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Transmission coefficient of electrons through a single graded barrier
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We present a model to describe the effective mass, generalized kinetic-energy operator, and barrier po-
tential to study the motion of an electron across a nonabrupt barrier of GaAs/Al,Ga;_,As/GaAs.
With this model, we calculate the transmission coefficient using three different methods. The results ob-
tained with these methods show a significant change of the transmission coeflicient when compared with
that of an abrupt barrier. Numerical results are obtained for different values of the interfacial width,

and compositional variation of the aluminum.

I. INTRODUCTION

The fabrication of high-quality layered semiconductor
structures such as quantum wells and potential barriers
has allowed the observation of manmade quantum size
effects in optical devices."? In order to obtain the physi-
cal properties of such systems, one has to solve the
Schrodinger equation involving potentials with compli-
cated profiles. Exact analytical solutions of the
Schrodinger equation are available only for simple poten-
tial structures such as the square well or the parabolic
well. The Schrodinger equation has been solved numeri-
cally for an arbitrary potential profile by different
methods, such as the multistep potential approximation’
(MPA), finite element methods* (FEM), and the
piecewise-linear approximation.>® Using the MPA
method,® the variations of potential energy and of the
electron effective mass are approximated by multistep
functions, such that various potential barriers, including
continuous variations of potential energy and effective
mass, can be analyzed by using this method. With the
FEM approach, based on the Galerkin method,* the
Schrodinger equation is replaced by a system of algebraic
equations with parameters that define the approximated
solution, and this approach also allows us to treat the
effective mass as a continuous function at the interfaces.
FEM has been used to calculate the transmission proba-
bility through potential barriers’ and eigenstates in a
quantum well.® In both methods, MPA and FEM, the
boundary condition has the form that the envelope func-
tion, and its derivative divided by effective mass, are con-
tinuous at the interfaces.

In most of the problems involving heterojunctions, it is
assumed that the interface is abrupt.>'® However, exper-
imental results have shown the absence of atomically
smooth semiconductor heterointerfaces.!’"!? Particularly
for the case of GaAs/Al,Ga,_,As, the transition region
of the interface can occur from one to two unit cells.'® It
has been observed that the interfacial width and composi-
tional variation considerably change heterostructure
properties.'* Using a nonabrupt potential profile to de-
scribe one heterojunction, theoretical calculations have
been carried out to analyze the transmission coefficient
for electrons and holes.!>1¢

In this paper we study the effects of the interfacial
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width and compositional variation on the transmission
coefficient of electrons across a GaAs/Al,Ga,_, As/
GaAs barrier. In Sec. II we present a model to describe
the effective mass, generalized kinetic-energy operator,
and barrier potential. With this model we calculate the
transmission coefficient using three different methods,
and in Sec. III we compare the results obtained with
these methods as a function of the interfacial width and
compositional variation of the aluminum.

II. MODEL DESCRIPTION

The conduction-band energy structure of the system to
be studied is a GaAs/Al,Ga,_,As/GaAs barrier with
nonabrupt interfaces, as shown in Fig. 1, and under the
effective-mass approximation, the envelope function of
the electron is given by a one-dimensional time-
independent Schrodinger equation. We assume that the
aluminum molar fraction )} changes linearly at the transi-
tion regions, such that it can be written as

(b<) (b+c) 2Z
m(z) /mo
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FIG. 1. Potential barrier, effective mass, and the aluminum
molar fraction, as a function of the position.
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where 2b is the barrier width and x is the Al,Ga,_,As
aluminum molar fraction. The transition regions occur
from GaAs to Al ,Ga,_,As between z=—(b-+a) and
z=—(b—a) and from Al ,Ga,_,As to GaAs between
z=(b—c) and z=(b+c), respectively. By considering
that the Al Ga;_,As conduction-band energy-band-
structure dependence on x is valid for angstrom dimen-
sions,!” the potential that determines the electron motion
in space, as shown in Fig. 1, is given by

V(z)=Clex(z)+ex(2)?], (2.2)

where C is the band offset and €, €, are constants associ-
ated with the compositional dependence of the energy-
gap difference between Al Ga,_, As and GaAs.!’

The electron’s motion across the barrier is described by
a Hamiltonian with a kinetic-energy operator having a
position-dependent effective mass, as proposed by von
Ross,'® that is,

T=LmpmPpm?+mpmPpm®) , 2.3)
with a+y +B=—1, p is the momentum operator, and m
is the effective mass. Since the effective mass in the
Al,Ga,_,As is proportional to the aluminum concentra-
tion,!” we assume that for the system under consideration
this is also true at the transition regions. With this as-
sumption, the effective mass changes continuously ac-
cording to

m(z)

=p,+pux(z), (2.4)

0

where p,,u, are parameters obtained experimentally!’
and m is the free-electron mass. The generalized bound-
ary conditions used by Morrow and Brownstein!® will be
considered.

