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Electron tunneling relaxation, accompanied by spontaneous emission of optical phonons, is consid-
ered in a double quantum well subject to a perpendicular magnetic field. When the energy splitting
ET, between the (lowest) levels in the left and right wells, is larger than the optical phonon energy,
electrons can emit optical phonons and tunnel from the upper set of Landau levels to the lower one.
As a result the relaxation rate exhibits giant magnetophonon oscillations whose amplitude at strong
magnetic fields is larger than the zero-field value by one to two orders of magnitude. Moreover, the
rate shows oscillations as function of Az . Collision broadening and phonon dispersion are taken into
account.

Tunneling relaxation of photoexcited electrons in
coupled double quantum wells has been studied ac-
tively in past years using time-resolved luminescence
techniques. When the splitting b,T of the (low-
est) electron levels of the left and right well is larger
than the optical phonon energy hero spontaneous opti-
cal phonon emission is a dominant relaxation mechanism
at low temperatures and (electron) concentrations. Both
numerical and analytical descriptions of such a process
have been reported for zero magnetic 6eld B. However,
when B is present and perpendicular to the interfaces,
the motion parallel to the latter becomes quantized, the
energy spectrum becomes discrete (Landau levels), and
the tunneling rate may change considerably.

In this paper we report giant magnetophonon oscil-
lations of the tunneling relaxation rate due to sponta-
neous emission of optical phonons in double quantum
wells when a transverse Beld B is present. The rate os-
cillates as function of B and of the splitting L~, the latter
can be controlled by the application of a transverse volt-
age. To our knowledge this eKect has not been treated.
It happens for LT ) huo and is the result of electron
transitions from the upper set of Landau levels (labeled
by n) to the lower one (labeled by n') as shown schemat-
ically in Fig. 1. Electron transitions occur whenever the
condition

consider only bulk phonons and assume that localized
modes give qualitatively similar results.

For transitions between the state In) and the states
In' ), with corresponding energies E and E, due to
spontaneous emission of optical phonons, the relevant
rate v~ is given by

a'q

where wq and q are the frequency and wave vector of the
emitted phonons, and C(q) the electron-phonon interac-
tion matrix element for bulk phonons.

b7
2

is satisfied, u being the cyclotron frequency. This reso-
nance condition is different than that for the usual three-
or two-dimensional systems by the term L~. In what
follows we evaluate the relaxation rate associated with
emission of longitudinal-optical phonons as function of
the magnetic field and the splitting Lz- which depends
sensitively on the parameters of the structure. In the
calculations we take into account both broadening of the
Landau levels and phonon dispersion. For simplicity we

2

FIG. 1. Scheme of tunneling transitions between two
sets of Landau levels under spontaneous emission of optical
phono ns.

0163-1829/93/48(11)/8483(4)/$06. 00 8483 1993 The American Physical Society



8484 F. T. VASKO AND P. VASILOPOULOS 48

The eigenvalues E and eigenfunctions ]o.) have been
obtained earlier assuming that hu, is much smaller
than the heterojunction band ofFsets. Then the mag-
netic field B, taken along the z direction, does not
change the tunneling matrix element, T. If only the
lowest two levels of the isolated left (l) and right (r)
wells are occupied the eigenstates are ~n)—:~+)~nk„)
and the ~k) states are described by the linear combi-
nations ~+) = %([l) + [2T/(AT + A)]~r)}, and

~

—)
K((r) —[2T/(AT +A)](l) j, where K = Q(Az + A)/2AT
is the normalization factor and ~nk„) the eigenfunction in
the (x, y) plane. Az and A are the energy splitting be-
tween the ~+) and

~

—) states with and without tunneling,
respectively. The energy spectrum is

E~„=(n+1/2)h~. +~~/2, ~T = g~+4T2.
We now consider transitions from the state ~cr)

~+)~nk„) to the states ~n') =
~

—)~n'k„'), cf. Fig. 1. Using
the results of Refs. 7, 8, and 10, we obtain

](+nk„/e' 'f —n'k„')/ =
/

—
f 4(q, )

/T&t'

x](nk„fe' *Jn'k„')]
x gq ql +q, (4)

) ](n, kyle" *[n', —q„)]
qyq~

where L is the area and introduce the dimensionless
variable g = q d. The result for v+ is

&+~ = &o ) ~(+r + E~ —E„—h~o)~

where vo is the relaxation rate in the absence of the
magnetic field, and

The shape of the oscillations is determined by X(E).
A simple expression for X( ) is obtained when I' )) I'o ——

(g, /d) h~o and collision broadening (CB) is dominant or
when I' &( I o and dispersion broadening (DB) is domi-
nant. In the first case (CB) we may neglect the phonon
dispersion in the Gaussian function; the result for the
integral over g is A = 4.47. In the second case, the
Gaussian function is replaced by a b function. These two
asymptotic results are

where

C'(q. ) = X'(q.dl)+X'(q. d. ) —2 co (q.»)X(q.d )X(q.d-),
W(E) = A(h(uo/I') e /" (CB) (1O)

and y(a) = (2/a) sin(a/2)/[1 —a /4m ]; di and d, are the
widths of the left and right well, respectively, and Lz
the distance between the centers of the wells. We assume
that the barrier penetration by the ~l) and ~r) orbitals is
small and that intrawell scattering is symmetric in both
wells. This ensures that the tunneling superposition of
the ~l) and ~r) states remains valid and is guaranteed
when the condition L~ L & 6~0 &) T.

We now substitute Eq. (4) in Eq. (2), integrate out the
dependence on k„' using relative coordinates, and treat
collision broadening phenomenologically by replacing the
b function by a Gaussian function Sr( ) of width I' as-
sumed to be independent of the indices n and n'. The
result is

and

X(E) = 0( E) (2~vrh~—,/E) (n/d) C
E h~, ~

(DB). (»)

1.0

v+„= —) (C(q) [ ](n, k„/2(e' *Jn', —kv/2) ]

n'A', y qz qs

x@(q )br(AT + E
E„—hu), ) ~q„—

w(z}
+0 0.5—

We have taken into account phonon dispersion using
co~ —tao(1 —a q ), where a is of the order of the lattice
constant. Now the magnetophonon oscillations occur for) h~o ~ hu, i.e., when the magnetic length E,
which determines the characteristic wave vectors q and
k„, is larger than d = v did„, which determines the scale
of the wave vectors along the z direction. As a result
~C(q)

~

and the phonon energy hu~ depend weakly on q
and A:„; negleting these dependences, we can carry out
the integrations over q and q, A:„ independently. Fur-
ther, we use the identity

0.0
-6.0 -3.0

I

0.0 3.0

FIG. 2. Shape of the magnetophonon tunneling peak as
function of energy for difFerent values of the phonon dispersion
parameter b = (huo/I')(a/d) . The solid, dashed, and dotted
curves correspond to b = 0, 1.5, and 3, respectively.
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