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Accurate theoretical analysis of photonic band-gap materials
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Two improvements for the solution of Maxwell’s equations in periodic dielectric media are intro-
duced, abandoning the plane-wave cutoff and interpolating the dielectric function. These improvements
permit the accurate study of previously inaccessible systems. Example calculations are discussed, em-
ploying a basis of ~10° plane waves for which these two improvements reduce both the memory and

central processing unit requirements by ~ 10%

The study of electromagnetic radiation in periodic
dielectric media has progressed rapidly in the past five
years. Initial work focused on materials with three-
dimensional symmetry!~* highlighted by the discovery of
photonic crystals which possess a photonic band gap.®™’
The scope of inquiry was then broadened to include two-
dimensional systems with continuous symmetry in the
third dimension®!* as well as two- and three-
dimensional systems whose symmetry is broken by a de-
fect!* 716 or a surface.'”!® These investigations revealed
that for any photonic crystal with a band gap, a defect
can be introduced into the crystal which creates an ex-
ponentially localized state at any frequency in the gap.
These photonic crystals have a number of interesting
physical properties and may also be useful in a number of
device applications.!>1516

Because Maxwell’s equations for linear dielectric ma-
terials are basically exact, computation has played a criti-
cal role in the analysis of photonic crystals. Indeed, al-
though it appeared that the fcc structure had a photonic
band gap in experiment,? computations of photonic band
structures soon showed that it did not.>* The first struc-
ture to have a photonic band gap was found theoretical-
ly,? and it was soon confirmed experimentally that a simi-
lar structure did have a band gap.® For a number of
small systems, it was demonstrated that there was an ex-
cellent agreement between theory and experiment.® 10,14
All these calculations involved expanding the electromag-
netic fields in a basis of plane waves. The reasons for this
is that plane waves are complete, can be systematically
improved, and do not require any prior knowledge as to
the distributions of the fields. However, it was recently
shown that this technique suffers from poor plane-wave
convergence.”'® For this reason, it has not been possible
to apply these methods accurately to the important cases
of defects in photonic crystals. The purpose of this paper
is to introduce a method that leads to dramatic improve-
ments in the computation of the electromagnetic states of
photonic crystals and to apply this method to two previ-
ously intractable systems.

A single governing equation for electromagnetic states
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in photonic crystals can be found by rearranging
Maxwell’s equations in macroscopic media:

1

-2
o, oH . (1)

VX VXH

Here, €(r) is the dielectric function and H is the magnetic
field of an electromagnetic mode of frequency w. The
magnetic field, which must be transverse (V-H=0), is
then expanded in a basis of transverse plane waves,
i(k+G)r : ;
ee , where e, are the unit vectors perpendicular to
wave vector k+G. In this basis, Eq. (1) becomes a ma-
trix eigenvalue equation,
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where A, is the coefficient of the plane wave e,e'kt0)T,

and the matrix O is defined by
Ofsn). iy =[(k+G)Xe;]-[(k+G') Xeyle 1(G,G') .
(3)

In this expression, € (G,G’) is the inverse of the
Fourier transform of the dielectric function e(r).

The matrix elements in Eq. (3) can be calculated unam-
biguously when the number of plane waves per polariza-
tion (Npw) equals the number of grid points upon which
the dielectric function is sampled (Nggr), since the opera-
tions of inversion and Fourier transform commute.
When the plane-wave set is truncated in order to facili-
tate convergence, these two operations cease to commute.
Ho, Chan, and Soukoulis® suggest computing an approxi-
mation to € (G, G’) by Fourier-transforming the dielec-
tric function, truncating it, and then inverting the result-
ing matrix (the Ho, Chan, and Soukoulis method). An al-
ternative approach is to invert the dielectric function in
real space, Fourier-transform the inverse, and then trun-
cate the resulting function (the slow method). The con-
vergence properties of eigenstate frequencies as the num-
ber of plane waves is increased using these two ap-
proaches are depicted in Fig. 1. Since the plane-wave
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FIG. 1. Rate of convergence of frequency vs Npy for Ho,
Chan, and Soukoulis (Ref. 5) and slow methods of calculating
€~ !, Percent error is defined relative to converged value when
Npw=Ngpr. Calculations were performed on the triangular
lattice of air columns (Ref. 12), for the lowest TE band at the M

point.

