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Model for icosahedral aperiodic graphite structures
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We apply a general procedure for generating crystalline and quasicrystalline atomic structures to ful-

lerenes. We have found different periodic, and aperiodic graphitic structures with high stability. These
structures present negative, positive, and zero Gaussian curvatures. Energetic and geometrical proper-
ties of these hypothetical structures are explained.

The discovery of crystals of C60 and C7O (Ref. 1) opens
a field of possibilities for materials. Different morpholo-
gies in C60 and C70 structures such as tenfold-symmetry
rods and multiple twins with icosahedral shapes ' indi-
cate that these fullerenes can have the same behavior as
atoms in a conventional structure forming crystals, twins,
compounds, etc. Another important fact concerns
coalescence reactions in fullerenes. It has been observed
by Yeretzian and co-workers that C6o and other ful-
lerenes interact to form bigger stable fullerenes. The
coalescence of these structures can have important impli-
cations in growth mechanisms for materials. In this
work, we explain how to get possible graphitic structures
by using the two basic ideas mentioned above: first, that
fullerenes can be seen as having the same role as atoms in
a structure, and second, that fullerenes can interact and
coalesce to get a more stable arrangement. We have used
the ideas of the decahedral-recursive (DR) growth model
originally applied in metals to produce both crystalline
and quasicrystalline structures to generate aperiodic
arrangements of truncated fullerenes forming internal la-
byrinths with positive, negative, and zero gaussian cur-
vatures. Some of the negatively curved periodic graphite
structures reported by Mackay, Terrones, and
O'Keefe' ' can be easily obtained with this method. It
can also be applied to get continuous aperiodic surfaces
which can play an important role in water-lipid-
surfactant systems. ' These hypothetical aperiodic gra-
phitic structures are highly stable and represent highly
feasible new types of materials.

According to the DR model, starting from a fullerene
as a "seed," the method consists of two steps: (1)
translating this fullerene onto a position such that the
original and the translated fuller ene have coincident
atoms (note that in contrast with its previous application
in metals, no interpenetration is allowed here); ' and (2)
removing atoms with bonds at forbidden angles and re-
peating step (1). Since C6O is the most favorable fullerene,
we have used it first. There are different ways of joining
C60. We have chosen the twofold and threefold axes as
joining sites because the pentagonal rings, necessary to
close the structure, are removed to make room for octag-
onal and heptagonal rings which are more stable (closer
in energy to graphite). Ajayan and Iijima have found
that in the presence of oxygen and temperatures of the

order of 400'C the pentagonal rings in graphite tubules
are destroyed when producing tubes with open tips, ' so
under certain conditions pentagonal rings are not as
stable as graphitic bonds.

There are 30 possibilities for choosing the twofold sites
which form an icosidodecahedron. If only six mutually
orthogonal sites are selected, the P surface (P688) pro-
posed by O'Keeffe, Adams, and Sankey' is obtained. An
alternative strategy consists of choosing randomly be-
tween the 30 vertices of the icosidodecahedron with the
only restriction of no overlapping between neighboring
C6os. This yields a closed nonperiodic structure with
icosahedral symmetry and with internal labyrinths which
resemble the labyrinths in ordered graphite foams with
negative curvature' ""' ' (see Fig. 1). For the three-
fold option there are 20 equivalent sites producing a
dodecahedron and an analogous procedure can be applied
for this case.

When using the twofold axes, two pentagonal rings
disappear to generate octagonal rings with negative cur-
vature. If the threefold axes are used then three penta-
gons are removed and heptagonal rings are generated Isee
Figs. 2(a) and 2(b)]. The angles in the octagonal and hep-

FIG. 1. Aperiodic structure with 592 atoms generated by
joining the twofold sites of C6o.
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tagonal rings are close to 120' and the bond length of C-C
in graphite (1.42 A) is preserved. If C240 is used instead
of C6p as a seed, the possibilities for joining these ful-
lerenes are again along twofold and threefold axes. When
six mutually orthogonal twofold directions are selected,
the P surface of Mackay and Terrones can be construct-
ed. ' " Aperiodic foams can be also obtained by select-
ing randomly between the 30 twofold or the 20 threefold
possibilities not allowing interpenetration of neighboring
C24p's. It is also possible to use higher fullerenes such as
C54O to generate an inflation (process of adding hexagons
preserving the topology of the structure) of the P surface
with 432 atoms per cubic unit cell. Therefore, in this
way, different sizes of graphite layers can be built.

The graphite foams constructed with the above recipes
can be adequately described as a network (centers of ful-
lerenes) plus decoration (trunca, ted fullerenes), so that the
random tiling ideas developed in the field of quasicrystals
(for a review, see Ref. 18) can be imported and directly
applied to describe in a nice way some symmetry and
diffraction properties of the structures, regardless of con-
siderations of the stabilization by entropy which is the
core of the random tiling model.

