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Exchange-correlation energy of a three-dimensional electron gas in a magnetic field
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We present the results of random-phase-approximation calculations of the ground-state exchange and
correlation energy of a uniform electron liquid in strong and intermediate magnetic fields (one or several

Landau subbands populated), including arbitrary spin polarization. Applications for the current and
spin-density-functional theory are discussed and appropriate effective potentials are constructed. We in-

vestigate the exchange and correlation effects on the nondissipative currents, the Landau subband occu-
pation, and on the shape of the exchange-correlation hole. In an appendix we present a numerical fit for
the exchange-correlation energy.

I. INTRODUCTION

The ground-state energy of an electron gas may be
written as a sum of kinetic, exchange, and correlation
terms. While the two first terms are well known, the
correlation energy, being in fact the sum of all missing
contributions, is available only. within approximations.
The calculation of the correlation energy of an electron
gas is a classic problem of many-body physics. It has
been developed in several steps, starting from the small
and large density limits obtained by Wigner and Gell-
Mann and Brueckner, respectively, through the
random-phase approximation (RPA), Hubbard, and
Singwi, Tosi, Land, and Sjolander (STLS) (Ref. 5) approx-
imations, up to the stochastic, Monte Carlo calculations
of Ceperley and Alder which are currently considered
the best available results. These approximations to the
correlation energy have had many important applica-
tions, for example in the construction of the local-density
approximation for the density-functional theory (thus in
principle allowing most modern band-structure calcula-
tions), in determining the equilibrium properties of the
electron-hole liquid, and the renormalization of band
gaps in doped or highly excited semiconductors.

The more specialized problem of the ground-state ener-

gy of an electron gas in a magnetic field is much less
developed. On the basis of the theory of the electron
plasma in a magnetic field formulated by Horing and Yil-
diz, the exchange energy was calculated by Ichimura
and Tanaka' and later by Danz and Glasser. " The
correlation energy is thus far known only in three limit-
ing cases: (i) the weak magnetic-field limit in the pertur-
bative regime (pttB «k Ti«tEF), ' (ii) the weak mag-
netic field in the de Haas —van Alphen (i.e., oscillatory)
regime (k~T &&p+B &&EF),' and (iii) in the superstrong
magnetic-field limit (p~B ))E~), ' where all the elec-
trons are near the bottom of the lowest Landau subband
(here EF denotes the Fermi energy, and p is the Bohr
magneton). The interest in the behavior of a three-
dimensional (3D) electron gas in a magnetic field strong
enough to put all the electrons in the lowest few subbands
seemed to be somewhat academic to condensed-matter

physicists even a few years ago, since there were no such
systems experimentally available. In ordinary metals one
would need magnetic fields of strength in the range of
several kT to put all the electrons into the lowest Landau
subband. Such fields are believed to exist only near the
surface of neutron stars. Recently, however, several
artificial structures have been realized in which the low
density of electrons, combined with other favorable ma-
terial parameters, enable us to attain the magnetic quan-
tum limit of /-a, i.e., a magnetic length I=&Pic/eB,
comparable to the interparticle separation a, at an acces-
sible magnetic-field strength. For quasi-two-dimensional
systems a--prime example is provided by semiconductor
heterostructure interfaces, where the quantum Hall effect
has been observed. ' Structures simulating a three-
dimensional electron gas have also been realized recently
in the form of wide parabolic quantum wells, in which
the electron density can be controlled by setting the cur-
vature of an artificially designed parabolic potential. '

Other three-dimensional systems in which magnetic
quantization can be observed include electron-hole drop-
lets in semiconductors and large quantum dots.

In view of the development outlined above, it seems
useful to present an approximate calculation of the corre-
lation energy, not only in the limiting cases, but also in
the intermediate magnetic-field regime. This is done in
this paper. Our approach is based on the familiar di-
agrammatic many-body theory for weakly correlated sys-
tems. This is justified because the three-dimensional elec-
tron system admits a noninteracting ground state which
is essentially nondegenerate. It is therefore possible to
construct an approximate interacting ground state as the
adiabatic continuation (at T=O) of the noninteracting
ground state, and calculate its energy according to the
standard diagrammatic procedures. This should be con-
trasted with the two-dimensional case, in which the mas-
sive degeneracy of the noninteracting ground state (re-
moved here by the motion in the direction parallel to the
magnetic field) forbids the application of perturbative
methods. ' Our subsequent work is based on the
random-phase approximation (RPA) to the many-body
theory. This approximation, in the absence of magnetic
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field, is known to be asymptotically exact in the limit of
large density n, that is r, =(3/4nna. o)'~ « I, where ao is
the Bohr radius. With the magnetic field, this condition
becomes r, «min(l, ', ), where A, —nl is a parameter
describing the subband occupation as explained in Sec. II.
In practice, even for larger values of the parameter r„ the
RPA is still a reasonable approximation of the correla-
tion energy. More importantly, the quantity of most in-
terest here is not the absolute value of the exchange-
correlation energy, but rather its variation due to the
magnetic field, i.e., bE„,(n, B)=E„,(n, B)—E„,(n, O). It
is to this quantity that the RPA is applied. The absolute
value of the exchange-correlation energy can then be cal-
culated by using the value E„,(n, O) obtained by a more
accurate approximation. Previous experience' suggests
that the RPA may be more accurate in determining ener-

gy differences, rather than the energy itself.
This paper is organized as follows. In Sec. II, we de-

scribe our system and define the basic variables and their
relations. Section III presents the theoretical formulation

I

of our calculations of the exchange-correlation energy in
a magnetic field. In Sec. IV the results of the numerical
calculation and the analytical limits at the subband edges
are presented and discussed. Section V discusses the ap-
plication of our results to the calculation of the effective
potentials in the current density-functional theory
(CDFT). We also calculate the coefficient of the relation
between the gradient of the density and the current
within local CDFT, as in Ref. 19. In Sec. VI we investi-
gate the interacting occupation of the Landau subbands,
which differs substantially from the noninteracting one.
In Sec. VII we discuss the form of the exchange-
correlation hole in the magnetic field with and without
interaction. Finally, in the Appendix, a numerical fit for
the exchange-correlation energy is given.

