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Utilizing the nuclear-physics concept of separating, as a function of size, the total energy of a
6nite system into two parts, a smooth contribution and a shell correction, we introduce a method

of calculating the binding energy of metal clusters. The method consists of a determination of the
smooth part of the total energy from an extended Thomas Fermi approach to density-functional the-

ory, and of superimposing on it a shell correction introduced through the kinetic-energy contribution.
While circumventing a self-consistent iterative solution of the eAective single-particle Kohn-Sham

equations, the present method yields results in excellent agreement with such self-consistent calcula-

tions, but with considerable savings in computation time, thus allowing for an eKcient approach for
accurate systematic investigations of cluster properties for a wide range of sizes. As an application
of the method, we study energetics and decay modes of multiply charged anionic metal clusters.

Singly charged anions are stable for all sizes, but multiply charged negative ions are stable against
spontaneous electron decay only above certain critical sizes. Below the border of stability, the cluster
anions are metastable against electron tunneling through a Coulombic barrier. Lifetimes for such

decay processes are estimated. Fission channels, which may compete with electron autodetachment,
are studied for the case of doubly charged anions.

I. INTRODUCTION

Numerous observations pertaining to the size depen-
dence of physical and chemical properties of material
clusters provide the impetus for investigations aiming
at the elucidation of the physical origins, nature, and
systematics of size-evolutionary patterns (SEP's) of the
properties of clusters as their degree of aggregation varies
&om the atomic and molecular scale to the condensed-
phase regime.

Outstanding examples of SEP's are provided by simple
metal clusters, where experimental and theoretical inves-
tigations have unveiled the importance of an electronic
shell structure for providing a unified framework for the
analysis of size-dependent trends of energetics, stability,
spectral characteristics, and fragmentation patterns in
these systems. ' Moreover, several properties of such el-
emental clusters (e.g. , shell structure, and most recently
supershells, portrayed by the occurence of magic num-
bers in the abundance spectra and ionization potentials;
giant spectral resonances interpreted as evidence for col-
lective plasma oscillations; " and barrier shapes, frag-
mentation, and fission patterns of ionized clusterss i

)
bear close analogies to the corresponding phenomena ex-
hibited by atomic nuclei.

These analogies have led to the adaptation of sev-
eral concepts and methodologies developed in the con-
text of nuclear-physics phenomena for the interpretation
of recent studies of elemental clusters. ' ' In particu-

lar, experimental results pertaining to fragmentation pat-
terns (symmetric versus asymmetric fission) and fission
barriers have been interpreted using the framework of the
celebrated liquid-drop model (LDM) of nuclear fission, i2

and predictions of energetics and Bssion channels were
made using the jellium model (we note that while
a limited number of calculations, up to 40 atoms, for
the ground-state properties of Na and Cu clusters have
been performed for axially deformed (spheroidal) jellium
droplets, ' most self-consistent calculations for jellium
droplets are restricted to spherical symmetry i92o).
In this context, we mention other theoretical investiga-
tions which preserve the particulate nature of elemen-
tal clusters, and thus are applicable to general clus-
ter geometries, based on quantum-chemical techniques
or density-functional theory (DFT) in conjunction with
pseudopotentials. ' These methods, which provide im-
portant structural, energetic, spectral, and dynamic in-
formation, involve significant computational efforts, and
usually have been applied to rather small systems.

It has long been recognized in nuclear physics that the
dependence of ground-state properties of nuclei on the
number of particles can be viewed as the sum of two con-
tributions: the first contribution varies smoothly with
the particle number (number of protons N„and neutrons
N ) and is referred to as the smooth part; the second con-
tribution gives a superimposed structure on the smooth
curve and exhibits an oscillatory behavior, with extrema
at the nuclear magic numbers.

Nuclear masses have provided a prototype for this
behavior. Indeed, the main contributions to the exper-
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imental nuclear binding energies are smooth functions of
the number of protons and neutrons, and are described
by the semiempirical mass formula. ' The presence of
these smooth terms led to the introduction of the LDM,
according to which the nucleus is viewed as a drop of a
nonviscous fluid whose total energy is speci6ed by vol-
ume, surface, and curvature contributions.

The deviations of the binding energies from the smooth
variation implied by the LDM have been shown to
arise from the shell structure associated with the bunch-
ing of the discrete single-particle spectra of the nucleons,
and are commonly referred to as the shell correction.
Substantial progress in our understanding of the stabil-
ity of strongly deformed open-shell nuclei and of the dy-
namics of nuclear Bssion was achieved when Strutinsky
proposed ' a physically motivated efEcient way of cal-
culating the shell corrections. The method consists of
averaging (see below) the single-particle spectra of phe-
nomenological deformed potentials and of subtracting the
ensuing average from the total sum of single-particle en-
ergies.

Later it was realized that the self-consistent Hartree-
Fock ground-state energies (the Hartree-Fock approach
expresses the mean-field picture of the nucleus), can be
separated ' into a smooth contribution and a shell-
correction part, in analogy with the known behavior
of the empirical masses. More importantly, it was
shown ' that the smooth contribution extracted from
the nuclear Hartree-Fock potentials according to Struti-
nsky's averaging method can be determined accurately
by using a variationally optimized density resulting from
a semiclassical extended Thomas-Fermi (ETF) approach
to density-functional theory. The full oscillatory behavior
of the self-consistent Hartree-Fock energies is recovered
by adding Strutinsky's shell correction.

