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The low-temperature thermoelectric power of the repulsive-interaction one-dimensional Hubbard
model is calculated using an asymptotic Bethe ansatz for holons and spinons. The competition
between the entropy carried by the holons and that carried by the back6ow of the spinons gives
rise to an unusual temperature and doping dependence of the thermopower which is qualitatively
similar to that observed in the normal state of high-T superconductors.

Interacting one-dimensional (1D) electron systems
generically exhibit spin-charge separation, that is, the
Hamiltonian separates at low energies into independent
terms describing the charge and spin degrees of freedom.
To date, the thermopower of interacting 1D electron sys-
tems has only been calculated for a few special cases,
where the spin degrees of freedom reduce to noninteract-
ing spins ' or where the contribution of the spin exci-
tations to the thermopower is negligible. A more gen-
eral result for the thermopower of such systems is of
fundamental interest since the entropy carried by the
spin excitations represents a qualitatively new type of
thermopower, distinct from the familiar contributions
of charge carrier difFusion, phonon drag, etc. Further-
more, Anderson has argued that the physics of the Cu02
planes in high-T superconductors is that of spin-charge
separation and it is an interesting question whether their
unusual normal-state thermopower can be explained
on that basis. Since a rigorous treatment of spin-charge
separation in 2D systems is still lacking, it is clearly of in-
terest to investigate the efFects of spin-charge separation
on the thermopower of 1D systems, for which powerful
methods such as the Bethe ansatz are available.

In this letter, we calculate the contributions of both the
charge and spin excitations to the low-temperature ther-
mopower of the repulsive-interaction 1D Hubbard model
in two limiting cases: in the strong-coupling limit and
near the Mott-Hubbard metal-insulator transition occur-
ing at half Glling. In both of these limits, the charge de-
grees of freedom of the model can be mapped onto weakly
interacting spinless fermions, ' ' ' while the spin excita-
tions can be shown to form an ideal semion gas at low
temperatures, which interacts with the charge degrees of
freedom via a backflow condition that ensures that the
electric current which flows in response to an electric Geld
is really a current of electrons, which carry both charge
and spin. The competition between the entropy carried
by the charge excitations and that carried by the back-
flow of spin excitations leads to a nontrivial temperature

S=—1
T

(J@(0)J, (t)) dt

(J.(O)J.(t)) dt
0

where J and J~ are the electric current and energy cur-
rent operators in the Heisenberg representation, p is the
chemical potential, e is the absolute value of the elec-
tron charge, and ( ) denotes the thermal average. In a
system with spin-charge separation, the energy current
can be decomposed into a term associated with charge
excitations and a term associated with spin excitations,
J~ ——J& + J&, and the chemical potential can be writ-
ten as p, = p, + p„where p, = BEo/ON + BE,/ON
and p, = BE,/0%, Eo being the ground-state energy, N
the number of electrons in the system, and E and E,
the free energies of the charge and spin excitations. The
thermopower can therefore be expressed as S = S + S„
where S, and S, are defined by Eq. (1) with J&" and p, ,
in place of J@ and p. S and S, can be interpreted as
the entropies transported separately by charge and spin
excitations when an electric current flows.

We specialize our arguments to the Hubbard model
of spin-1/2 fermions hopping with matrix element t be-
tween nearest-neighbor sites of a 1D lattice with unit
lattice constant and subject to a repulsive interaction U
when two fermions (of opposite spin) occupy the same
lattice site. Periodic boundary conditions are imposed
on the lattice, which consists of L sites, and the system is
threaded by a time-dependent magnetic flux (hc/e)C'(t).

and doping dependence of the thermopower. We com-
ment briefly on the possible relevance of these results
to an understanding of the normal-state thermopower of
high-T superconductors and quasi-one-dimensional or-
ganic conductors.