II. PRELIMINARY DEFINITIONS

Using the Landau gauge we can write the Hamiltonian
of a 3D electron gas in a magnetic field in the second
quantization picture as

e~, k cÃ x, k, o.c1v x
N, X,k, o

+2', X X
N&, X&,k &,

o.
&, . . . , N4, X4, k 4, o4

V(q)(N, ,X„k„,o, ~exp(iq r) ~N4, X4, k,4, o4)

X(N2, Xz, k,2, oz exp(iq r)~N3 X3 k 3 03)c+ x k cj4r

Xc cN3 X3 k 3 CT3 N4, X4, k 4, o4

Here ckNx and ckNx are annihilation and creation
operators for electrons described by the one-particle wave
function:

+ux(r)= 1

QLL,
exp iX exp(ikz—)N~(x —X), (2)

L

1/2

@~(x)= 1

V~l2~N!
Hz(x/l)exp( —x /2l ), (3)

where L,L, are the sizes of the system, i=v'A'c/eB
=+A'/mco, is the magnetic length, C&z(x —X) is the
Xth eigenfunction of a one-dimensional harmonic oscilla-
tor of cyclotron frequency co, =eB/mc, and H& is a Her-
mite polynomial. The noninteracting one-electron energy
is given by

momentum kFN. In the noninteracting case those Fermi
momenta are defined by a condition of equal one-electron
energy at the top of each populated subband (see Fig. I):

~ kFO ~ kFN ~ kFN gp +%%co,= +Nba), +—Ace, .2' 2m 2P7l 2

Here g is the Zeeman splitting factor. It is very con-
venient to introduce the dimensionless variables
B =fico, /Ry, and Az=kF&l/+2=k. &ao/+B, where ao

fiE(N, k„o)= k, + N+ .,'+cr A'c—o, . — (4)

The corresponding band structure is presented in Fig. 1.
States defined by spin cr =+—,', Landau subband number
X, and the z component of the momentum k, are degen-
erate, due to the quantization of the motion perpendicu-
lar to the magnetic field with degeneracy G=eBS/hc,
where S is the surface of the system. Each Landau sub-
band (characterized by N and spin o) has its own Fermi

Zeeman splitting

Spin up Spin down

FIG. 1. The subband structure of the three-dimensional
noninteracting electron gas in a magnetic field. Landau levels
are replaced by parabolic Landau subbands, each filled up to its
own Fermi momenta kFN.
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is the Bohr radius. A, n may be interpreted as a three-
dimensional filling factor for the o.-spin component of the
Xth Landau subband. The density in each subband may
be written similarly to the one-dimensional case, as

k 6 x B'"
FN 6 N

n o.N S 4m ao

The total density is proportional to the sum of all lamb-
das, which we will denote as A.T

=g zA, & as

A, BT

4w'ao'

The most important variable for us is the occupation fac-
tor of the lowest subband A,o~, which we will write for sim-
plicity as A, =A,o~. The square of A, is proportional to the
noninteracting Fermi energy po=X co, . This is the vari-
able we will mostly be using to describe the occupation of
the system. All the occupation factors for different sub-
bands A,N are related to A, by relations analogous to Eq.
(5):

N ,
—(cr+——')—

2 2

It is important to remember that out of three basic
variables —magnetic field B, density n, and occupation
A, T—any two can completely describe our system. One
can easily switch between them using Eq. (7). The rela-
tion between A, and kT is more complicated:

1/2N N
AT= g +Bi+, g— A, i ———

i=0 i=0

It depends on the Zeeman splitting factor g, which can
vary from a very small positive number for some semi-
conductors to 2.0 for "ideal" electrons. One important
point is to realize that at the bottom of each one-
dimensional subband the density of states tends to
infinity. As a result, the behavior of A. as a function of A, T
(as well as magnetic field or density) has kinks whenever
the Fermi level touches a new Landau subband (for the
simplest cases of g=0, 2, and ~, this occurs whenever

A, =V N for integer N). The curves showing A, r as a func-
tion of A, are presented in the inset of the kinetic-energy
plot in Fig. 2. When we decrease the magnetic field, the
number of occupied Landau subbands N and A, tends to
infinity, and the distances between Landau subbands
shrink to zero so that the relation between the Fermi
momentum and the density changes, from strictly one di-
mensional n -A, (for A, & 1.0), to three dimensional n -A, ,
for large A, (n -A, T

—4A, —= 4NVN).
The kinetic energy per particle of the o.-spin com-

ponent of the loath subband may be written as

Ek(N, o, A, ,B)= —I, + N+ —+cr —B [Ry], (10)
3 2 2

III. CALCULATION
OF THE EXCHANGE-CORRELATION ENERGY

In order to calculate the exchange-correlation energy,
we use the Hellman-Feynmann interaction strength in-
tegration technique:

gE =— Vq Soq 1
(2rr )

+ —,
'f, V(q) f d a[S (q) —So(q )],(2~)' (12)

so that the total energy per particle may be written as

g~ ~A~Ek(N, cr, k, B )E (kA, ,B)=
XN, +~le

In Fig. 2 we plot the curves of kinetic energy as a func-
tion of A, , at fixed density r, = 1. For weak magnetic field
or large density, the cusps from discrete Landau subband
structure fade out and we reach the well-known result
Ek =2.21lr, Ry, valid in the absence of magnetic field.

In this paper we will assume that the Fermi momenta
of subbands defined by the noninteracting Eq. (5) are not
affected by interaction. In our previous paper, we have
shown that this is not always the case. The interaction
does change the subband population, but this has no
significant effect on the energy.

