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case of anisotropic energy surfaces. They indicated that a
surface current may appear also in an isotropic case for
oblique incidence of light.

In semiconductors a surface current of a different na-
ture, which may be called photogalvanic, was also dis-
cussed. It was predicted by Margarill and Entin' and
observed as well as discussed in more detail by
Al'perovich et al. they were particularly interested in
the case where light excited interband transitions in a
semiconductor. This effect is due to a diffuse scattering
of the electrons from the surface (see Fig. 2}. In general
the transition probability is an anisotropic function of the
electron quasimomentum. The anisotropy exists even in
the case of an isotropic electron spectrum due to the
directional asymmetry brought about by the electric ac
field vector E. Let us assume that E lies in the plane xz
where z is perpendicular and x is parallel to the surface.
In the simplest (isotropic) case one can consider the situa-
tion where the transition probability has an item propor-
tional to (Ep), p being the electron quasimomentum. As
a result of the invariance of the transition probability to
the change of the sign of the quasimomentum, the num-
ber of electrons generated by light and moving, say, along
the negative direction of the x axis and, at the same time,
towards the surface would be equal to the number of
electrons moving along +x and from the surface. The
electrons of the first group would be scattered from the
surface and if the scattering were diffuse, they would not
give appreciable contribution to the current. The elec-
trons of the second group would be scattered only in the
bulk of the sample and therefore their contribution to the
current parallel to the surface would be larger.

This effect should disappear for specular scattering of
the electrons at the surface. ' It should not exist for po-
larization of ac electric field E in the y direction, i.e., per-
pendicular to the plane of light propagation. This last
statement is valid for an isotropic case which can be seen
directly from the form of the angular dependence of the
transition probability indicated above. It should also be

true if, for instance, the plane of light propagation coin-
cides with a plane of symmetry of the crystal or the direc-
tion of the surface current coincides with an axis of sym-
metry of the crystal (provided it has a center of symme-
try}. This effect should also be considerably reduced in
metal films of thickness smaller than the light penetration
depth (provided, of course, that the conditions for the
electron scattering are the same at both surfaces of the
film}. One should also mention that the conditions for
penetration of an ac electric field differ substantially in
metals and semiconductors. In the range of optical fre-
quencies well below the so-called plasma edge the dielec-
tric susceptibility of a metal is negative and its modulus
may be rather large (see Sec. X). It means that in the first
approximation the z component of the ac field is entirely.
out of phase in regard to its x component (i.e., the phase
difference is n/2) In .this approximation one gets no
contribution to the photogalvanic current. In the next
approximation the dielectric susceptibility is modified
due to the absorption of light. The phase difference be-
tween E, and E„is not exactly equal to ~/2. As a result,
there is some dc surface photogalvanic current, though it
should be usually reduced in comparison to semiconduc-
tors.

However, in general, in bulk metal specimens two con-
tributions to the dc surface current excited by illumina-
tion should exist. In what follows we shall compare both
contributions.

II. PHENOMENOLOGY

We start with phenomenological expressions for both
contributions to the current writing these for an. isotropic
conductor. However, generalization for an anistropic
case is rather simple.

In the lowest approximation in the light intensity, an
equation for the dc bulk current density j, due to the
drag of the electrons by an electromagnetic wave, can be
written as (here and henceforth we use the Einstein sum-
mation convention)

BE/
,4 E

2 Bx

BE( BE;*
E(* +i+ E(—

Bx; 2 Bx(

BE;—EI X

FIG. 2. A section of the normal metal (depicted in Fig. 1)
near the illuminated surface. The vector of the ac electric field
within the surface layer is parallel to the arrows. Arrows 1 and
2 indicate two opposite directions where the transition probabil-
ity has maxima. Angular distribution of the transition probabil-
ity (having a central symmetry) is indicated by the dashed line.
Electron 1 moves from point A along negative x and, at the
same time, along negative z towards the surface where it experi-
ences diffuse scattering. Its contribution to g„is small. Electron
2 passes a much longer distance moving from the surface and
being scattered within the bulk. Its contribution to the surface
current is much larger. As a result, there is a surplus of excited
electrons moving in the x direction.