While certain analogies, portrayed in experimental
data, between properties of nuclei and elemental clusters
have been recognized, as mentioned above, the nuclear-
physics approach of separating the various quantities as a
function of size into a smooth part and a shell-correction
part has only partially been explored in the case of metal
clusters. In particular, several investigations used
the ETF method in conjunction with the jellium approx-
imation to determine the average (smooth, in the sense
defined above) behavior of metal clusters, but have not
pursued a method for calculating the shell corrections.

In the absence of a method for appropriately calculat-
ing shell corrections for metal clusters in the context of
the semiclassical ETF method, it has been presumed that
the ETF method is most useful for larger clusters, since
the shell effects diminish with increasing size. Indeed,
several studies have been carried out with this method
addressing the asymptotic behavior of ground-state prop-
erties towards the behavior of a jellium sphere of infinite
size.

It has been observed, 4 however, that the single-
particle potentials resulting from the semiclassical
method are very close, even for small cluster sizes, to
those obtained via a self-consistent solution of the local-
density-functional approximation (LDA) using the Kohn-
Sham (KS) equations. These semiclassical potentials

were used extensively to describe the optical (linear) re-
sponse of spherical metal clusters, for small, ' ' as well
as larger sizes (for an experimental review on optical
properties, cf. Refs. 45 and 46). The results of this ap-
proach are consistent with time-dependent local-density-
functional approximation (TDLDA) calculations which
use the KS solutions. '

It is natural to explore the use of these semiclassi-
cal potentials, in the spirit of Strutinsky's approach, for
evaluation of shell corrections in metal clusters of arbi-
trary size. The present work shows that this program can
be carried out successfully. Particularly interesting and
promising is the manner by which the shell corrections
are introduced by us through the kinetic-energy term, in-
stead of the traditional Strutinsky averaging procedure of
the single-particle spectrum. This is especially desir-
able, since —unlike the case of atomic nuclei —shell cor-
rections for metal clusters determined by the traditional
Strutinsky procedure result in total energies exhibiting
substantial systematic deviations from the correspond-
ing KS-LDA energies.

Our shell-correction method (SCM) for calculating the
ground-state properties of a system has certain simi-
larities to the Harris-functional method, proposed as
an alternative to the self-consistent solution of KS-
LDA equations, which was recently applied to electronic
structure calculations of condensed-phase and molecular
systems. The present method circumvents as well
the self-consistent solution of the KS equations and thus
has the advantage of a significant reduction in computa-
tional effort, while preserving the numerical accuracy. In
particular, our calculations show that our method yields
results which agree typically within 1% to 3%% with those
obtained by self-consistent solutions of the KS equations.

In Sec. II we discuss first Strutinsky's method devel-
oped in the context of nuclear physics. Subsequently,
we introduce and discuss the shell-correction method for
investigations of metal clusters.

In Sec. III we present an application of the SCM ap-
proach to investigations of the properties of anionic metal
clusters. Specifically we report on systematic theoret-
ical studies of the energetics and stability of multiply
charged anionic metal clusters and deduce relationships
predicting borders of stability as a function of the size
and number of excess electrons (the cluster size required
to stably bind a given number of excess electrons). Be-
yond the border of stability, we estimate the lifetimes for
spontaneous electron emission (autodetachment) which
takes place via tunneling through a Coulombic barrier,
in analogy with the nuclear processes of proton and
alpha radioactivities. Additionally, we assess the im-
portance of shell effects and self-interaction corrections
for anionic metal clusters studied by the local-density-
functional method. Fission channels, which may compete
with electron autodetachment, are studied for the case of
doubly charged anions. In all calculations reported here,
we limit ourselves to a jellium background with spher-
ical symmetry, except when specifically noted. Effects
due to deformations will be treated comprehensively in a
forthcoming publication.

Finally, we summarize our results in Sec. IV.
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II. SEPARATION OF THE BINDINC ENERCY
INTO A SMOOTH PART AND A SHELL

CORRECTION

U(r) y;)r)= f8r'V(r —r'))p)r', r') tr, (r) —p(r', r)p;(r')],

A. Shell-correction method in nuclear physics

1. Strutinsky's averaging of the single pai-ticle
spectra: Decomposition of the total energy into

a smooth and a fluctuating (shell-correction) part

In their studies, Strutinsky and collaborators
worked with the Hartree-Fock (HF) theory, commonly
used to represent the self-consistent field of atomic nu-
clei. While in reviewing Strutinsky's method we keep re-
ferring to the HF theory, the general form of the results
is equally applicable, as we discuss below, to the density-
functional theory commonly used in electronic structure
calculations with a local approximation for the exchange-
correlation functional.

Motivated by the behavior of the empirical nuclear
binding energies, Strutinsky conjectured that the self-
consistent Hartree-Fock density pHF can be decomposed
into a smooth density p and a fluctuating contribution
bp, namely pHF ——p + bp. Then, he proceeded to show
that, to second-order in bp, the Hartree-Fock energy is
equal to the result that the same Hartree-Fock expres-
sion yields when pHF is replaced by the smooth density
p and the Hartree-Fock. single-particle energies e, are
replaced by the single-particle energies corresponding to
the smooth potential constructed with the smooth den-
sity p. Namely, he showed that

EHF = Estr + O(bp ),
where the Hartree-Fock energy is given by the expression

EiiF = ) e; —
2 dr dr'V(r —r') [piiF(r, r) piiF(r', r')

and V is the nuclear two-body interaction potential.
Since the second term in Eq. (3) is a smooth quantity,

Eq. (I) states that all shell corrections are, to first order
in bp, contained in the sum of the single-particle energies

P, e, . This is very useful, since it allows one to approx-
imate the shell effects through the so-called Strutinsky
averaging method. According to this method, a smooth
part E,p, is extracted out of the sum of the single-particle
energies g,. F, by averaging them through an appropri-
ate procedure. Usually, but not necessarily, one replaces
the b functions in the single-particle density of states by
Gaussians or other appropriate weighting functions. As
a result, each single-particle level is assigned an averag-

ing occupation number J'„and the smooth part E,~ is
formally written as

Ep ——) sf, .