1.5-

0.5-

0 0.5
I

1.5

FIG. 2. The kinetic energy in Ry per parti-
cle as a function of magnetic field for fixed
density at r, =1. Cusps occur whenever the
Fermi level crosses a new Landau subband.
Curves for di8'erent values of Zeeman splitting
(g =0,0.24, 1,2, (x)) are presented by the solid,
short-dashed, long-dashed, and dashed-dotted
lines, respectively. The inset presents the total
subband occupation A, T, as a function of the
lowest subband occupation A, , for those Zee-
man splittings. For A,~ ~ we have A, &~ 3
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where the first term is the exchange and the second is the
correlation energy. Here V(q) =4~e /q is the Fourier
transform of the Coulomb potential, So(q) is the nonin-
teracting structure factor:

teraction strength a (it means substitution e —+ae ):

S (q)= — f dcoX (q, ice) .
7Tn 0

(14)

oo

So(q) = — f dcoXo(q, iso),
~n 0

(13)

while S (q) is the interacting structure factor at the in-

Let us begin by evaluating the first (exchange) term. For
this we have to introduce the noninteracting longitudinal
polarizability

dk, f«x, k ) f«—~,k, +q)
~o q '~ 2 f 2 S g g lt'M»' k. +q. le' '&,»k. )I',

o N, MX, X' N, k M, k +q
(15)

where f(E~ I, ) is the Fermi-Dirac distribution function, and the matrix element of the density-fluctuation operator is
given by

(M,X', k, +q, le™'IN,X,k, ) =exp(ik, z)exp q„(X'——X) F&M(q~)6,
2 NM ~ X'X+ q I (16)

where

N!
+MN(qj. )

( —q +iq )I
exp

2j'2

(17)

[Ig,(x ) is the generalized Laguerre polynomial].
After performing the k, integration, Eq. (15) becomes

IFM~(q, )
'

Xo(q, ice)= g g ln
4~'~, i' .NM q, I

q
2(2

co + (X—M)co, —
2Pl

2 2

k~Nq, /

q2j'2 kcT
q I2

co + (X—M)co, — +
2m m

here k„M denotes the Fermi momentum in the Mth Landau subband of spin 0.. After performing the frequency and q,
integrals, we are left with a one-dimensional integral:

CO 2

E.(»n)= —
g4 dql y +MM(ql) [q'(kFM+kFM ql) 'p( —kFM+k—FM ql)++(kFM kFM ql)—

MM'o.

++( kFM kFM' ql))

where %(x,a ) =x arctan(x /a )—(a /2)ln(x +a ). We have evaluated this integral numerically.
Now let us consider the correlation energy. The random-phase approximation means that we approximate the in-

teracting polarizability as

Xo(q, ice)
X (q, iso)=

1 —a V(q)Xo(q, iso)

After substituting it into the correlation part of Eq. (12) and performing the interaction strength integral, we obtain

2 2 BE,(B,A)= — f" f " ' f dco[Qo(q~, q„ice)—lnl 1+Qo(q~, q„ice)I],

(20)

where

(22)Qo(q~, q„ice)= —V(q)Xo(qj, q„iso) .
We have performed the remaining integrals numerically.

IV. RESULTS

In Figs. 3 and 4 we present the core of our results.
Here we plot the diff'erence hE ~,~(B,n )

I

=E„&,~(B,n )
—E &,~(O, n) between the exchange and the

RPA correlation energies per particle calculated with
magnetic field and without at fixed density r, =l. The
energies (in Ry) are plotted against the noninteracting
chemical potential pp in units of cyclotron frequency co, .
We consider first the nonpolarized case, when both spin
components have the same occupation with no Zeeman
splitting (i.e. , g=0). This method of presentation was
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FIG. 3. The difference between the ex-

change energy with and without magnetic field

(dashed line), calculated at constant density

r, =1. The solid line represents this difference
for the full exchange-correlation energy. The
horizontal axis represents the chemical poten-
tial in units of cyclotron frequency

=pp/Act) ~ In the inset the correlation ener-

gy is plotted as a function of A, at fixed magnet-
ic field (B= 1,2, 4). The peak of correlation en-

ergy at A, =0.03, independent of magnetic field,

may be observed.

0.02

CD

lU

0.01

0. 02

chosen for several reasons. First, we would like to make
use of our calculations in reaching further than the RPA.
For the electron gas without magnetic field there are
several better approximations for the correlation energy
(for example, Hubbard, STLS, Vashista-Singwi, ' and
primarily the results of the quantum Monte Carlo calcu-
lation of Ceperley and Alder ). We suggest that a better
approximation for the correlation energy of the system in
the magnetic field will be to take our data to be a measure
of the strength of the magnetic-field effects, rather than
using them as a final value of the energy. Our RPA re-
sults for the difference between field and no-field value
should thus be added to the best available estimate of the
correlation energy without magnetic field. The RPA
should give a more accurate measure of the difference be-
tween these two energies, than of the correlation energy
itself. '

Another reason for emphasizing the difference of the
correlation energy with and without magnetic field is the

approximate scaling property we have found. In the
range of densities we are working with, r, =0.5 —6, we
have found that for fixed A, ~ 0. 1 this difference scales ap-
proximately like 1/r, ; that is,

bE, (A., r, )=E,(l, , r, ) E,' '(r, —)
=bE, (A, , 1.0)/r, .

Such a scaling property is rigorous for the exchange ener-

gy, but it does not hold for the correlation energy taken
alone either with or without magnetic field. It is only the
variation of the correlation energy AE, that obeys Eq.
(23). To demonstrate this point, in the inset of Fig. 4, we
plot curves for bE, (B,r, )r, versus B for r, =2, 4, and 6.
The fact that these three curves very nearly coincide
demonstrates the approximate validity of Eq. (23). For a
very small Fermi momentum (A, & 0. 1), however, this ap-
proximate scaling relation breaks down, and should be re-
placed by b,E, (A, , r, ) —r, to provide agreement with
the limiting behavior given below.