The thermoelectric power S is given in the Kubo for-
malism by
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P = C(t) —) p. (k&)+) p, (A )+@,
h=1 can=1

where @ = 7r(L —N/2 + N, /2 + 1), p (k)
k + 2 fo dwJo(w) sin(w sink)/[u + cuexp(wU/2t)], and

p, (A) = —
fo du Jo(cu) sin. (wA) sech(wU/4t)/ur. The pa-

rameters kh and A are real numbers satisfying —vr &
kh & vr, —oo & A & oo, and can be interpreted as holes
in the ground-state distributions of pseudomomenta and
spin rapiditie8 in the Lieb-Wu equations; such excita-
tions are referred to as hotons and spinons. [In Eq. (2),
we have omitted states with complex pseudomomenta for
which there is a finite energy gap. ] The holons and
spinons cannot in general be regarded as noninteracting
quasiparticles since the kh and A are not free parame-
ters but are determined by the asymptotic Bethe ansatz
equations derived in Ref. 12:

Lp, (kh)= 27rIg + 4, (t) + ) Oi(sinks —sink~ )
hl =1

+) 02(sinks —A )
CT= 1

M,
—7r ) sgn(sin kg —Re% ), (4)

H

Lp, (A ) = —2vr J —) 02(A —sinks)
h=1

Ns Ms

+) O, (A. —A. ) —) 2tan-'
o' =1 a.=1

Ns

) 2tan '
cr=1

M,
= 2aK + ) 2 tan

-l i A~ —Ap

P=1

(6)

where M, is the number of down-spin spinons and
the two-body scattering phase shifts are given by
Oi(x) = 2 fo d~ sin(urx)/[~ + ~exp(uU/2t)], 82(x) =
2 tan [tanh(vrtx/U)]. The charge degrees of freedom
are specified by the H quantum numbers II, [defined

(In the following, we set h = 1.) The complete excitation
spectrum of this model was obtained by Woynarovich
for the case 4(t) = 0; we extend the results of Ref. 12 to
C (t) g 0 using the arguments of Ref. 13. In the large-L
limit, the energy of the system with N = L —H electrons
can be expressed as

N,

E(L —H) = Eo(L) —) e, (kg) + ) e, (A ), (2)
h=l CT= 1

where Eo(L) is the ground-state energy at N = L,
obtained in Ref. 14, e, (k) = 2t c—os k

4t fo
—dw Ji(w) cos(w sin k)/[w + cu exp(urU/2t)], and

e', (A) = 2t f dw J (iw) cos(cuA) sech(wU/4t)/cu. The mo-
mentum [defined mod(27r)] is given by 2

inod(L)], which are distinct integers (half-integers) for
M even (odd), M being the number of down-spin elec-
trons. The spin degrees of freedom are specified by
the N, distinct quantuxn numbers J, which take val-
ues in the range —J, —J „+1, . . . , J, where
J „=(N —M —1)/2, and by the M, quantum numbers
K, which are integers (half-integers) for N, —M, odd
(even). The Iq and J represent holes in the ground-
state distributions of charge and spin quantum num-
bers in the Lieb-Wu equations, while the K and the
complex parameters A describe the stringlike states in
the spin sector of the model (their relation to the pa-
rameters of the Lich-Wu equations is given in Ref. 12).
The z component of the total spin of the system is
S' = (N —2M)/2 = (N, —2M, )/2. For the ground state
in zero magnetic field, the Ig are consecutive integers (or
half-integers) centered about L/2 and N, = N mod 2.