convergence is poor for both these approaches, we are
forced to abandon the plane-wave cutoff and choose
Ngpr =Npw. Thus, accurate results can only be obtained
in general by using as many plane waves per polarization
as dielectric grid points. However, to employ such a
scheme, one must develop a method for solving the
matrix-eigenvalue equation which scales efficiently with
the number of plane waves used. The dominant step in
the solution of Eq. (2) is the calculation of matrix-vector
products ®H to evaluate the left-hand side of this equa-
tion for a trial eigenvector kg »).'° Storage of the matrix
@ requires (Npy )? storage elements, and computation of
the matrix-vector product requires (Npy )* multiplica-
tions. Building on the ideas of Car and Parrinello® and
Teter, Payne, and Allan?! developed for electronic-
structure calculations, we have developed a method -of
computing ®H without storing ® or explicitly perform-
ing the matrix-vector product. Taking the curl of a vec-
tor in Fourier space is diagonal in Fourier space.
Division by the dielectric function is diagonal in real
space, since it affects each real-space location indepen-
dently. Therefore, we evaluate the left-hand side of Eq.
(1) in the following way: We begin with a trial vector in
Fourier space and compute its curl. Then, we fast-
Fourier-transform (FFT) the result to real space and
divide by the dielectric function. Finally, we fast-
Fourier-transform this vector back to Fourier space and
compute its curl again. The curl and dielectric-function
operations are both diagonal in their respective spaces, so
the entire calculation requires computer storage of the
order Npy. The dominant computational steps are the
FFT’s, which require CPU operations of the order
Npwln(Npyw ). For the calculations in this paper which
use ~10° plane waves, this new method for solving
Maxwell’s equations requires approximately 10* times
less memory and 10* times less CPU time. In short, accu-
rate calculations which were impossible to perform have
become feasible.

After eliminating the plane-wave cutoff, the main
source of inaccuracies is the coarseness of the FFT grid
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used to represent the dielectric function. Because the
true dielectric function €(r) is piecewise constant, the
representation of e(r) on the discrete FFT grid €,, is poor
along the boundary between dielectrics. A natural at-
tempt to compensate for this coarseness is to smooth €,,
at grid points along the boundaries. To do this, we divide
the unit cell into equal regions centered about each FFT
grid point, which we call pixels. For simplicity, assume
€(r) can have two values €' and €. A boundary pixel is
one which encloses both €' and €2. The fractions of the
pixel m which contain €' and €’ are designated f,, and

3,, respectively.

We have tested four methods of assigning €,, by sys-
tematically increasing Nggpr and comparing the conver-
gence rates of the frequencies of a two-dimensional (2D)
photonic crystal (see Fig. 2). The first method of assign-
ing €,, was to use a majority rule which does no averag-
ing. In Fig. 2 we see that this method converges slowly.
In the second method, €,, is assigned the weighted aver-
age of the dielectric constants, €, =¢,, =f) €'+ e
This method accelerates the convergence of TE modes,
but slows convergence of TM modes. The third method
of interpolating is to perform a weighted average of the
inverses of the dielectric constants €,,=%,,, where
1/2, =fL /e'+f2 /€. Interpolating in this way ac-
celerates convergence for TM modes, but worsens con-
vergence for TE modes. Recalling that the electric fields
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FIG. 2. Rate of convergence of frequency vs Nggr ., the
number of FFT points along each side of the unit cell.
Nggr=NEpr 5, for this two-dimensional system. Percent error
is defined relative to converged value for large Ngpr. Results
are shown for convergence of (a) TE and (b) TM modes of the
square lattice of dielectric rods (Ref. 14), for the lowest band at
the zone edge. TE (TM) modes have electric (magnetic) field
oriented along the z direction, normal to the two-dimensional
plane.
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are primarily parallel to the interface for TE modes and
perpendicular for TM modes, it is straightforward to un-
derstand these results in terms of effective medium
theory?? and to generate a dielectric tensor which works
for any polarization. In the fourth and final method, we
assign each grid point a dielectric tensor

é‘m,ij ng ninj +‘€men1iekjlnknm >

where n is the unit normal to the dielectric interface and
e is the Levi-Civita pseudotensor. Interpolating in this
way achieves rapid convergence for both TE and TM
eigenmodes.

By combining the two techniques described in this pa-
per, we have been able to lower the computational cost
per plane wave and the number of plane waves required
to perform very accurate photonic calculations. We now
discuss the application of these calculational methods to
the study of two problems which were completely intract-
able employing previous methods. The first involves the
need for a very accurate determination of the frequency
of a defect mode in a 2D lattice.

