equations:

where

w~= yPg'lil. &&iLl —y sg„ liL, &&ql l, (lo)
iLj L'iL

0 is the null sequence. The operator function 2 ( IM" ] )
is the same function of M" as that of A ( I n, ] ).

It has been discussed by Kudrnovsky et al. that the
configuration averaging of the actual resolvent can be
carried out through the calculation of an auxiliary resol-
vent, as is evinced in Eqs. (12) and (13). Note that the
first of Eqs. (13) can be written as a Hamiltonian-like
operator representation in the following way:
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or in matrix form,

]iLjL' [PiL 5LL' SiL,iL'5LL'

Sis, ir.(1. 5s.L ) j 5;j. S;s. r,

Note that the term within the parentheses is purely site
diagonal; the third term there, however, has a contribu-
tion from L =L' terms as well. The last term is off-
diagonal both in site and angular momentum indices.
The structure function is independent of disorder and de-

pends only on the lattice, but

PL =Pir. SL iL P~,L(1—n, )+Pssr n, ..'P= P P IP rP

From Eq. (3) we may configuration-average both sides to
obtain

; &+(;();,(), ()&. (12)

Henceforth we shall assume that we are always work-
ing in the P representation and drop this index. Here,
piL pB,L +5pn; and 6p =p~ pB We may rearrange
Eq. (12) with these values substituted to

G L,L=XL+.[psl s (z)+5pn; ]gL;L(z)[pris +5pn;]

=Xr (z)+Psi s. (z)g,L;L(z)pss r (z)+ . +Pss s (z)g;s;s (z)5Ps n;

+5PLnigiL, iL(z)pss L(z)+ 5PLnigiL, iL(z)5Pr. ni .

The augmented-space theorem gives the configuration average as

& GiL iL ) &XiL(z) ) +Psi L(z) &Slg LiL IS& +'' +Pss L(z)&SfgiL is. M IS &5Ps.

+5pL (slM "ggL;L ls)psl L +5pL(slM "gL;LM "Is)5pL .

We have to evaluate the following quantities

(i) (iSlg([M "j)liS),
(ii) (iS g([M "j)M "IiS)=x(iSlg([M "j)IiS)+(xy)' (i, [i j Ig([M "j)liS),
(" ) &'SIM"'g([M"'j)l S&= &'Sfg([M"'j)l S&+( y)'"&', [ jig([M"'j)I S&,
(iv) (iSIM "cog([M"j )8 M'j'fiS) =x (iSlg([M "j)iS)+ . +x(xy)' [(iSlg([M "j)li, [i j )

+(l, [l j fg([M"'j) flS&]

+xy(i, [i j Ig([M "j)Ii, {j j ),

(13)

(14)

where g( [M "j) is the same functional of M; as g (n; ) is
of n;.

In order to obtain a C-cluster CPA, we partition the
augmented-space 4 in two subspaces: +„spanned by the
cluster C and its configurations, and 'Ii2=%'/O', . This in-
volves partition of A ( [M"j ) as follows:

2

where 2
&

is in subspace 4& and A2 is in subspace +2. By
applying the partition theorem, the inverse of 3 in sub-
space 0'& can be written as

[A -'],=[A, —A'A A']-'= A -',
A, = y P;. Il &&lie y f~&&~f

iEC

+5P'v'xy g li &&if@ gg lo. )&cr'I
0,0'EC

0 WET

—ggs;, ll &&jl g l~&&~l,

where P = (P'),„ if the configuration at site i is 1, and
xPss+yP„ if it is $. The approximation now involves ig-
noring any configuration fluctuations outside the space
+& and replacing the operator A is that subspace by an
effective operator:

A., =- ~P„y li )&kl — y [s„+s, ]lk)(ml
keC'

~IS&(SI,

k, rn eC'
k&m

A = —yy[S,„+s,„]li)&klan g l~&&SI,

A2) —A)2 .

skI are site off-diagonal corrections in P'; the diagonal
corrections are already contained in P',ff. We shall define
the sum S;i, +s;k as S',z. The elements of [ A '] can be
found if we can evaluate the triple product ( A 'A

2
' A ' ).