Consequently, the Strutinsky shell correction is given
by

AE,„"=) e; —E,

The Strutinsky prescription (7) has the practical ad-
vantage of using only the single-particle energies 2, and
not the smooth density p. Taking advantage of this, the
single-particle energies can be taken as those of any ex-
ternal potential that empirically approximates the self-
consistent potential of a small system. In the nuclear
case, an anisotropic three-dimensional harmonic oscilla-
tor has been used successfully to describe the shell cor-
rections in deformed nuclei.

The single-particle smooth part E,~, however, is only
one component of the total smooth contribution, EHF, in
the Hartree-Fock energy. Indeed as can be seen from Eq.

(2) (3),

while the Strutinsky approximate energy is written as
follows: where

EHF +Ep,g + EHF )

p(r r) ].
dr dr'V(r —r') [p(r, r) p(r', r') EiiF = E,p

—
2 dr dr'V(r —r') [p(r, r) p(r', r')

—p(r, r')'] .

The index i in Eq. (2) and Pq. (3) runs only over the oc-
cupied states (spin degeneracy is naturally implied). The
single-particle energies 2; correspond to a smooth poten-
tial U. Namely, they are eigenvalues to a Schrodinger
equation,

Strutinsky did not address the question of how to cal-
culate microscopically the smooth part EiiF (which nec-
essarily entails specifying the smooth density p). Instead
he circumvented this question by substituting for EHF the
empirical energies ELD of the nuclear liquid-drop model;
namely, he suggested that

+U ~p, =ecp, ,2m ) (4) EHF ~ +Egh + ELD

where the smooth potential U depends on the smooth
density p as follows:

This last approximation has been very successful in de-
scribing fission barriers and properties of strongly de-
formed nuclei.
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2. Extended Thomas J'-ermi method for the smooth
conte ibution

The success of Strutinsky's approximation (10) in nu-
clear physics has been impressive. It was, however, nat-
ural to inquire about the smooth density p and about
ways of specifying it while circumventing the HF solu-
tion. Before proceeding further in this direction, we note
that in most nuclear physics studies the HF theory is
used in conjunction with effective forces of the Skyrme
type. The introduction of these forces builds correlation
efFects into the HF approach. Consequently, the result-
ing HF equations, with the efFective fields expressed as
functional derivatives of a parametrized energy density
functional, are equivalent to the KS equations of DFT,
generalized to include nonlocal parts of the potential.

It was observed that not only P,. F; but also most
HF quantities can be averaged in the Strutinsky sense.
In particular, using the Strutinsky averaging occupation
numbers [f;, see Eq. (6)], one can extract averages for the
HF density and the Hartree-Fock kinetic energy, namely

HFI2f

Due to the availability of reliable empirical liquid-drop
energies, the Strutinsky ansatz (10) has been used in
most nuclear studies, with the ETF approach finding only
limited application. However, in the case of metal clus-
ters, the ETF approach for specifying the smooth part
appears to be a natural starting point in adapting Strut-
insky' s method to these systems.

B. Adaptation of the shell-correction method
to metal clusters

1. Extended Thomas Fermi-method for the smooth
conte ibution in metal clusters

As mentioned above, self-consistent solutions of the
Kohn-Sham equations are commonly used to calculate
properties of metal clusters. Alternatively, an ETF
method in conjuction with the local-density approxima-
tion for exchange and correlation, based on a variational
procedure using a parametrized density profile, has also
been used. ' ' ' In our calculations, we use

and

h2
T ) (PHFl+zlPHF) f

po

1+ exp (" "')] (15)

A diferent approach than Eq. (11) for specifying the
single-particle density of a quantal system in an aver-
age sense has been initiated by Thomas and Fermi.
In its modern version, it is known as the extended
Thomas Fermi (ETF) method. In this approach, the
full quantum-mechanical single-particle density is writ-
ten as an inverse Laplace transform (8&, where A is the
Fermi energy) of the Bloch density matrix

E[p] = (t[p(r)] + (2VH[p(r)] + Vl(r))p(r))dr

f„,[p(r)]dr + EI, (16)

with ro, n, and p as variational parameters (for other
closely related parametrizations cf. Refs. 34 and 36).
The energy density functional, namely

C(r, r'; P) = ) p,*(r') Ip; (r) exp( —Pe;) . (13)

Namely,

(14)

Expanding C(r, r', P) in powers of h, one obtains a
semiclassical density pK~F in powers of h. More impor-
tantly for our purposes, the corresponding approximation
of the kinetic energy T@~F is given as a density functional
of pF~F, and. thus pF~F can be determined as the solution
of a variational Euler-Lagrange equation.