The most striking feature of the data presented in Figs.
3 and 4 is that the exchange and correlation energy varia-
tions have very similar behavior although they have op-
posite signs and differ in overall magnitude. As a func-
tion of A, we may distinguish two regimes with different
types of behavior of exchange and correlation energies.

-0.01-

3 4

2~ = go~me

A. Uitrastrong magnetic field (A, =kzl /+2&0. 3)

In this regime the electron gas occupies only the states
near the bottom of the first Landau subband, so that not
only are the higher subbands empty, but even the transi-
tions to the higher subbands may be neglected. Notice
that even if the density is large, as required by the RPA,
this regime is always attained in strong enough magnetic
field. In this limit we have found analytically that

FIG. 4. The difference between the correlation energy with
and without magnetic field (dashed line) calculated at constant
density r, =1. The solid line represents this difference for the
full exchange-correlation energy. The horizontal axis represents
the chemical potential in units of cyclotron frequency
2=

A, =pp/A'co, . The inset presents the correlation energy for three
different densities multiplied by r„plotted vs magnetic field
multiplied by r, , so that the validity of the scaling property
from Eq. (23) may be assessed. The solid, dashed, and dotted
lines represents r, =2,4, and 6, respectively.

A,
2/3

E ( A, , r, ) = 1.345 ln
r, 1.679

(A, «1),
and, for the correlation energy

E,(r„A,)= —1.606r, (1—1.009k, '
) (A, «1),

which may also be written as

(24)
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ERPA
C

—0.157
—0.124
—0.105
—0.094
—0.085
—0.078

EcePerley
C

—0.120
—0.090
—0.074
—0.064
—0.056
—0.051

1.776
0.589
0.174
0.074
0.038
0.021

B=1
AE„,

0.000
0.005

—0.057
—0.099
—0.115
—0.118

0.589
0.074
0.021
0.009
0.004
0.002

B=4
hE„,

0.011
—0.198
—0.237
—0.219
—0.195
—0.173

TABLE I. The RPA and Ceperley Alder (Ref. 6) results for
the correlation energy of an unpolarized electron gas without
magnetic field (in Ry per electron). The values of the occupa-
tion factor A, and AE„, for two values of the magnetic-field
strength (B=%co, /Ry =1,4) are also given.

X—1

E (A, , r, ) g A,; =E„"'(A,, r, ) g A,;+E„' '(A, , r, )A~
i =0i=0

Landau subband begins. Those cusps in the plot of ener-

gy against k =go/co, are in fact largely enhanced by the
infinite density of states on the bottom of each subband,
but they would also be present if the energy were plotted
against the density n, or magnetic field B (see Fig. 4, in-
set). For exchange energy the cusp may be easily and ex-
actly explained. The exchange energy for a system with
only a very small population k& of the highest Nth Lan-
dau subband may be written exactly as the sum of three
terms:

+E„' '(A, , r, )A~, (27)

E, (B,X)= —0.917B'~'(A, ' '—1.009k, ' ') (1,« I) .

(26)

In the relations for the correlation energy, only the first
term was established analytically, while the second fol-
lows from a numerical fit to the results. We remind the
reader that the results plotted in Figs. 3 and 4 have the
zero magnetic-field values E (r, ) = —0.916/r, and

E, (r, ) subtracted from them. For large density r, « 1,
the RPA correlation energy may be approximated as
E, (r, ) = —0.094+0.0622 lnr„while at r, = 1, . . . , 6,
the RPA correlation energy can be found in Table I.

The behavior of the correlation energy for fixed mag-
netic field as a function of density is also noteworthy (see
Fig. 3, inset). In the small-A, regime (nl « 1), it varies as
n'~, following Eq. (25). This leading contribution was
established by Keldysh. ' However, we see that it is only
relevant in an extremely small range of value of A, (0.04.
In this regime only the contributions of wave vectors of
magnitude ~k~ =k' ))kF and frequency co=A. ' ))E~
are important to the energy integral in Eq. (12). The in-

tegral is in fact dominated by a single value of frequency,
so that the density of states is not important (collective
regime). For larger k the correlation energy is controlled
by the density of electron-hole excitations, which is a de-
creasing function of occupation number A. . As a result
the correlation energy begins to decrease. This crossover
from collective to electron-hole regimes is the origin of
the peak observed in the inset of Fig. 3. From the form
of Eq. (26) it is evident that the position of the peak is in-

dependent of magnetic field.

B. Strong and intermediate magnetic fields (A, )0.3)

In this regime, we observe an interesting oscillatory
behavior repeating itself for each new Landau subband
with decreasing amplitude. When the number of popu-
lated Landau subbands approaches eight, both the ex-
change and the correlation energies are within 0.2% of
their values without magnetic field.

The behavior of both exchange and correlation ener-
gies at the point when a new subband begins to be popu-
lated requires a more detailed inspection. In Figs. 3 and
4 we observe strong cusps whenever population of a new

E,(B,A, i, A, ")=
n(B, A, ~)+n(B, At )

X [n(B, A i)E„(B,A. ~)

+n(B, At)E (B,A, t], , (28)

where E"' represents the average exchange energy of the
system of electrons in the lowest N —1 subbands; E' ' the
average exchange energy of the interaction between elec-
trons in the highest Nth subband, with all the electrons in
the lower N —1 subbands; and E' ' the exchange per par-
ticle within the highest Nth subband only. Each of these
terms can be specified as an appropriate part of the N, M
sum in Eq. (15). When the Fermi level just barely passes
the bottom of the Nth subband, the density of states in
this subband is very large, so that nearly all new electrons
are placed in it. In addition, due to the small population
of the Nth subband, the E' ' contribution is very small.
As a result the change in the total exchange energy is
made mainly by the second term in Eq. (27). Since the
exchange interaction of the electrons in the highest sub-
band with those in the lower bands is obviously smaller
than the exchange within the lower bands, the net effect
is a rapid loss of exchange energy per particle, as shown
by the upward cusp in Fig. 3. However, as the popula-
tion of the highest subband increases, the E„' ' term in-

creases and eventually takes over, leading to the observed
increase in the absolute value of the exchange energy.
This increase is in fact the same as that observed in the
lowest Landau subband at very small population. The
expression for the correlation energy cannot be decom-
posed in the same way, as an exact sum of contributions
from separate pairs of subbands, but in essence its cusps
have the same origin. In the overall result the correlation
energy largely cancels the oscillatory behavior of the ex-
change, but at subband edges the exchange energy cusp
dominates.