To evaluate the thermopower (1) using the above for-
malism would be quite diKcult in general because, while
the chemical potential can be extracted from the en-
ergy spectrum (2), the matrix elements of the current
operators would have to be evaluated using the Bethe
ansatz wave functions, ' which are quite unwieldy. We
therefore consider two limiting cases where the weakness
of the holon-holon and spinon-spinon interactions allows
one to construct the matrix elements of the current op-
erators explicitly. Both for H (( L and for U )) t,
the holons can be mapped onto weakly interacting spin-
less fermions, ' ' ' allowing the matrix elements of J,
and J& to be evaluated; in addition, for both of these
cases one can show that in the low-temperature limit
(k~T && v, ) the energy spectrum of the spin excitations
1S

' (~(1 —&) 2~J.' l ~v. N2

)
where v, is the spinon velocity in the low-energy limit,
calculated in Refs. 16 and 1, h = ~1 —N/L~, and J'
J +sgn(J )M, /2. Equation (7) follows upon linearizing
the spinon dispersion relation in the low-energy (A ~
+oo) limit, replacing the spinon-spinon scattering phase
shifts by their limiting low-energy form Oi(A —A ) =
(vr/2)sgn(A —A ~r) and taking tan [4t(A —A )/U]
(m/2)sgn(A ). The low-energy spectrum (7) is equivalent
to that of the "ideal spinon gas" described in Ref. 11:
for fixed N„ the degeneracies are equivalent to those of
a system of spin-1/2 bosons, while the behavior of the
Hilbert space as N, is varied implies that the spinons are
in fact semions, the second term in Eq. (7) representing
the statistical interaction. The special feature of Hal-
dane s ideal spinon gas is that the spinon-spinon interac-
tions are described exactly by mean-field theory, so that
spin-exchange processes between spinons are absent.
Such processes are implicit in Eqs. (5) and (6), which
can be thought of as a nested Bethe-Yang ansatz for the
spinons. However, spinon spin exchange processes have
vanishing amplitude in the low-energy limit, so that the
low-energy spectrum of the spin excitations (7) is inde-
pendent of the quantum numbers K which specify the
spin wave function of the spinons. The excitation spec-
trum (7) implies a low-temperature spin entropy per site
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of vrk~~T/3v„ from which it follows that

~(k~T) 2 (9v.
llm p~ )r~o 6vz gn

where n = N/L. p, is not to be confused with the spinon
chemical potential, which is zero since spinons are ther-
mal excitations.

Because the spinon-spinon interactions have the mean-
field form (7) in the low-energy limit, they do not con-
tribute to the spinon energy current J&. Consequently,

J& commutes with the Hamiltonian in the low-energy
limit and has the eigenvalue j& ——v, P, (assuming equal
numbers of right and left movers), where P, is the to-
tal momentum of the spinon gas. To calculate the
contribution of the spinon energy current to the ther-
mopower, we make use of the Onsager relation between
the thermopower and the Peltier coefBcient and de6ne
II'—:TS, = II&+@,/e, where II& ——(j&)/( j,) evaluated
for a system with V'T = 0. II@ depends on the details of
the spinon relaxation processes; however, one can obtain
an upper bound on II& by considering only the holon-
spinon scattering. This upper bound will be adequate
for our purposes since II&/T will prove to be negligible
compared to the other contributions to the thermopower
in the limits we consider. If we start with a system in
thermal equilibrium and adiabatically generate an elec-
tric current j, = (j,) (i.e. , a shift in the k/, distribu-
tion) by applying an electric field E = Ld@/dt—,

i the
shift in the kh distribution will lead via the spinon-holon
scattering phase shifts —82(A~ —sinks) in Eq. (5) to a
shift in the A distribution. This backHow of spinons re-
sults because the electric Beld really couples to electrons,
which carry both charge and spin. Both for H (( L
and for U )) t, one can approximate 02(A —sink/, )
02(A~) —sech(2irtA /U) (2irt sink~/U); 82(A ) is ab-
sorbed in a redefinition of the spinon momentum at fi-
nite H: p, (A ) = p, (A ) + H82(A )/L. Summing over

p, (A ), we obtain

1 ' 2wt 2vrtA
N, H

(Jss) = e, (
—) sech ) i k ses

+=1 J =o h=l J
(9)

which we evaluate explicitly below, using the fact that
the sum over kh is proportional to J„while the sum over
A is proportional to the excitation energy of the spinon
gas, which can be evaluated via the correspondence with
the model of Ref. 11. Equation (9) gives an upper bound
to II& since spinon relaxation processes to the lattice
have been neglected.