It was natural to inquire whether the Strutinsky
smooth density p and pH~F (both obtained for the same
density-dependent potential-energy terms) are connected
in any way. In fact, through direct numerical compari-
son, it was found ' that practically p = pF~F (as well

as T = TH~F), provided that the ETF kinetic-energy
functional was specified up to the fourth order in the
gradient expansion.

that is variationally minimized consists of a kinetic-
energy functional t[p], specified according to the ETF
theory (comprising terms up to fourth order in the den-
sity gradients ), and of Hartree (H) and exchange-
correlation functionals [(xc), for the latter we use the
Gunnarsson-Lundqvist functional. ] VH is the Hartree
repulsive potential induced by the electrons. Vl and
El are the attractive potential and the repulsive to-
tal electrostatic energy of the positive jellium back-
ground. The smooth optimal electronic density p, ob-
tained through a variational minimization of this ETF
functional [Eqs. (15) and (16)] is input into Eq. (16) to
yield the smooth part E[p] of the total energy of the clus-
ter.

With this density, the LDA average potential,
U(r; p(r)), binding the delocalized electrons, consists of
a sum of three terms; a repulsive Hatree term and an
attractive exchange-correlation term from the electronic
contribution, as well as an electrostatic term originating
from the attraction between the electrons and the posi-
tively charged jellium background, namely
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FIG. 1. ETF effective potentials for Na2p, Nagy and Na22
in the spherical jellium background approximation. The asso-
ciated single-particle occupied levels are also shown. Observe
the increasing depth of the potentials with increasing total
cationic charge. Distances are in units of the Bohr radius ap.

we conjecture that the main conclusion of Strutinsky's
theorem (derived originally in the context of HF calcu-
lations) can be applied as well to metal clusters, in the
context of local-density-functional theory. Namely, we
assert (for a justification, see Sec. IIB3) that the shell
effects in the total energy of a metal cluster are, to the
first order in bpKs (where SpKs = pKs —p, and pKs is the
self-consistent KS density), contained in the sum g,. s, ,
where F; are the single-particle energies of the effective
potential U(r; p(r)) constructed according to Eq. (17). In
the expression for the smooth total energy E [the energy
density functional (16) evaluated for p = p], the term
that can be related. to this sum is the kinetic-energy con-
tribution. Indeed, the quantal kinetic energy of particles
moving independently in an effective potential can be ex-
pressed as the sum over single-particle energies minus a
potentiaL-energy term. Since P, c; is already first order
in bpKS, the potential-energy term must be approximated
by its smooth part for our purposes here. Thus we are
led to replace T = f t [p(r)]dr in the ETF functional (16)
by the expression

T,h = ) s; — p(r)U(r; p(r))dr .

U(r; p(r)) =2, dr'+ V„,(r; p(r)) + VI(r), (17)
&(r )

/r —r'[

As a result, the total energy E,h, including the shell cor-
rection,

AE,h ——T,h —T,
where atomic units (energy in Ry) are implied. In our
calculations, the exchange-correlation potential V„,(r) =
hE'„,p(r)/Sp(r) is given by the expression

is given by

E,h[R = T,h —T+ E[&] (22)

V„,(r) = —1.222/r, (r) —0.06661n
~

1+ 11.4 i
r8 r )

where r, (r) = [3/4vrp(r)] ~ is the local value of the
Wigner-Seitz radius.

Having obtained the efFective potential U(r; p(r)), one
proceeds to calculate the electronic single-particle spec-
trum by solving Schrodinger s equation using the one-
particle Hamiltonian,

E,h[p] = ) s; — [2V~(r) + V„,(r)]p(r)dr

f„,[p(r)]dr+ EI . (23)

After some rearrangenments, the shell-corrected total
energy E,h[p] in Eq. (22) can be written in functional
form as follows:

IIp ——T+ U(r; p(r)),

where T is the quantum-mechanical operator for the ki-
netic energy.

An example of these effective potentials and of the as-
sociated occupied single-particle spectra is given in Fig.
1. We have chosen to exhibit the case of Na20, Na2q+,
and Na22 +. In all three cases, 20 delocalized electrons
are involved, but the corresponding potentials become
successively deeper as one passes from the neutral to the
doubly cationic case.

2. SheEE correction through the kinetic-energy term

Motivated by the analogies between certain properties
of nuclei and metal clusters, in particular the oscillatory
behavior of ground-state properties as a function of size,

As with the Strutinsky method in nuclear physics, the
total energy E,h, as well as the shell correction AE,h,
is expressed solely through the smooth density p, with-
out the need to evaluate the self-consistent Kohn-Sham
density pKs. This method thus circumvents the solution
of the KS eigenvalue problem at each step of the itera-
tion procedure performed to achieve self-consistency in
the single-particle wave functions. In our method, a ma-
trix eigenvalue equation is solved only once following the
ETF variation which determines the smooth density p.
We further note that the calculation of the total energy
E,h (or the shell correction KE,i,) requires only the eigen-
values s;, and not the corresponding eigenvectors Q, (r).

To check the accuracy of this procedure, we have com-
pared results of calculations using the functional E,h [Eq.
(22)] with available Kohn-Sham calculations. In particu-
lar, Fig. 2 displays results of the present shell-correction
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not only for the Hartree-Fock, but also for the case of the
density-functional theory, namely

-0.7
@Ks[PKs] —E h[pj + O(~PKs) (24)

—0.8

LLJ

—0.9

N

80

FIG. 2. Total energy per atom of neutral sodium clusters
(in units of the absolute value of the energy per atom in the
bulk, ~e

~

= 2.252 eV). Solid circles: SCM results (see the
text for details). The solid line is the ETF result (smooth
contribution). In both cases, a spherical jellium background
was used. Open squares: LDA Kohn-Sham results from Ref.
19. The excellent agreement (a discrepancy of only 1—3'Po)
between the SCM and the LDA Kohn-Sham approach is to
be stressed.