where g(co) and ri(co) are transport coefficients which in
general depend on the frequency of light. Here all the
terms are bilinear in ac electric field components E; and
E;* and their first derivatives over the coordinates.
Indeed, these components are proportional to e '"' and
e' ', respectively. These terms change their sign for a
traveling wave if it changes the direction of its propaga-
tion. The symmetry allows also the term proportional to
i(E divE —c.c. ); we have not included it as divE=O. In
principle, two more terms containing the first derivatives
could enter the equation for the current density. One of
them gives a dc current perpendicular to the surface,
which we do not consider here. Another one has com-
ponents parallel to the surface. However, it will not be
present in our microscopic calculations for it could ap-
pear only in higher approximations of the perturbation
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theory; henceforth we shall omit it.
The first term of Eq. (1) can be transformed with the

help of the identity

[E,curlE*] —[E*,curlE] =E&(VE&*) E—&*(VEi)

+(E"V )E—(EV )E*,
which gives for the current density

j=i+( [E,curlE'] —[E*,curlE])

(2)

I

+i [(EV)E*—(E*V)E]
2

(3)

where ri' =g+ q. The first term of Eq. (3) can be
transformed making use of the Maxwell equation
curlE=(ice/c )H and we get

I

j= Q+i [(EV)E*—(E*V)E]
C

(4)

i(3 BE*

2 "Bx
BE

P (5)

where Q=(c/4m. )Re[E,H'] is the time-averaged Poynt-
ing vector inside the metal.

This is an equation for the bulk current whereas we are
interested in the density of a surface one g. Indeed, one
observes in the experiment a jump of a stationary mag-
netic field bB across a surface where a dc current Aows.
The jump is given by [n, hB]=(4n/c)g where n is a unit
vector along the normal to the metal surface. This is the
manifestation of the photomagnetism (see Fig. 1). If the
electron mean free path l is much smaller than the elec-
tric field penetration depth 5, one can obtain the surface
current density g by integrating Eq. (4) over the distance
to the metal surface z. If the intensity of the ac electric
field varies as

~
E(z)

~

~ e ', then the integration is
equivalent to multiplication by 6.

In the case where the electron mean free path I is
larger than or of the order of the penetration depth 5, the
collisions with the surface are important within the whole
layer of the width 5 and one cannot obtain a surface
current by the integration of Eq. (4). Rather one should
start with an equation for the surface current

4ng, co i g2 BE„*
Q~+ Ev

Bx

On the other hand, the transition probabilities are in
general even functions of the quasimomentum p (for
more details see Sec. V). It means that a probability can
have a part asymmetric in p, then it should be also
asymmetric in p~ (or p, ). For instance, it can have an
item 2p, p Re(E F. ) (this is just the simplest possibility
that takes into consideration the proper symmetry and
permits us to see the physics. On the basis of this example
one can see the essential features characteristic of a gen-
eral case). The presence of such a term means that if the
electrons with p„&0are in a majority in the upper band
the electrons with py &0 should also have a majority
there [provided Re(E„E~*))0]. Since there is no quasi-
momentum transfer in the y direction that would have
meant nothing for the y component of the current if both
bands were exactly alike. As, however, the velocities as
well as the relaxation times in both bands differ, an asym-
metric redistribution of the electrons between the bands
should, in general, result in a current in the y direction.
One can also add that such a redistribution should make
a contribution to j„in addition to the one that is directly
associated with the quasimomentum transfer. This is
refiected by the fact that the second term in Eq. (1) can
contribute both to j and j .

The phenomenological equation for the photogalvanic
surface current according to Ref. 15 has the form

g =—
[ [E—n(n E)](nE" )+c.c. ]2

(6)

There could be another contribution, ' namely
ik'[n, [E,E*]]. It can appear in higher approximations
of the perturbation theory, and we are not going to con-
sider it. It is important to note that Eq. (6) also gives in
general a current not only along the x axis but also along
the y axis.

III. PROBABILITY OF INTERBAND
ELECTRON TRANSITIONS INDUCED BY LIGHT

The Hamiltonian of the interaction of conduction elec-
trons with light has the form

m,„,=-,'m+m'),

4'=(ie/2' m)eo' '[e "
(
—iA'EV)+( —iAEV)e '

] .

where p, v run through values x,y; E„are the com-
ponents of the electric field at the surface.