We first consider the limit b—:~1 —n~ && 1, close
to the Mott-Hubbard. metal-insulator transition. This
case has been studied previously via a weak-coupling
approximation; we extend the results of Ref. 1 to ar-
bitrary U, and explicitly verify the assertion of Ref. 1
that the contribution of the spin excitations to the ther-
mopower is negligible in this limit. Equations (2) and (3)

implicitly define an energy band e (k(p)) for charge exci-
tations, k(p) being the inverse of the function p, (k). The
holons can be thought of as holes in this energy band,
which may be approximated near the energy minimum
at p = ir by e, (k(p)) p —(p —vr)2/2~m*~, where
p, = s', (vr) is the T = 0 chemical potential in the limit
n~ 1, and

de Jo(e)/(1+ exp(sU/2t))*i

dku cu ji(cu)/[1+ exp(cuU/2t)]

lim S, = sgn(1 —n)
k~2T ]m*[

b,T—+0 3c (10)

where we have used the electron-hole symmetry of the
model about n = 1. 2'i The corrections to Eq. (10) due
to holon-holon interactions are expected to be O(b ).
Evaluating Eqs. (8) and (9), we obtain for b, T —+ 0,
p, /eT = sgn(n —

1)hark&T/[12etIi

(2vrt/U)], ~II&/T ~

vr k&Tt(m*(/[3 Upe', (vr)Iq(2 rt/7U)], where Io and Ii are
modified Bessel functions. S, is thus negligible compared
to S, in the limit b ~ 0. The low-temperature ther-
mopower of the system thus becomes large and positive
(hole-like) as the metal-insulator transition is approached
from n ( 1 and has the opposite sign (electronlike) as
n —+ 1 from above.

In the limit U )) t, the full n dependence of the
low-temperature thermopower can be calculated: When
U/t ~ oo, e (k) i 2t cos k,—p (k) -+ k, and the scat-
tering phase shifts in Eq. (4) are C7(t/U), leading to the
well-known mapping of the holons onto noninteracting
spinless fermions in the strong-coupling limit. The
spinon dispersion relation now explicitly involves a con-
tribution from the backQow of the holon distribution;
Eqs. (2)—(6) give v, = (2vrt2/U) [1 —sin(2nn)/2mn—
8 ln 2 (t/mU) sin 7m] + O(t4/Us), which is consistent with
the results of Refs. 16 and 1. The dominant contributions
to the low-temperature thermopower come from S and
p,,/eT, which combine to give (for n ( 1)

is the absolute value of the holon effective mass.
Equation (4) implies that the holon momenta p, (k/, )
differ from those of noninteracting spinless fermions by
a term which vanishes as H/L, N, /L ~ 0; we write
p/, = p, (kg) = 2vrI), /L + 4/L + hp/„, where bp~ has
contributions from holon-holon, holon-spinon, and holon-
string scattering. Holon-string scattering merely shifts
the parity of the holon quantum numbers Ih and is there-
fore unimportant in the limit I -+ oo, while holon-
holon and holon-spinon scattering give bpg/(p/, —7r) i
—41n2b'/Up', (ir) + CT as b, T -+ 0, where C is a U-
dependent constant. The shifts of the holon momenta
due to the interactions thus have a negligible effect on
the charge excitation energies in the limit b, T ~ 0. Be-
cause of the vanishing interactions, the current operators
J and J& commute with the Hamiltonian in the limit
b, T -+ 0, and Eq. (1) can be evaluated straightforwardly
to give
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k&~T f m2 cos7rn t k&~T (cos(27m)/n —sin(2am)/2vrnz + 24ln2 (t/U) sin vrncosmn)
hm S=—