8. Connection to the Harris functional

approach for the total energies of neutral sodium clusters.
The results of the shell-correction method for ionization
potentials of sodium clusters are displayed in Fig. 3. The
excellent agreement between the oscillating results ob-
tained via our theory and the Kohn-Sham results (cf.,
e.g. , Ref. 19) is evident. To further illustrate the two
components (smooth contribution and shell correction)
entering into our approach, we also display the smooth
parts resulting from the ETF method.

Indeed, several recent publications have proven
the validity of Eq. (24) in connection with the Harris s

functional, used in electronic structure calculations of
molecules, surfaces, and other condensed-matter systems.
In fact, the specific way of writing the functional (23)
was chosen so that its similarity in form to the Harris
functional is evident. Formally, the Harris functional
EH „;,[p;„] results f'rom expression (23) by replacing the
smooth density p by an input density p;„, taken as a su-
perposition of site densities. Initially the site compo-
nents of the input density were not optimized. Later,
it was realized that the results could be improved by vari-
ationally adjusting the site components through a maxi-
mization of the Harris functional itself. However, doing
so adds the burden of a matrix diagonalization for obtain-
ing the eigenvalues c~ at each step of the variation. We
note that our method di6'ers from the Harris approach
in that the optimization of the input density is achieved
by us through a variational ETF method, which does
not require such a step-by-step matrix diagonalization.
While our focus in this paper is on jellium models for
metal clusters, the very good agreement between our re-
sults and those obtained via KS self-consistent jellium
calculations suggests that it would be worthwhile to ex-
plore the application of our method to more general elec-
tronic structure calculations extending beyond the jel-
lium model, where the trial density used for minimization
of the ETF functional could be taken as a superposition
of site densities, as in the Harris method. Additionally,
application of our method to nuclear HF-Skyrme calcu-
lations is suggested.

The excellent numerical agreement illustrated above
suggests that the Strutinsky theorem (1) can be proven, III. MULTIPLY CHARGED METAL-CLUSTER

ANIONS

5.0
oj0
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4S —a

4.0—
CL

3.0
20

FIG. 3. Ionization potentials (IP's) for sodium clusters.
Solid circles: IP's calculated with the SCM (see the text
for details). The solid line corresponds to the ETF results
(smooth contribution). In both cases, a spherical jellium
background was used. Open squares: LDA Kohn-Sham re-
sults from Ref. 19. The excellent agreement (a discrepancy of
only 1—3 '%%uo) between the shell-correction method and the full
Kohn-Sham approach should be noted.

Charging of large metal spheres is an old subject with
scientific accounts dating back to Coulomb, Faraday,
and others. While size-evolutionary patterns of phys-
ical and chemical properties of Gnite clusters, neutral
as well as cationic, have been the subject of intensive
research, ' ' negatively charged metal clusters have not
been as much investigated, with the exception of several
experimental and theoretical studies concerning singly

rged anions 63—67,42, 68

As mentioned above, investigations of metal clusters
based on LDA methods and self-consistent solutions of
the Kohn-Sham equations (employing either a positive
jellium background or maintaining the discrete ionic
cores) have contributed significantly to our understand-
ing of these systems. ' ' However, even for singly
negatively charged metal clusters (M~), difFiculties may
arise due to the failure of the solutions of the KS equa-
tions to converge, since the eigenvalue of the excess elec-
tron may iterate to a positive energy. While such difB-
culties are alleviated for M~ clusters via self-interaction
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corrections (SIC), the treatment of multiply charged
clusters (M~, Z ) 1) would face similar difIiculties in
the metastability region against electronic autodetach-
ment through a Coulombic barrier. In the following we

Sec. IIBare applying our SCM approach, described in Sec.
to these systems (for the jellium background, we assume
spherical symmetry, unless otherwise stated).

A. Electron afBnities and borders of stability

Az" —Az = b,E, (hvN, vN+ Z —1)
AE,h(—vN, vN + Z) . (26)

A positive value of the electron affinity indicates sta-
bility upon attachment of an extra electron. Figure 4
displays the smooth, as well as the shell-corrected, first
and second electron affinities for sodium clusters with
% & 100. Note that A2 becomes positive above a certain
cri icat'cal size implying that the second electron in doubly

~r~'~negatively charged sodium clusters with % ( K„ = 43
might not be stably attached. The shell effects, how-

The smooth multiple electron affinities Az prior to
shell corrections are defined as the difference in the total
energies of the clusters

Az = E(vN, vN + Z —1) —E(vN, vN + Z), (25)

where N is the number of atoms, v is the valency, and
Z is the number of excess electrons in the cluster (e.g. ,

first and second afFinities correspond to Z = 1 and Z = 2,
respectively). vN is the total charge of the positive back-
ground. Applying the shell correction (21), we calculate
the full electron affinity as

ever, create two islands of stability about the magic clus-
ters Nas2 and Nasa (see A2" in Fig. 4). To predict the
critical cluster size N„, which allows the stable attach-
ment of Z excess electrons, we calculated the smooth
electron affinities of sodium clusters up to N = 255 for
1 & Z & 4, and display the results in Fig. 5. We observe
that N„= 205, while N„) 255.