An important feature of Eqs. (4) and (5) is that they in
general give a current not only along the x axis but also
along the y axis. The physical origin of this current may
be visualized as follows.

The primary source of the x component of the current
is associated with the fact that, due to the quasimomen-
tum transfer, the electrons with, say, p„)0 outnumber
those with p„(0.As a result, there is a net electron
current along the x axis. In regard to the transitions ex-
cited by light this means that the number of transitions
where the electrons with, say, p )0 are involved is larger
than that of the electrons with p„&0.

Here ~ is the frequency of light, mo is the free-electron
mass; here and henceforth E(z) will denote the amplitude
of the electric field that depends on coordinate z along
the direction perpendicular to the metal surface. We will
consider the time-averaged action of the field introducing
a term describing the interband transitions into the
Boltzmann equation for the electrons. To allow for the z
dependence of the electron distribution function we can
imagine that the sample is divided into slabs, the thick-
ness of each of them being so small that the field in a slab
can be considered as independent of z. This approach
permits us to take into account the z dependence of the
intensity of light.

The matrix element of the interband transition between
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the Bloch states with quasimomentum p in the lower
band 1 and with quasimomentum p' in the upper band 2
1S

where 6 ~ is the Kronecker symbol. Here

P21(P P )

1
d r u' '*(r) i—A + u'"(r),a + '

no Br 2

G (p+fik, p) =
2'6 IpN

E(z)P2, (p+ A'k, p) ~

The variation of the electron distribution function due to
interaction with light is

gf (1)
P

at &(E,'+rik & —E,'")(f,'+8k f,'" )
E

(2)

e"')(f„'+xk f"') .
E

(12)

Here we consider quantum transitions of the electrons
while the electric field is treated classically. Frequency co

is assumed to be large enough so that the conditions for
the energy and quasimomentum conservation allow tran-
sitions between the occupied states in the lower band and
empty states in the upper band (we do not consider here
the threshold eff'ects). The amplitude of the electric field
E(z) can be complex. It means that these equations are
valid for any polarization of the light, including circular
(or, in general, elliptical).

We assume that wave vector k has x component k
along the metal surface. Strictly speaking, the spatial
variation of function E(z) can describe not only its damp-
ing but also an oscillation along the z direction. It means
that the z component of the quasimomentum can also be
transferred to the electrons at the surface, thus creating a
current or voltage along this direction. However, as has
already been mentioned, we shall disregard this effect.

(10)

Qo being the volume of the primitive cell and u " '(r) be-
ing the Bloch amplitudes.

The actual calculation of transition amplitudes for a
particular metal may be rather complicated. For an im-
portant example of almost-free electrons this has been
done in Refs. 16—18. In the present paper we shall not
use the results of such calculations. However, we shall
exploit extensively the symmetry properties of the transi-
tion amplitudes derived below. The transition probability
from Bloch state 1,p to state 2, p'=p+Ak is given by
G5(ep" +fico —e'+)zk) where

'2

IV. BOLTZMANN EQUATION

The system of 8oltzmann equations for the time-
averaged electron distribution functions f" ) has the
form

gf (,2) gf (1,2)''"
a.

—
at E

gf (1,2)
+

Bt
(13)

Here the term on the left-hand side allows for the coordi-
nate dependence of the electron distribution function.
The terms on the right-hand side represent interband
transitions brought about by the illumination and intra-
band transitions not conserving the quasimomentum
which may be due, for instance, to collisions of the elec-
trons with defects.

As the distribution of the electrons excited by a laser
light is usually very sharp in the quasimomentum space
the "out" term of the collision operator should be much
larger than the "in" term. This means that to describe
the collisional variation of the sharp part of the distribu-
tion function (we are interested in) one may use the
relaxation-time approximation

p(1, 2) p(1, 2)JpJpP
coll 7

(1,2)

where f'o' ' are the equilibrium distribution functions
whereas 7." ' are the relaxation times for the electrons in

P
bands 1 and 2, respectively.