In order to obtain the transmission coefficient of the
electrons through a graded barrier, we use three different
methods. In the first one we assume a constant effective
mass (CEM) across the transition region, as used by
Freire, Farias, and Auto.'® In this approximation, at the
transition region, the effective mass is the average value
between its value in the GaAs and Al,Ga;_,As, and the
potential is a linear function of z. In the second method
we use the multistep potential approximation® and finally
we apply the finite element method.*

III. RESULTS AND DISCUSSION

In order to obtain numerical results, we use the experi-
mental parameters given in Ref. 17 and consider the band
offset equal to 0.6. To compare all approximations, we
assume for the kinetic operator, Eq. (2.3), =y =0 and
B=—1. In all cases we observed that when the MPA and
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FEM approaches converge, they give the same results for
the transmission coefficient of the electrons through the
barrier. The convergence of the MPA approach was ob-
tained by dividing each transition region of the barrier
into N =30 intervals, while to obtain the same result us-
ing FEM it was necessary to consider N =25 for the
whole region of the barrier. Since both methods give the
same results, we will plot the transmission coefficient of
the electron using the MPA approach, because MPA
take less computer time than FEM.

From the result obtained we observed that the ex-
istence of a transition region in a barrier decreases the
amplitude of oscillation of the transmission coefficient,
which is consistent with experimental results reported by
Kim and Arnold.?

Using all the approximations, in Fig. 2 we show the
transmission coefficient of electrons on abrupt and nona-
brupt barriers of width 100 A, aluminum molar concen-
tration x =0.35, and a symmetric transition region of
widths [ =2a=2.0, 4.0, 6.0 LP, where LP is the lattice
parameter of GaAs. We first observe that for all values
of I, the peak-to-valley ratio (PVR) in the abrupt barrier
is greater than those obtained by assuming a nonabrupt
interface. As the transition region increases, the PVR de-
creases, and the peaks shift toward high energies.

In Fig. 3 we plot the transmission coefficient of elec-
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FIG. 2. Transmission coefficient as a function of the incident
electron energy, for a barrier of width 100 A, aluminum concen-
tration x =0.35, and a symmetric transition region of (a) 2.0, (b)
4.0, and (c) 6.0 LP: abrupt barrier ( ), the CEM method
(— — —), and the MPA method (- - - -.).
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FIG. 3. Transmission coefficient as a function of the incident
electron energy, for a barrier of width 100 A, a symmetric tran-
sition region / =2a =4.0 LP, and an aluminum concentration of
(a) 0.25, (b) 0.35, and (c) 0.45: abrupt barrier ( ), the CEM
method (— — —), and the MPA method (- - - -).

trons on abrupt and nonabrupt barriers of width 100 A,
for a symmetric transition region of width /=2a=4.0
LP, and with an aluminum molar concentration of
x =0.25, 0.35, and 0.45. When the aluminum concentra-
tion decreases, we note that the difference between the re-
sults obtained for abrupt and nonabrupt barriers became
small. This result is due to the fact that the barrier po-
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FIG. 4. Transmission coefficient as a function of the incident
electron energy, for a barrier of width 100 A, aluminum concen-
tration x =0.35, using the MPA method: asymmetric transition
region with a=c=2.0 LP ( ) and an unsymmetric transi-
tion region witha=1.0LP and ¢c=2.0LP (— — —).
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tential depends on the aluminum concentration; conse-
quently, the charge in the effective mass is less significant
for small concentrations. Again, we observe that for all
values of the aluminum concentration x, the peak-to-
valley ratio in the abrupt barrier is greater than those ob-
tained by assuming a nonabrupt interface. For the same
value of the aluminum concentration, we note that there
is no shift of the peaks to high energies when we compare
abrupt and nonabrupt barriers.

In Fig. 4 we analyze the effect of the symmetry on the
transition region by considering a barrier of width 100 A,
an aluminum molar concentration of x =0.45, and transi-
tion regions of a=c¢=2.0 LP, and ¢a=1.0 LP, ¢=3.0
LP. We observe that the PVR is greater in the barrier
with a symmetric transition than in the unsymmetric one.
Furthermore, we note that the transmission coefficient
does not change in the unsymmetric barrier, when we in-
vert the values of a and c.

In Fig. 5 we present the transmission coefficient consid-
ering B=0, —1 in the kinetic-energy operator. In Fig.
5(a) we consider an abrupt barrier with /=100 A and
x =0.35. As can be seen, there is a significant change in
the transmission coefficient due to the boundary condi-
tions.'” In Fig. 5(b) we present the transmission
coefficient for a nonabrupt barrier of width /=100 A,
x=0.35, and a=c=3.0 LP. Since the effective mass
changes smoothly from one region to another, we note
that the difference between the results is smaller when
compared with the abrupt barrier. Although most previ-
ous work assumes 3= —1, we believe that experimental
results are necessary to establish the correct value of 3.
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FIG. 5. Transmission coefficient as a function of the incident
electron energy, for a barrier of width 100 A, aluminum concen-
tration x =0.35, with 3=0(— — —) and 8= —1 (——), for an
abrupt barrier (a) and a nonabrupt barrier (b), with a symmetric
transition region of /=2a=6.0 LP.
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In conclusion, the effect of a transition region on the
transmission coefficient of electrons through a barrier of
less than 200 A is significant. Since the MPA and FEM
approaches consider the effective mass to be changing
continuously, they represent a more realistic method to
describe a nonabrupt barrier when compared with the
CEM approach. We are now analyzing the effect of the
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transition region on resonant tunneling through a double
barrier.
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