The similarity of the shapes of the curves in Fig. 5, and
the regularity of distances between them, suggest that
the smooth electron afFinities can be fitted by a general
expression of the form

(27)

(Z —1)e2
Az ——A B+b

e2 (Z —1)e2
R+b R+b'

where the radius of the positive background is B
From our fit we find that the constant W cor-P8 ~

ndresponds to the bulk work function. In all cases, we fin
P = 5/8, which suggests a close analogy with the classical
mo e odel of the image charge. " '" For the spill-out param-

B .eter, we find a weak size dependence as b = bo + b2/
The contribution of b2/R, which depends on Z, is of im-
portance only for smaller sizes and does not affect sub-
stantially the critical sizes (where the curve crosses the
zero line), and consequently b2 can be neglected in such
estimations. Using the values obtained by us for Aq of

O
~Q)

M.Q)

C

C
O 20

Z

—1 I
II

I
II

I
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I
I

I
I
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I I I I

FIG. 4. Calculated first (Ai) and second (Aq) electron
a%nities of sodium clusters as a function of the number of
atoms N. Both their smooth part (dashed lines) and the
shell-corrected affinities (solid circles) are shown. A spherical
jellium background was used.

SO

FIG. 5. Calculated smooth electron aKnities Az, Z = 1—4,
for sodium clusters as a function of the number of atoms N (Z
is the number of excess electrons). A spherical jellium back-
ground was used. Inset: The electron drip line for sodium
clusters. Clusters stable against spontaneous electron emis-
sion are located above this line. While, as seen from 1.g. 4 for
spherical geometry, shell effects inHuence the border of stabil-
ity shell-corrected calculations including deformations (Ref.)

52) yield values close to the drip line (shown in the mset)
which was obtained from the smooth contributions.
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R' = 2.9 eV, which is also thesodium clusters (namely,
value obtaine yed b KS-LDA calculations for an inLini e

lanar surface, bo ——1.16 a.u. , with = r,
find for the critical sizes when ther = 4.00 a.u. ~, we n orn OI

N =44,(2)left-hand side of Eq. (27) is set equal to zero,
—554 and N, = 1177, in very good

a reement wi e va uth th lues obtained directly from Fig.g
in the (Z, N) plane de-The curve that specifies N„ in e,

fines the bor er o s a i id f t b lity for spontaneous e ectron de-
t s onta-ca . In nuc el, sue 0l, h borders of stability against spon a-y.

t ission are known as nucleonne ous proton or neutron emission
the electrondrip lines. or el . F the case of sodium clusters,

drip line is displayed in the inset of Fig.. 5.

B. Metastability against electronon autodetachment

The multiply charged anions with g'th ne ative afBnities
d ot necessarily exhibit a positive total energy. To i—

E&~N Z~,~N~ as a function of ex-
0 80 ancess charge (Z) for clusters containing 0,

liow for exothermic attach-sodium atoms. These sizes a ow
two or three excess electrons,ment of maximum one, wo, or

respectively.
~ ~ al-As was the case wi e e'th th electron afFinities, the tota—

F' . 6 show a remarkable regularity, sug-energy curves in ig. s ow
r e. Togesting a para o ic epb l' d endence on the excess charge. o

t t this conjecture, we have extracextracted from the calcu-es is
N Z =GN, Z/N,lated total energies the quantity g N,

where G(N, Z) = [E(N, Z) —E(N, 0)j/Z + Ay (N), and
have plotted it in the inset of Fig. 6 as a function of the

h e Z. The dependence is linear toexcess negative c arge
oss thea remar e ex en;kabl t t for Z = 1 all three lines cross e
on theCombined with the results on eenergy axis at zero. om

m t th's indicates that the total energieselectron a nities, is in
have the following dependence on the excess num er o
electrons (Z):

Z(Z —1)eE(Z) = E(0) —AgZ+

where the dependence on the num eer of atoms in the
l ter is not explicitly indicated.cus eri

~ ~ ~

with the clas-Th' lt is remarkable in its ana ogyis resu i
eg al.72 Indeed,a e-char~e result of van Staveren e a. nsica image-c ar e

s ill-out arameterth 1 difference amounts to the spi -ou pae ony
d to the weak dependence on Z throughh b. Thisbo an to e wea

li ible already foradditional Z dependence becomes negligi e a r
the case of 30 sodium atoms.

er anions, elec-For metastable multiply charged cluster anions, e ec-

is necessary tot te the electron emission, i is
correct the LDA effective potential for self-interac ion e-

correction of theects. e per ot . W rformed a self-interaction co
e it toAmaldi type or ef th Hartree term and extended '

—2.0

0

$ Ld

N=

0
0

r (a

FIG. 6. Calculated smooth total energy p er atom as a func-
h e Z for the three families oftion of the excess negative ciiarge Z o

ith N = 30, N = 80, and N = 240 atoms. Asodium clusters wit
ound was used. As the straig inesspherical jellium backgroun

in the inset demonstrate, the curves a pre arab olic. e n
b E . (28). See text for an expla-

nation af haw the function g(N, Z) was extracted fram e
calculations.