The results presented up to now were obtained without
including the effect of Zeeman splitting. Taking this into
account now, we notice that each spin component has
different Fermi moinentum kg~, given by Eq. (5). Since
there is no exchange interaction between electrons be-
longing to different spin components, the exchange ener-

gy of the system with spin populations given by A, ~ and A,
~

may be expressed easily as the sum of exchange energies
for each component:
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where n (B,A, ) is the density, and E (B,A, ) is the exchange
energy of a system with only one spin component system
with a population A, , given by Eq. (19). The correlation
energy cannot be found so easily because there are corre-
lation e6'ects between electrons with difFerent spins. To
calculate the correlation energy at a given Zeeman split-
ting, we have to perform the correct RPA calculation
with the polarizability function go equal to the sum of po-
larizabilities for two spin components. We have per-
formed those calculations for several values of g. The re-
sults (see an example in Fig. 5) show that since new Lan-
dau subbands in each spin component begin to be popu-
lated at di6'erent values of A, , each cusp connected with a
new Landau subband is split into two, one for each spin
component. Additionally a new peak occurs at a very
strong magnetic field (A, =&g /2) when the down-spin
component begins to be populated (this peak cannot be
seen at Fig. 5). One has to take into account that, due to
the interaction driven shift in the subband occupation,
the position of the cusps may change significantly, as de-
scribed in our previous work.

Remarkably, we find that the result of the exact calcu-
lation is very well approximated by an average of the
correlation energy for the unpolarized electron gas at
densities A,

~ and A, ~, i.e.,

Here b,E,(B,A, ) denotes the difference between the corre-
lation energy of a state with both spin components equal-
ly filled, and occupation factor A, and the correlation en-
ergy of a state of the same density calculated without
magnetic field. Figure 5 presents the result of the exact
RPA calculations (solid line), and that of the approxi-
mate formula of Eq. (29) for g =0.24 (dashed line). The

tX:

CJQ 0. 01- g =0.24

&E,(B,&",&")= [n(k")bE, (B,X~)1

n (ki )+n (A. t )

+n(At )bE, (B,gt )],
(29)

di8'erence between the two curves is clearly very small, so
Eq. (29) may be used to construct the numerical fit (see
Appendix).

V. APPLICATIONS
TO THE CURRENT-DENSITY-FUNCTIONAL THEORY

6'„,[n t(r), n t(r), v(r)]
= f n (r)E„,[n t(r), n (r),8= —mc

~
v(r)

~
/e ], (31)

We see that the local approximation for 6„,is completely
determined by the knowledge of the energy of a uniform
system E„,(n (r), n (r),B), which we have calculated in
the previous section.

The determination of the ground-state density and
current in CDFT can be achieved by solving the Kohn-
Sham equations:

1

2Hz

2

ifiV+ —A,n(r) —+ Vdr(r) 4;(r)=e;4;(r) .
C

We present here some applications of our results to the
current-density-functional theory (CDFT). The CDFT
(Ref. 23) is a generalization of the density-functional
theory (DFT) (Refs. 24 and 25) which includes the cou-
pling of orbital currents to the magnetic field. The cen-
tral object in density-functional theories is an energy
functional of some intensive variables. For example, in
the spin-density-Functional Theory (SDFT) (Refs. 26 and
27) the magnetic field is included, but only insofar as it
couples to the electron spins one writes

@„,[n (r), ni(r)]= In(r)E„,(nt(r), n (r)), (30)

where E„,(n t(r), n i(r)) is the exchange-correlation ener-

gy per particle of a uniform system with arbitrary spin
densities n t(r), n (r). In CDFT the basic intensive vari-
ables are the spin densities n t(r), n ~(r) and the paramag-
netic current density j~(r). However, the exchange-
correlation part of the energy functional depends on j
only via the vorticity v=VXj /n. Therefore the func-
tional 6„, does not allow the local approximation in the
terms of currents, but one can construct a local approxi-
mation in terms of the vorticity v=VX(j /n). It has
been shown that a state of uniform spin density and vorti-
city can be identified as a state of uniform spin density in
a uniform magnetic field B=—mc ~v~/e. Thus we ob-
tain

(32)

Here the efFective potentials A, rr(r) and V,s(r) are given

by

I I

0.5 1 1.5 2 2. 5

2=p itoc
FIG. S. The difference between the correlation energy with

and without magnetic field for the polarized electron gas at the
physical value of the Zeeman splitting (g=0.24), and at Axed
density (r, =2}. The solid line represents the results of full RPA
calculations, while the dashed line was approximated using Eq.
(29). The accuracy of the approximation may be assessed.