U~~ «(6sin an) r[1

—sin(2am)/27m —8 in 2 (t/7rU) sin mn]z
T—+0

k~ ktsT 8 ln v, ( tJ,B )
e m'v, Bn ( kgb T r

(12)

It is interesting to compare the temperature and dop-
ing dependence of the thermopower in the 1D Hub-
bard model with that observed in the cuprate materi-
als in which high-T superconductivity occurs, which are
widely regarded to be quasi-two-dimensional doped Mott

where J = 4t /U is the antiferromagnetic superexchange
constant and S(2 —n) = —S(n). The corrections to
Eq. (11) are O(k&T/eU) as T ~ 0, and come from holon-
holon interactions, higher-order terms in v„and from
Eq. (9), which gives ~II&/T~ ( 7rzk&T/6eUn. In the
physically interesting parameter range 100 & U/t )) 1,
Eq. (11) implies that the low-temperature thermopower
is positive for all n ( 1 and negative for all n ) 1.
The full temperature dependence of S, [first term in
Eq. (11)] can be calculated by the method of Ref. 2

(neglecting terms of order kt3T/U); as T increases, S,
monotonically approaches the high-temperature value

sgn(1 —n) (k~/e) ln[(1 —0)/b]. The full temperature de-
pendence of S, [second term in Eq. (11)] is an open
problem; however, when k~T &) J, p, is dominated
by the spin entropy and ella/k&T (( 1, so that S, ~
sgn(n —l)(k~/e) ln2, in agreement with the result of
Ref. 2. Combining the high-temperature results for S
and S, yields the well-known Heikes formula. For small
hole dopings b « 1, S is dominated by S, which is large,
positive, and a monotonic function of temperature. How-

ever, for b & 1/3, S is dominated by S„and is negative at
high temperatures, but with a positive slope at low tem-
peratures, implying the existence of a positive peak in the
low-temperature thermopower. S has the opposite sign
for electron doping.

The magnetic-field dependence of S is also readily ob-
tained in the strong-coupling limit: a weak field B ap-
plied parallel to the chain does not couple to the charge
degrees of freedom in the Peierls approximation, but the
Zeeman coupling leads for pB « k~T && J to

insulators. The in-plane thermopower of the lightly
doped cuprates is generically positive for hole doping
and negative for electron doping, ' with a magnitude
which increases drastically as the nominal concentra-
tion of doped carriers goes to zero, in qualitative agree-
ment with Eq. (10). Upon further hole doping, the in-
plane thermopower of the cuprates universally exhibits
a positive peak at low temperatures, then decreases
monotonically, often becoming negative at room tem-
perature in the superconducting samples; the mirror
image behavior, with a negative peak at low tempera-
tures, is exhibited by the electron-doped superconduc-
tor Nd2Cu04 F . Similarly, the unusual temperature
dependence of the spinon back6ow thermopower in the
1D Hubbard model leads for h & 1/3 and U )) t to a
low-temperature peak in the thermopower which is pos-
itive for hole doping and negative for electron doping.
Superconducting samples of Nd2 Ce Cu04 exhibit a
peak of the same sign as that observed in the hole-doped
cuprates, however, which cannot be accommodated in a
model with electron-hole symmetry, such as the Hubbard
model. The smallness of the isotropic contribution to the
magnetothermopower ' in high-T, superconductors is
qualitatively consistent with our result for the 1D Hub-
bard model, Eq. (12), which is reduced in magnitude by a
factor of order k~T/ J compared to the high-temperature
value.

Our results should be of direct relevance for quasi-one-
dimensional systems, such as organic conductors. The
compound TTF[Ni(dmit)z]z, which can be modeled as a
Hubbard chain with n = 1/2 and U )) t (so that the
holon contribution to the thermopower is expected to be
zero), has indeed been found to exhibit a positive peak
in the low-temperature thermopower and a large neg-
ative thermopower comparable to —(k~/e) ln2 at high
temperatures, as expected from spinon backHow.
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