The system we consider is that studied by McCall
et al.'* 1In their experiment, they study the photonic
band gap of the TE modes of a square lattice of dielectric
(alumina) cylinders. After removing a single dielectric
cylinder, they perform transmission experiments in which
is appears that this defect creates a localized electromag-
netic mode in the gap [Fig. 3(d) of Ref. 14]. We have cal-
culated the eigenvalue spectrum of this defect, employing
a 12X12 supercell. For this supercell, we use 32400
plane waves and calculate 435 bands. For this number of
plane waves, we see from Fig. 2(a) that the frequencies
are converged better than 0.5%. Hopping between
neighboring impurities in the supercell broadens the im-
purity frequency by 0.003%.

Our calculations reveal that this defect does not create
a localized mode in the band gap, but a resonance just
above the band edge (see Fig. 3). We can understand the
origin of this resonance and find states which are truly lo-
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FIG. 3. The evolution of the localized modes of Ref. 14 with
decreasing index of refraction of the dielectric cylinder,
AR =1 umina — Mdefect (Malumina —3)- The horizontal lines indicate
the band edges. In the gap, the frequencies (solid line) are asso-
ciated with localized states, but after the line punctures the con-
tinuum, it becomes a resonance with broadened frequency
(dashed line).

BRIEF REPORTS 48

calized by considering the evolution of the eigenmodes as
the index of refraction of the defect rod is continuously
changed from An =0 (perfect crystal) to An =2 (column
removed), as shown in Fig. 3. As soon as the index of re-
fraction is less than 3, a state is localized in the gap in a
hydrogenic orbit. As An is increased between O and 0.8,
this doubly degenerate mode?? is swept across the gap (as
in Ref. 15). At An =1.4, a nondegenerate state enters the
gap, is swept across, and penetrates the extended states at
An=1.8. Thus, at An=2, our calculations show that
this mode is no longer localized, but is now extended.?*
At e=1, the resonance is 3% above the band edge, which
is significantly larger than our computational uncertainty
of 0.5%.

Although our calculations show that there is no local-
ized mode for an air defect, the experiments of Ref. 14 do
find a peak in the transmission spectrum. This peak is
due to the resonance, which is above the global band
edge, but below the band edge along the (10) direction in
which the experiment was performed. Finally, we note
that McCall et al. do show the field patterns of a local-
ized state, in Ref. 14, Fig. 4. However, the authors note
that this is for a different photonic lattice. For this struc-
ture, our calculations do find a state clearly in the center
of the gap.

We have also performed calculations on defects in a
three-dimensional structure which has been previously
studied experimentally and theoretically.!® This system is
particularly challenging because its three-dimensional na-
ture requires a major computational effort. We again em-
ploy a supercell method, using a simple cubic supercell
consisting of 32 primitive unit cells. For these calcula-
tions, we employ ~ 750000 plane waves for each eigen-
state and solve for the lowest 70 bands of the system.
The number of FFT points is 12000 per primitive unit
cell. This is 23 points along each direction and computa-
tions analogous to those of Fig. 2 show that the frequen-
cies are converged to better than 0.5%. For this size su-
percell, the hopping between neighboring defects was less
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FIG. 4. The frequency of the fully localized states of the
three-dimensional photonic band-gap material vs defect size, as
discussed in Ref. 16. The dots represent the experimentally
measured values, and “old theory” refers to the results of Ref.
16. The solid lines represent nondegenerate modes, whereas the
dashed-dotted lines are doubly degenerate. The nondegenerate
mode on the left results from an air impurity, while the modes
on the right result from a dielectric defect.
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than 1% for the dielectric defect and 2% for the air de-
fect.

The results of our improved calculations are shown in
Fig. 4. Clearly, there is excellent agreement between
theory and experiment for the air defect. However,
theory and experiment differ in two ways for the dielec-
tric defect. First, the calculations show that there are
three modes which descend, whereas only one peak was
identified in the experiments.?> Second, the calculated
frequencies are higher than the measured ones, and this
difference is larger than the 1% uncertainty of the calcu-
lations. The first difference is easy to understand. This is
because the experiments were difficult and time consum-
ing to perform, so that only the lowest bound-state mode
was identified and reported.?® While the second
difference is more puzzling, it is not surprising that the
air modes show better agreement than the dielectric
modes. The air defect is created by machining away part
of the photonic crystal and so it is stable and easy to
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create. The dielectric mode, on the other hand, must be
inserted into the lattice manually. Because the dielectric
sphere is not attached to the lattice, delicate manipula-
tion is required to position the dielectric sphere at the
precise site in the lattice at which the defect mode is dou-
bly degenerate.'® Moreover, this positioning must be
maintained over numerous transmission measurements
which are required to eliminate sensitivity to antenna po-
sition.? These experimental difficulties introduce an un-
certainty into dielectric-defect measurements and may be
responsible for the discrepancy between our calculations
and the experimental results for this case.
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