A, rr(r)= A(r)+ A„,(r), (33)
2

V,s(r) = V(r)+ VH(r)+ V„,(r)+ [ A —A,~],
2mc

(34)

and the number density and paramagnetic current densi-
ty are defined in terms of Kohn-Sham orbitals as
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n(r)= g ~%, (r)~

j~(r)= — g [0", (r)V'P;(r) —[V%',*. (r)]%;(r)] .
(35)

6@„,[n t(r), n i(r), v(r)]
V„,(r) =

5n (r)

56„,[n t(r), n i(r), v(r)]

(36)

(37)

The exchange-correlation part of effective potentials are
functionals of the spin density and current distributions
given by

In the local-density approximation (LDA) the
6„,[n t(r), n (r), v] functional is approximated by Eq.
(31), and we can explicitly carry out the derivatives in
Eqs. (36) and (37). This gives

V„,(r)=

A„,(r) =—

B[n(r)E„,(n t(r), n ~(r),B(r)}]
dn (r)

8 E„,(nt(r), ni(r), B(r)}
BBBn

d E„(n t(r), n ~(r), B(r))
(Vn ) XB+ V XB(r)

BB

(38)

(39)

where

B(r}=— V X
e n

=Bo(r)—VX +
n e

(40)
Here we have assumed for simplicity that the direction of
the vorticity versor v is approximately constant and
parallel to the z direction. In Fig. 6 we present the scalar

—0.6-

—0.8-

FIG. 6. The effective scalar exchange-correlation potential as
a function of density at fixed magnetic field. The solid line
presents results obtained without magnetic field. Dashed, dot-
ted, and dotted-dashed lines were calculated at magnetic field

strength of B= 1, 2, and 4, respectively. We notice that at high
density all the curves coincide. When the density decreases, the
effect of magnetic field is visible, first for strong, then for weaker
magnetic fields. The inset presents the magnetic-field depen-
dence of the effective potential plotted at fixed density (r, =2).
Oscillations and discontinuities connected with Landau sub-
bands can be noticed. The absolute value of the magnetic-field
effects is much smaller than that of the density: compare the
scales of the inset and the main figure.

exchange-correlation potential V„,(r) as a function of
density for several strengths of magnetic field (B= 1,2, 4).
We notice that for large density the effects of magnetic
field are weak, and curves for different B nearly coincide
with the curve obtained without magnetic field. Howev-
er, when the density decreases we approach the quantum
regime (A, ( 1) and the curves starts to deviate (strong
magnetic field first, weaker later). If we look at our re-
sults at fixed magnetic field (see inset), we can see that the
magnetic-field dependence of the potential has oscilla-
tions and discontinuities at Landau subband edges, but
those changes are much weaker than the density depen-
dence (compare the scale of the main plot and inset).
Those results were obtained for a system with no Zeeman
splitting (g =0), when Vt, = Vi, . For an arbitrary value
of Zeeman splitting, the V~, and V~, will be different, yet
the difference is very small, and occurs only near the sub-
band edges. For example, for g=0.24 this difference
would be invisible in the scale of our plot.

A problem arises when we try to apply our results for
densities near to subband edges. The potentials are
discontinuous there. Taking into account the repopula-
tion of subbands discussed in Ref. 20 will shift the posi-
tions and significantly decrease the size of discontinuities,
but will not cancel it. Physically those discontinuities
reAect the sudden appearance of new types of orbitals
when the Fermi level crosses the bottom of a new Landau
subband. The effect is similar to the discontinuity of the
exchange-correlation potential in semiconductors, except
that in our case the LDA is already sufficient to describe
it qualitatively.

As we have mentioned before, the CDFT may be used
to determine the currents in the nonuniform system as in
Ref. 28. In the uniform system, due to translational sym-
metry currents must vanish everywhere, but if the density
is nonuniform the system in the magnetic field will spon-
taneously develop nonvanishing currents. In our previ-
ous paper' we derived the following local CDFT relation
between the gradient of the density and current:
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j(r)= y[n(r), BO(r)]Vn(r) Xz,
2m

where

(41)

2mc 8 BE1+n [n(r), Bo(r)] .
e Bn BBO

(42)

For a very strong magnetic-field (A, ~O) limit, the kinetic
energy dominates, which leads to y = 1. Our formula for
the currents then reduces to the formula obtained by Gir-
vin and MacDonald on the assumption that the one-
electron wave functions belong completely to the first
Landau subband. The derivatives of the energy function-
al 6„, may be performed using the results from Sec. IV,
while the kinetic part of gamma yk may be derived easily
from our discussion of Fermi momentum in Sec. II. It
may be written as

pends on the density only via the dimensionless Fermi
momentum A., the exchange-correlation distribution is
strongly density dependent). The smaller the density the
larger the exchange-correlation contribution. In the
range of densities of our interest (0.5 & r, & 6) we can see
that the exchange-correlation corrections are much
smaller than the kinetic part. In the strong magnetic-
field limit A, ~0 both the exchange and correlation
correction tends to 0, while at the subband edges
k —+1,2, . . . , they have logarithmic singularities, which
cancel each other giving in effect finite discontinuities in
the exchange-correlation contribution. For most practi-
cal applications we may disregard the exchange and
correlation contributions to the y factor.

VI. INTERACTING OCCUPATION
OF LANDAU SUBBANDS

(43)

The results for yk are presented in Fig. 7 (upper panel)
against chemical potential A, =k~l /&2. Not surprisingly,
they show sharp discontinuities whenever a new Landau
subband is being populated, and so they depend strongly
on the Zeeman splitting factor g which defines the rela-
tive positions of Landau subbands in both spin com-
ponents. Here we plot by a solid line the result with no
Zeeman splitting g =0 (identical to the case with infinite
one g = ~). For a physical value of 0&g &&2 each
discontinuity is split into two, one for each spin com-
ponent which begins to be occupied at a given A, .

In the lower panel of Fig. 7 we present the contribution
of exchange-correlation effects to y for different densities
(one has to notice that while the kinetic contribution de-

The simple noninteracting picture of Landau subbands
filled uniformly up to the Fermi momentum is changed
seriously by the electron-electron interaction. The wave
functions characterized by the Landau subband number
and the momentum parallel to the magnetic field are no
longer eigenfunctions of the full Hamiltonian. The in-
teraction mixes states belonging to different subbands,
and as a result changes their occupations. The occupa-
tions of Landau subbands may be expressed as the expec-
tation value of an operator:

~+
I'LL, ~

—~ CL,k X CI.k Xcr
k, X

(44)

where cLk x, elk x are defined in Sec. II. In terms of
z z

the Green's function it is given by

kinetic contribution to 'Y

4

2.

-2 .