Since A2 is the matrix element in the effective medium
with cluster C removed from the medium, we may write
2 2

' =g', ff'. The superscript C inside the parentheses in-
dicates the fact that g is calculated from the lattice from
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which cluster C has been removed.
From the above equations,

A A-'A'=ra r.rs,~l"S':.
l &&jl

i,j&C k, 1EC'

e g lo &(ol

=yygjli&&jim y la&&~l,
ijeC oEC

where gg = ggk i S kgki 'S/~ for i,jE C and IC, l H C '.
The matrix A'32 '3' is diagonal in the configuration

space 4. The off-diagonal parts in A thus come from 3 i
only:

& (p' —g") i &&il —yy(s". +gIi)li && jl
iGC i j EC

lWJ

e g lo ) (o.l+5P+ li & & ile M "' .

(g;;n; ) = (g;; ) [x +AP'5P' ]—g (g," )AS., 5p'

(n, g;; ) = [x +5P' 'bp'](g, , ) +—5P' 'As, (g,., ),
& n;g;;n, &

= [x +5P 'aP'] & g, , ) [x +5P

+ y 5P'-'as, , (g,,
&ap'5P'-'

+ y5P'-'ap'&g, , )as, ,
5P-'

J

+ g g 5P' 'b, s;k (gk) )b,si,; 5P'
k j

where b,p'=P',
ir
—(P') and bs;z =S'Jfr —S;~.

Substitution into the Eq. (19) gives the result

& G;; ) =
& &; &+p"( )t& g;;( ) )p"( )

—v'xy [p'(z) h (z)5P' '5p

+5@ (5P' ) 'h'(z)p'(z)]

(17)

Now let us further partition 3 in subspace 1 spanned
by l i,E), i E C, and is of rank m, where m is the size of
the cluster. Subspace 2 is the complement of subspace 1

and has rank m X (2 —1). The inverse of A in subspace
1 is given by

[A ],=(A, —A, ~32 'A~, ) '=a

where

xy 5p "(—5P't) 'K (z)5P' '5p,

p, '~(z) = (p(z) ) +&xy AP5P' '5p, , 5@=pq p~-
p'(z) =p~ +&xy KP5P' '5p,

Since the ranks of the matrices involved on the right-
hand side are small, in general we can easily invert the
above:

a = y ((p ) —g", )li &(il —yy(s'J, +gpli &&JI .

h(z)=f, (g(k))&S(k),d k
Bz 8

d k
h ( )=f, as'(k)&g(k)&,» 8~'

I~ (z) =f,&St(k)(g (k) &&S(k) .d k
» 8~'

IV. CONCLUSION

(18)

For the translationally invariant effective med1um,

(S",s. ) li & & jl .

Since subspace 1 is spanned by configuration lS) alone,
the augmented-space theorem tells us that (g ) =a
but by the definition of the effective medium, it is also

ff This leads to the self-consistency equations

P'„=&P') —( lA„A A„l &,

ff=S; +&ilAlpAQ A2i j& fo«~j
(15)

Once we have obtained the effective P',ff and S',z using
the self-consistent equations (22), we immediately obtain
expressions for the three other averages involved in
(ii) —(iv):

The other three elements (ii) —(iv) are obtained from
[ A '],2, [ A ']z„and [ A ']2. The partition theorem
gives

[A '],2= —[A, —A, 2A 2 'A2, ] 'A, 2A2 ',
16

We have proposed here a generalization of the
coherent-potential method for the TB LMTO to take into
account the effect of clusters. It has been felt through ex-
perience while dealing with strongly disordered alloys
with either diagonal disorder or off-diagonal disorder that
statistical correlation between the sites within a cluster
may be a physically relevant issue in order to study its
electronic density of states, electrical conductivity, etc.
In this regard we should mention that alloys like
Cu, „Pd, Au, „Pd, and several other transition-metal
alloys may be systems of relevant studies. The single-site
CPA theory, from the very beginning, is far from com-
plete, although the recent versions of it incorporate both
kinds (diagonal and off-diagonal) of disorder. So a mul-
tisite or cluster CPA problem was always a formidable
problem. %'e think that with this formulation in the near
future one can do realistic calculations for electronic
structures of several other alloys as well.
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