The coordinates of each center of fullerene can be ex-
pressed as an integer combination of vectors pointing to
the vertices of an icosidodecahedron (twofold case) or a
dodecahedron (threefold case). Hence, in general, the po-
sition of each node of the network can be written as
x"=+6=, z;eI~, where e are the vertices of an icosahedron
and z; EZ. Consequently, each node may be assigned in-

FIG. 2. (a) Two molecules of C6o joined by the twofold axis.
(b) Two molecules of C60 joined by the threefold axis.

teger coordinates Iz, I which can be viewed as points in a
six-dimensional cubic lattice. We can also define a com-
plementary basis Ie; I such that each basis vector of R
can be decomposed as eII e, , so that for each node x, we
define a coordinate x, in a "perpendicular" three-
dimensional space, as x =+6, z;e;. The network of
centers of fullerenes can be viewed as nodes of a six-
dimensional cubic lattice by lifting up the three-
dimensional coordinates x~~. The lifted network forms a
faceted surface in six dimensions which contains all the
information on symmetry and diffraction properties of
the three-dimensional structure. As an approximation,
this surface can be parametrized as x =Ex +h ' where
E is a 3 X3 tensor which defines the orientation of the
surface and is called the "phason strain. " E=D corre-
sponds to a perfect icosahedral symmetry of the projected
structure. '

The reciprocal-lattice vectors of the structure are pro-
jections of the six-dimensional reciprocal-lattice vectors
defined by k x=k" x"+k x =0 (mod2m). In terms of
the phason strain, the peaks of the diffraction pattern of
the structure have positions Q=k" +E k . We observe
that if EWO, the peaks in the reciprocal space are shifted
from the icosahedral ideal positions, indicating that the
structure has less symmetry. Bragg peaks at Q positions
exist if the fluctuations of x, for each node of the net-
work, around the average orientation E, expressed as
(x ) =( x (x")—(Ex"+h)~ ), remain bounded as the
system size tends to infinity. '

An application of previous ideas was carried out in two
structures with C6p as the seed. The first structure was
grown by choosing randomly between the 30 possible
twofold sites, and 1691 centers of fullerenes were generat-
ed. For the second, the 20 possible threefold sites were
selected randomly by obtaining 1216 centers of fullerenes.
Both sets were separately lifted up to the six-dimensional
space and the equations of the hypersurface was fitted by
a least-squares method. In both cases, the values for E
showed a slight deviation from the perfect icosahedral
symmetry which should be reflected in the diffraction
pattern by shifts of the peaks from icosahedral positions,
as will be detailed in a forthcoming publication. In terms
of the second-order invariants under rotation

~ WI ~,
' '

the aperiodic structures considered (from 322 atoms up
to 3792 atoms) presented high signals in l =6 which cor-
respond to icosahedral symmetry. For icosahedral sym-
metry,

~ W, ~

=0.169 75, and for our structures the values
varied from

~ W6 ~

=0. 143 73 to
~ W6 ~

=0.166 18 which are
considerably bigger than the value

~ W6~ =0.013 16 for
cubic systems. Also, important signals which correspond
to cubic symmetry in l =4 were observed.

Figure 3 shows phason fluctuations as a function of the
system size for the twofold and threefold cases. As can
be seen, the fluctuations are unbounded, indicating that
the diffraction pattern of the structure presents peaks
with finite size. In view of the fact that no interpenetra-
tion is allowed, and given the random nature of the
growth process, there are many cluster centers which are
not connected to their neighbors by a bond with the
proper length and orientation, i.e., the two-dimensional
manifold in hyperspace is tom. This means that the
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FIG. 3. Phason fluctuations versus system's size of the net-
work of aperiodic graphite foams. Triangles and squares
represent the threefold and twofold linkages, respectively. The
unity of (x ) are arbitrary.

structure is a strict icosahedral glass. '

The structures generated with this method are closed;
however, open arrangements such as the periodic I'
graphite surfaces can also be obtained. Considering that
the graphitic sheet is closed, it then has the same topolo-
gy as the sphere, but in this case there are not only pen-
tagonal rings, there are heptagonal and octagonal rings of
carbon and the expression %5 —N7 —2N8=12 must be
satisfied, where X5, X7, and X8 are the number of penta-
gons, heptagons, and octagons, respectively. When two
molecules of C6p are joined by the twofold axis, a struc-
ture with 116 atoms with 4 octagons, 20 pentagons, and
36 hexagons is obtained [see Fig. 2(a)]. If the molecules
are joined by the threefold axis, a structure with 108
atoms, 6 heptagons, 18 pentagons, and 32 hexagons is
built [see Fig. 2(b)]. The stability for these two cases and

for the bigger aperiodic structures has been calculated us-
ing the potential proposed by Tersoff with a relaxation
program. When the two molecules share the twofold
axis, the energy per atom relative to graphite AE is—0.5977 eV, and if the two molecules share the threefold
axis, hE = —0.5594 eV; for C6p, AE = —0.6887 eV. All
the aperiodic structures presented energies between
AE = —0.53 and —0.65 eV, so they are closer in energy
to graphite than C60.

Since the potential prefers graphitic bonds (bonds with
120 and 1.42 A), it is clear that pentagonal rings with
108' cost more energy, so it can be argued that the ful-
lerene Cii6 with 12 pentagonal rings is more stable than
the structure with 116 atoms, 20 pentagons, and 4 octa-
gons as mentioned above. This is true if there is no re-
striction on the size of the particle. In fact, the increase
of the cohesive energy with the size toward graphite
favors the driving force for the coalescence of fullerenes.
However, when the fullerenes are in a lattice or in an
aperiodic array, due to packing conditions there is a re-
stricted space and the fullerene cannot have a bigger size.
In this case, the structure with 8 octagonal rings and 20
pentagons will be preferred.

In summary, we have found aperiodic graphitic struc-
tures which are more stable than C6p. These structures
are not crystalline nor amorphous. We think that due to
the violent processes for generating fullerenes, structures
not perfectly ordered as the ones described here are quite
feasible. In addition, the method can be implemented to
generate continuous random surfaces which can find ap-
plication in the structure of microemulsions.
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