-6 0.25 0.5 0.75
I

1.25

exchange-correlation contribution to

0.3-
O

0 ~ 2-

0.1-

-0.1-
0 0.5 1.25

I
I

(
(

0 ~~~~ r
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1.75
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FIG. 7. Upper panel: kinetic contribution
to y(n, B0), Eq. (42), as a function of non-
interacting Fermi momentum A, =kF l /&2.
Solid line represents results for both spinless
(g = ~ ) and nonpolarized (g =0) electrons.
Lower panel: exchange-correlation contribu-
tion to y(n, B0), for spinless electrons (g = ~ ).
The solid, dashed, and dotted lines present re-
sults obtained for the density r, = 1,2, 3, respec-
tively.
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nL, a=

(45)
Here we have included only the diagonal in terms of the

Green's function GIL (k,i co) =GI (k, i co), and self-
energy QIL (k, ice) =pl (k, iso) in the spin and Landau
subband representation. This can be done because in the
uniform system all off-diagonal terms vanish. To see this
let us write the full expansion of the Green's function as

G(r, r', i~0)= y y y Giv x iv «(k„k,';i~)xiii/J, (r)qi~x, „.(r') .
X,E' X,X' kz~ z

(46)

In the Landau gauge, the invariance under the translation in the y direction imposes X'=X, and the invariance under
the magnetic translation in the x direction makes Giv x iv x(k, k;iso) independent of X. Finally the rotational invari-
ance can be satisfied only if N =N'.

After some standard manipulation, we can express the change in the Lth subband occupation number due to the
electron-electron interactions as

5nl =nI nL
—= lim Im f f1 dt's d k

o 2ml 2m 2m

Gl (k, iso) BQL (k, iso)ln, ,
+Gl (k, ice)

GII '(k, ice) Bco

I CO 7/

e (47)

The frequency integral of the first term works out to be equal to the complex phase of the Green's function at co=0,
which vanishes because of the exact property Im+L (k, 0)=0. Thus we are left with

5nl = — Im f f XL (k, ice) GL (k, ice) .
1 dc' d k . 8

2&l

In the RPA the self-energy is written as

Xl (k, ice)= f 3 f f V(q) g F~M(qi)~ GM'(k+q, ico+iA),d q dc@ dA Qo(q '+)
(2~)3 2' 2vr l+ 0 q, iQ M

LM ™

(48)

(49)

where Qo(q, iso) is defined in Eq. (22). The integrals in

Eq. (48) may be carried out numerically. It is important
to point out that if we used the Hartree-Fock approxima-
tion the occupation shift would be zero. This can be easi-

ly seen from Eq. (47) and the fact that X "(k) is indepen-
dent of frequency. Thus the effect we are discussing here
appears only when we include the correlation effects.

In Fig. 8 we present our results. Here by solid lines we

plot the noninteracting occupations of the lowest Landau
subbands as a function of A, . The dashed lines represent
the interacting occupations calculated using Eq. (48). We
notice that even when the noninteracting picture predicts
that only a small fraction of the lowest subband is occu-
pied, we have noticeable occupation of higher subbands.
A similar phenomenon is known to occur for systems
without magnetic field. One finds there that, even at
T=O, there is a long tail of states with k) kF, which
have a finite occupation. Notice that the total occupation
of each spin component (summed over all subbands)
remains unaffected by the interaction. This is consistent
with the fact that electron-electron-scattering processes
may change the subband population, but cannot change
the total spin of interacting particles.

It is important to keep in mind that we assume here
that the ground state of the interacting Hamiltonian may
be obtained by adiabatically switching on the interaction
from the ground state of the noninteracting Hamiltonian.
The change of the subband occupation, which we have
discussed above, is a reAection of the fact that the in-
teracting Hamiltonian is mixing the eigenstates of the

I

noninteracting one. Yet this is only one mechanism in
which the interaction is affecting the subband occupation.
The other one is based on the following observation. The
assumption that the interacting ground state can be ob-
tained in the process of adiabatic continuation from the
noninteracting ground state is incorrect. In our recent pa-
per we proved that to obtain the interacting state of the
lowest energy we must perform an adiabatic continuation
of a noninteracting state which is different from the
noninteracting ground state. The above procedure of cal-

1.4

0.8

0. 6

0 4 .

0.2-

0-
0 0. 5 1.5 2. 5

FIG. 8. The interacting occupation of Landau subbands
(dashed line) compared to the noninteracting one (solid line).
One can notice that the interaction creates a finite population of
higher subbands even if in the noninteracting case they would
be completely empty.
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culating the subband occupation was applied there using
the noninteracting polarizability yo(q, ice) defined in Eq.
(18) with Fermi momenta k~~ adjusted to minimize the
total interacting ground-state energy.

VII. EXCHANGE-CORRELATION HOLE

The exchange-correlation hole is given by
h(ri, r, )=n[g(ri, r, )

—1], where g(ri, r,) is the pair dis-
tribution function which is given by the Fourier trans-
form of the structure factor:

1 00

S(q iq, )= — deny(qi, q„ice) .
~n o

(50)

X, = 0.1 X= 0.5 X= 1.5

4~

2

0 1 2
r II

0.5 3.
i' I I

s$

~ ~
O

1.5 0 0.5 1
r I I

FIG. 9. The shape of the exchange-correlation hole. The
lines of equal value of the distribution function g(rj, r, )=0.5
are plotted. The solid line represents the exchange hole. The
dotted line shows the exchange-correlation hole at large density
r, =1, which means relatively weak interaction. The dashed
line was obtained at r, =4. We can see that at very small k
(strong magnetic field) the exchange hole is elongated in the
magnetic-field direction, yet the interaction pulls it back to a
more spherical shape. This anisotropy can only be seen for very
strong magnetic fields. When the third Landau subband is be-
ing populated (A, =1.5), even the exchange hole is nearly isotro-
plc.