To calculate the current in the lowest approximation in
the light intensity we should insert into Eqs. (11) and (12)
the electron distribution functions in the zeroth-order ap-
proximation. As the energy A'co is much larger than the
thermal energy we may, for all practical purposes (except
for the analysis of the threshold phenomena), consider
the case of zero temperature. Then for the transitions
that are allowed by the Pauli principle we have fzo'=1
and f '20' =0. In the lowest approximation in the light in-
tensity the Boltzmann equations for the variations
hf =f f o of the ele—ctron distribution functions have
the form

(14)

graf (1) gf (1)
(1)( )

P + P

az 7-"'
P

= —G(p+ fik, p )6( ep+rk
—iiico —Ep"),

(I &)
gg p(2) g p(2)

+~k) fp+A'k + & p+Rk
Uz P (2)Bz p+ haik

=G(p+fik, p)5(Ep+„k—fico —Ep") .

gf(1,2) + (1,2)Gfi( (2) f (1))Ep+Xl. (16)

Let us start with calculation of the current initiated by
the quasimomentum transfer for the simplest situation
where one can neglect the terms with the spatial deriva-
tives in Eqs. (15). This is the case where the electron
mean free path l is much smaller than the electromagnet-
ic wave penetration depth 5, so that the electron scatter-
ing is comparatively strong. As a result, we get
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V. PROPERTIES OF TRANSITION PROBABILITIES

We are interested in the p and k dependence of the ma-
trix element between the Bloch amplitudes EP2, ( p', p ),
where p'=p+Ak; we assume that vector k is oriented
along the x direction. The equation for a Bloch ampli-
tude is (we neglect here the spin-orbit interaction for the
conduction electrons)

(1/2mo)[( —ii)iV'+p) + V(r)]u (r) =E~u~(r) (18)

where we have omitted the superscript indicating the
band's number. Here V(r) = V(r+a) is the periodic
self-consistent potential for a conduction electron while a
is a lattice vector, i.e., an arbitrary sum of the primitive
translations. In what follows we shall consider crystals
with a center of symmetry where V(r) = V( —r).

Let us present relations between the Bloch amplitudes
that are due to existence of a center of symmetry. ' Mak-
ing use of Eq. (18) one can see that u ( —r) satisfies the
same equation as u ~ (r ). For the quasimomentum in an
arbitrary position there is, in general, no degeneracy,
which means that these two functions should be linearly
dependent: u ( —r ) =C u (r ) where C can in general
be p dependent. As the Bloch amplitudes are normalized
we have ~C

~

= l.
The transition probability is proportional to the matrix

element squared 9=
~ EP2, (p', p) ~

. Let us investigate
properties of this function under variation of the signs of
its arguments. Writing down the explicit equation for
0( —p', —p), replacing the integration variables accord-
ing to r —+ —r, and taking into account condition

For the x component of the current density j„(z)we have

d pj =2ef, [ v'"(p+i)'ik) r~+„„—v~"'(p) r'~" ]
(2iri)i)

X G(p+i)ik, p)5(E~(+)z), —)rico —E~" ) . (17)

To obtain the y component one should replace v" ' by
(1,2)

This is the general formula that we shall use to investi-
gate the case l «6. The derivation of this formula, how-
ever, warrants a comment. In the lowest approximation
we assume the nonequilibrium part of the electron distri-
bution function to be small:

~
b,f" )

~

&& 1. Equation (16)
formally violates this condition because it is singular.
One can think, however, of a light beam having a finite
frequency interval. This would permit us to satisfy the
inequality (b,f" ' «1 and, at the same time, would
affect very little Eq. (17) where the singular function is in-
tegrated. (We may mention that such an approach would
not in general be permissible were we interested in the
nonlinear approximation in the light intensity. For non-
linear phenomena the real spectral width of the beam is
usually of importance. )

As k is small compared to the typical values of p, we
shall expand Eq. (17) in powers of k. The term of the
zeroth order vanishes as v" ' are odd functions of p
while all the rest functions in the integrand are even. Our
immediate purpose is to derive an equation for the dc
current by calculation of the term proportional to k .

~ Cz ~

= 1 we have 9( —p', —p) = Q(p', p). Introducing
Q(p;k)=Q(p, p') as a function of variables p and
k=(p' —p)/i)i we have 9( —p; —k) = Q(p;k).