FIG. 7. The LDA and the corresponding self-znteractlon
corrected (SIC) potential for the metastable Na~s cluster. A
s

' ' '
und was used. The single-particle

n. Unlike thelevels of the SIC potential are also shown.
this latter potentia ex i i s e cl h bits the correct asymptotic be avior.

e s ontaneously yTesanh 2 d 1d electrons can be emitte p
C otential.tunneling t roug eh h th Coulombic barrier of the SI p

in units of the Bohr radius ao.Distances are in un'
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the exchange-correlation contribution to the total energy
f ll . E [p] = E" [p] —N, E [p/N, ], where

N = vN+ Z is the total number of electrons. This self-
interaction correction is akin to the orbitally-averaged
potential method. Minimizing the SIC energy func-
tional for the parameters ro, o;, and p, we obtained the
effective SIC potential for Naia shown in Fig. 7, which

r 75exhibits the physically correct asymptotic behavior.
The spontaneous electron emission through the

Coulombic barrier is analogous to that occurring in pro-
' 76ton radioactivity from neutron-deficient nuclei, as well

as in alpha-particle decay. The transition rate is A =
ln2/Tiy2 ——vP, where v is the attempt frequency and
P is the transmission coeKcient calculated in the WKB
method (for details, cf. Ref. 76). For the 2s electron
in. Nais (cf. Fig. 7), we find v = 0.73 x 10is Hz and
P = 4.36 x 10 yielding Tig2 ——2.18 x 10 s. For a

WT 2cluster size closer to the drip line (see Fig. 5), e.g. , »a35,
we find Ti(2 = 1.13 s.

C. Fission of doubly charged anions

0
O
~Q)

20 80 100

FIG. 9. Solid circles: SCM results for the dissociation en-
ergies

&
or e' f the most favorable fission channel for doubly

charged cationic parents Na~+ when the spherical jellium is
used. The excellent agreement between the shell-correction
method and the LDA Kohn-Sham approach (cf., e.g. , Ref.
11) is evident. The inHuence of deformation effects is shown

by the thick dashed line. Table I lists the composition of the
most favorable channels.

0

10 30 70

FIG. 8. Solid circles: SCM results for the dissociation en-
ergies

&
or efor the most favorable fission channel for doubly

charged anionic parents Na~ when the spherical jellium is
used. The infIuence of deformation efFects is shown by the
thick dashed line. Table I lists the composition of the most
favorable channels.

As is the case of doubly charged cations, doubly
charged anions may fission. Thus the Gssion channel
may compete with the spontaneous electron emission
one. Using the shell-correction method, we calculated the
dissociation energies AP Esh( ~ P)+»yN N —P
E (Na ) as a function of parent size N and daughtershy
products P and N —P. Spherical symmetry was as-
sumed for both parents and daughters. The dissociation

n rgies 4"' for the most favorable channels, i.e. , for
the smallest L&' for a given N, are displayed in Fig. 8.
For comparison with the case of doubly positive cationic
parents, we have calculated as well the dissociation en-
ergies 4& ' ——E, (hNaz) +E, (hNa~ z) — ,E(hNa ~) and
have plotted the corresponding energies for the most fa-
vorable channels, 4& ', in Fig. 9. Again, comparison of
the results in Fig. 9 with the results of Ref. 11 (calcu-
lated using the KS equations) illustrates the high degree
of accuracy of the SCM approach introduced in this work.

The patterns exhibited by the favorable channels in the
case of doubly negative parents (plotted as energy versus
the number of atoms in the parent cluster) are similar to
those exhibited by the doubly positive parents, apart
from a natural shift of four mass units. In particular,
magic parents are the least favored to fission, exhibit-
ing typically endothermic behavior. All favorable chan-
nels contain at least one magic fragment, with the local
minima corresponding to two magic daug-ters. able I
summarizes the composition of favorable channels up to
N =20.

As was the case with the doubly cationic parents, the
local minima of 4&' for the doubly anionic parents re-
main strongly exothermic even for sizes up to ., = 100
atoms, suggesting that the critical number N for fission
above which Coulomb explosion, that is spontaneous fis-
sion, will not occur (namely Ay & 0 for all N such that
N & NF) may be larger than 100. However, deforma-
tion effects can alter some conclusions drawn .rom s ell
effects derived from the spherical jellium. To check this
possibility, we have applied the shell-correction method
to fully triaxial deformed shapes. Some erst results for
both the doubly negative and doubly positive parents
are displayed in Fig. 8 and Fig. 9 by a thick dashed
line. " The main difference from the spherical jellium
is a strong suppression of the local minima, indicating
that N may be significantly smaller than 100, as indeed
has been observed experimentally for hot cationic al i-

C

li-
me a cus er.t l lusters. From Fig. 8 we observe that for doubly

~ (2)charged anionic clusters, Na~ (for which N„43),
Gssion may compete with the. electron decay channel for
N & 30 while for 30 & N & 43 the latter one dominates.

Additionally, compared to the spherical jellium, in sev-
eral cases the deformation effects result in a different
composition of the most favorable channel. Examples
of such cases are given in Table I. It should be noticed
that, unlike the case of the spherical jellium, the shell-
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TABLE I. Energetically favorable channels for the 6ssioning processes Na~+ —+ Na+&+Na~
and Na~ —+ Na&+Na~ &. S denotes the case in which both parents and daughters are assumed
spherical. D denotes the case in which triaxial deformations are allowed for open-shell clusters
(either parents and/or daughters) .A dash denotes no change in the favorable channel.