The RPA calculation for y(q, ice) has been discussed in
Sec. III. Let us first consider the exchange hole, which is
obtained by substituting y=yo in Eq. (50). If we express
lengths in units of magnetic length I, then the shape of
the distribution function depends only on A, (i.e., it does
not depend on the strength of the magnetic field and den-
sity separately). In the limit of weak magnetic field
(A,~~) the exchange hole is isotropic, and its size is
given by r~ =r, =n ' = IA,„' . On the other hand, in
the limit of the strong magnetic field (A, & 1}the size of the
hole is ri =l, r, = I /A, ))l. In the intermediate regime we
have: ri = I(A, /A T )'~, r, = l /1, . So except for small
kinks at the subband edges, the eccentricity of the ex-
change hole increases monotonic ally with increasing
magnetic field, but the effect is important only for the
strong magnetic field (e.g., at A, = lr, /ri =1.3).

Since the interaction is isotropic, we would expect that
it will pull the hole toward a more symmetric shape, and
this is what actually happens. In Fig. 9 we present the

shape of exchange and exchange-correlation holes for
different magnetic fields (A, =O. 1, 0.5, and 1.5) and
different densities (r, = 1,4). Here we plot the equidensity
lines at which g(ri, r, )=0.5. We notice that while the
noninteracting exchange hole (solid line) is strongly
elongated at A, =O. 1 and 0.5, the interaction reduces the
eccentricity. The interaction effect is weaker for r, =l
(dotted line) than for the more dilute system at r, =4
(dashed line). This elongation of the exchange-
correlation hole occurs only for very strong magnetic
field; at A, =1.5, when the third Landau subband is popu-
lated, even the exchange hole is nearly isotropic.
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APPENDIX. NUMERICAL FIT
FOR THE EXCHANGE-CORRELATION ENERGY

b,E„,=0.0022(y —y ) —0.0023 .

For +2 +N A,&«N+I (here N+1
integer —number of occupied Landau subbands),

b,E„,=0.00026N+0. 003(y —y )/N —0.002 .

(A2)

is an

(A3)

For strong magnetic field Q, & 1) the agreement between
the fit and results of the full calculation is very good. For
higher Landau subbands (N) 2) the cancellation of ex-
change and correlation is very strong, so that our numeri-
cal results cannot give the precise shape of the subband

Here we present the fit for the exchange-correlation en-
ergy of the unpolarized (g =0}electron gas as a function
of A, , at a density of r, =1. The results for different densi-
ties within a range 0.5 & r, & 6.0 may be obtained by us-
ing the scaling relation of Eq. (23). It is important to
remember that this approximate scaling relation is not
correct for very small A, &0. 1. Thus our fit does not de-
scribe the density dependence in the ultrastrong
magnetic-field regime, but it is satisfactory in most of the
physically interesting region. To get the result for the
spin-polarized gas, one has to use Eqs. (28) and (29).

As discussed in Sec. IV, we fit the difference between
the actual energy and the energy obtained at the same
density without magnetic field hE„,=E,—E„', '. Let
us define y =A, —IA, ], where [A, ] denotes the integer
part of A, . Depending on the number of Landau levels
occupied, we may write the exchange-correlation energy
in Ry per electron as follows.

For A, &1,
bE„,(A) = 1.128 33k, ' —0.975 816k+0.533 489K,

—0. 163083K, +0.11775k, ~ ln(A, ) —0.532 .
(A 1)

For 1&A, &+2,
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—1.08 .

—1.085- 0 0.01 0.02
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FIG. 10. The accuracy of the fit given in the
Appendix may be assessed by a comparison be-
tween the calculated value of the exchange-
correlation energy (with the zero-field energy
subtracted) represented by the solid line, and
its numerical fit given in the Appendix and
represented by the dashed line. The insets
present enlargements of the superstrong and
weak magnetic-field regions.

1, = P,o/COc

edges. Therefore only the average value and general cur-
vature of the function between subband edges is
represented in the fit. The accuracy of this fit may be as-
sessed from Fig. 10. To obtain the full exchange-
correlation energy our results for EE„, should be added
to the exchange-correlation energy without magnetic
field. In Table I we provide the RPA (see, e.g., Ref. 22)
and Ceperley-Alder values of correlation energy without
magnetic field, and our magnetic-field correction for two
diferent values of the magnetic field.

The Ceperley-Alder results may be approximated by
the Perdew-Zunger formula, as given in Ref. 31.

For r, &1,

(5) Usin~ Eqs. (28) and
bE„,(B,n T, n )=bE„,(AT, kt, r, ) as

bE„,(A, t, A, T, r, )

(29) calulate

for each spin component using relation (9):
A, TT't=g+ o'1/(A, T t) i, —where N is the integer part of
(QT& t )2

(3) Using the numerical fit presented in this appendix
in Eqs. (Al) —(A3), calculate b E T,'t (A, T't, r, = 1).

(4) Using the scaling relation for density Eq. (23), cal-
culate

+ET, t(QT, t r T, t) —bE c T, t(QT. t r —1)/r T, t

E,(r, ) = —0.2846/(1+ 1.0529+r, +0.3334r, ) .

For r, ~1,

E,(r, ) =0.0622 lnr, —0.096+0.004r, lnr, —0.0232r, .

(A4)

+n(A, T)bE„,(A, T, r t)] .

(A5)
Summarizing, to calculate the exchange-correlation ener-

gy of an electron gas in the magnetic field of strength 8
and density of spin components n ~, n ~, one has to do the
following:

(1) Calculate A, z~ and A, Tt using formula (7):
n T'"=A, T'"B /4m an —

T m. ao.
(2) Calculate the dimensional Fermi momentum XT't

(6) Calculate the exchange-correlation energy of an
electron gas of given density and spin polarization
without magnetic field, using the best available approxi-
mation. For nonpolarized case one can use the Pardew-
Zunger formula given above in Eqs. (A4) and (A5) (see
also Ref. 31).

(7) Add the magnetic-field correction from step (5) to
the no-field result from step (6) to obtain the total
exchange-correlation energy in the magnetic field.
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