Parent (N)

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(4,9)
(5,9)

Cations
Daughters (P, N —P)
S D

(1,3)
(2,3)
(3,3)
(3,4)
(3,5)
(1,8) (3,6)
(1,9) (3»)
(3,8)
(3,9)
(3,10)
(3»)
(6,9)
(7,9)
(8,9)
(9 9)
(9,1o)
(1,19) (9,11)

Parent (N)

13
14
15
16
17
18
19
20

(6,7)
(7,7)
(7,8)
(7,9)
(1,16)
(1,17)
(1,18)
(1,19)

(7,1o)
(7,11)

Anions
Daughters (P, N —P)
S D

correction method for deformed droplets predicts (P = 3,
N —P = 6) and (P = 3, N —P = 7) to be the preferred
channels for Nag+ and Na&z, respectively, in agreement
with the local-spin-density (LSD) functional molecular-
dynamics calculation of fission patterns.

ionization potential, Ii ——W + (3/8)e /(R + h), a re-
sult that has been suggested from earlier measurements
on multiply charged potassium cations. Naturally, the
spill-out parameter b assumes di8'erent values than in the
case of the anionic clusters. .

D. Critical sizes for potassium and aluminum IV. SUMMARY

While in this investigation we have used sodium clus-
ters as a test system, the methodology and conclusions
extend to other materials as well. Thus given a calcu-
lated or measured bulk work function W, and a spill-out
parameter (hp typically of the order of 1—2 a.u. , and ne-

glecting 82), one can use Eq. (27), with Az ——0, to predict
critical sizes for other materials. For example, our calcu-
lations for potassium (r, = 4.86 a.u. ) give fitted values
W = 2.6 eU [compared to a KS-LDA value of 2.54 eV
for a semi-infinite planar surface with r, = 5.0 a.u. (Ref.
73)] and hp ——1.51 a.u. for 82 ——0, yielding ¹,= 33,

= 152, and. N„= 421.
As a further example, we give our results for a trivalent

metal, i.e. , aluminum (r, = 2.07 a.u. ), for which our
fitted values are W = 3.65 eV [compared to a KS-LDA
value of 3.78 eV for a semi-infinite plane surface, with
r, = 2.0 a.u. (Ref. 73)] and hp ——1.86 a.u. for h2

0, yielding ¹,= 40 (121 electrons), ¹,= 208 (626
electrons), and N„= 599 (1796 electrons).(4)

Finally, expression (28) for the total energy can be nat-
urally extended to the case of multiply positively charged
metal clusters by setting Z = —z, with z & 0. The ensu-
ing equation retains the same dependence on the excess
positive charge z, but with the negative value of the first
aKnity, —Az, replaced by the positive value of the first

Observations of size-evolutionary patterns of physical
and chemical properties of clusters (that is, systemat-
ics of the variation of the properties of finite aggregates
when recorded. versus system size, e.g. , the number of
atoms) and analogies between such patterns and well-
known SEP's of nuclear properties (e.g. , binding ener-
gies or nuclear masses, recorded versus the number of
nucleons), served as a principal motivation for the work
reported in this paper. Based on the concept of decompo-
sition of the size-dependent variation of the total energy
of a finite system into a smooth part and a companion
component, which adds a superimposed structure (shell
correction) on the smooth curve, we were led to develop
a method that allows time-eKcient and accurate calcula-
tions of energetics and SEP's of the properties of metal
clusters.

In our shell-correction method, the smooth component
of the energy is determined via an optimization of an
input density via variational treatment of the extended
Thomas-Fermi (ETF) density functional (with the ki-
netic energy expanded to fourth order in the density gra-
dients), and subsequent evaluation of the total energy
with shell corrections introduced through the kinetic-
energy term [see Sec. IIB 2, Eqs. (20)—(23)], using the
single-particle eigenvalues obtained via the solution of
the Schrodinger equation within the LDA approximation
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and using the ETF-optimized density.
While our original derivation of the method was partly

motivated by studies of Strutinsky and collaborators in
the context of nuclear physics, we discussed the simi-
larity between our procedure and the Harris-functional
method developed in the context of electronic structure
calculations (see Sec. II 8 3), which also attempts to cir-
cumvent self-consistent solutions to the Kohn-Sham LDA
equations. We note, however, that our method utilizes
a diferent optimization procedure of the input density,
which allows for the matrix-diagonalization step to be
performed once (after the optimization of the density is
achieved via the ETF variational treatment), while in
the Harris-functional approach maximization of the Har-
ris functional requires diagonalization at each step of the
variation.

To demonstrate the method, we calculated binding
energies and ionization potentials of Na~ (K ( 100)
clusters, modeled as jellium droplets, exhibiting shell-
structure eKects, and obtaining excellent agreement with
available self-consistent LDA results and experimental
data.

Our main focus in this paper is the application of
the method to a systematic investigation of the energet-
ics of multiply charged metal-cluster anions (Sec. III).
We showed that while singly charged anions are stable
for all sizes (our calculated first-electron affinities are
in good correspondence with experimentally measured

ones), multiply charged negative ions are stable against
spontaneous electron decay only above certain critical
sizes, which we term borders of stability. Below a bor-
der of stability, multiply anionic clusters are metastable
against autodetachment via electron tunneling through
a Coulombic barrier. Lifetimes for such electron decay
processes, which increase as one approaches the critical
clusters size (i.e. , the border of stability), were estimated
by us for doubly negatively charged sodium clusters, us-

ing the WKB tunneling formula with self-interaction cor-
rected (SIC) potentials. Since fission processes may pro-
vide competitive decay channels, the energetics of frag-
mentation of doubly charged sodium anions was dis-
cussed in Sec. IIIC.

Confrontation of our predictions with experiment
would require measurements on mass-selected multiply
negatively charged metal clusters. A method for gener-
ating such clusters may involve fragmentation (via heat-
ing or collisions) of large charged droplets produced by a
liquid-metal source.
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