Expanding this function in powers of k we get

Q(p;k)= Q(p;0)+k c)Q/c)k (19)

where the derivative is taken at k =0. Here the first
term is even under the change of the sign of p whereas
the second one is odd. In the following sections we shall
extensively use these properties.

VI. ELECTRON CURRENT DENSITY

j(1)+j(2)+j(3)+j(4)

~ =, d''"=ek +
(2iriri) m' ' m'"

XX XX

x 5(E',"—fi~ —s,"'),

G(p, O)

(20)

(21)

jx = ekx
a d3

[v (2)(p )r(2) v ( i )(p )r() ) ](2m)'

XG(p, O)[v„"'(p)+v' '(p)]

x 5(E,"'—A'co —s,"'),
(3)—ek I [v(2)( )r(2) v(i)( )r(1)]

d3

X 5(E'2) —fico —E")
)ak.

where the derivative is calculated at k =0:

d3 a~(2) a~(1)
j ( 4 ) —ek f P

v ( 2 )
( p )

~ + v ( i )
( p )

ap. ap„
XG(p;0)5(E' ' —A'co —E'") .

Here we have introduced a notation

(22)

(23)

(24)

(1,2)
XX

a2 (1,2)
P

ap

and have made use of the relations 'T
p

7
p

' and

c)G( —p, k) c)G(p, k)
ak. ak„

where again the derivative is calculated at k =0.
In the same way one can calculate the contributions to

The holes in the lower band 1 and the electrons in the
upper band 2 should contribute to the total current j„in
a similar way. This can be made more transparent by the
change of the integration variable in Eq. (17)
p~p —Ak/2. As k is small, one can expand the equa-
tion obtained in this way by retaining the first term in k .
One obtains the current density as a sum of terms that
originate in the k dependence of the velocities, energies
(in the argument of the 5 function), probabilities, and
times of relaxation. A straightforward calculation gives
for the current density (cf. with Ref. 7)
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To get a better insight into the physical situation let us
consider a simple example. It will enable us to make
order-of-magnitude estimates of the phenornenological
coefficients, such as g and g introduced in Eq. (1). Such
estimates need not be particularly sensitive to the actual
symmetry of the electron dispersion laws and the transi-
tion probabilities. Therefore to investigate a case of a
particular symmetry it is sufficient to use these estimates
and to generalize the phenomenological relations Eqs. (1),
(5), and (6).

We assume the electron spectrum in both bands to be
isotopic and quadratic:

(i)( ) 2y2 (i) (2)(p) —e +p2y2m(2) (25)

j, the current along the surface and perpendicular to the
plane of light incidence.

VII. EXAMPLE OF ISOTROPIC ELECTRON SPECTRUM

j' '=A, )k(,

XX

ecxmp
3~3 2 (+ ) 2 (2)

mom

x (3 IE.I'+ IE, I'+ IE.I')

m'"

Here we have introduced notations

1

m"'
1

m (1)
1

m'+'
1 1

(2) (1)

~(2)
X m"' Re(E*E ) .

and ))iso'=A'co —eg, p =&2m i)iso'. Now,

(pm p
Xp gX 3 g3 2 (+ )

mom

(30)

(31)

As for the probabilities of the interband transitions, we
shall make one of the simplest assumptions compatible
with the same isotropic model, namely,

(p p)=&(p+p ) (26)

)(1)+ )(2) (27)

Here only the two first terms of Eq. (20) are present;
j' '=0 as after the change of the variables of integration
we get the function Pz, given by Eq. (26) independent of
k,

e a mp ~(2) ~(1)

g3 2 2 (2) (1)+ IEI'1,
m ohio

(28)

where a is a dimensionless constant. In reality the angu-
lar dependence of matrix element may be much more
complicated. This, however, is of little consequence as
we are going to use this equation only for rough estimates
whereas to investigate the symmetry of the expressions
describing the surface current we can use a generalization
of Eqs. (1) or (5). What is of real importance are the nu-
merical values of coefficients o, . For instance, in the ap-
proximation of almost-free electrons one should consider
them as small, the smallness being proportional to the ra-
tio of the pseudopotential constant to some characteristic
energy of the order of the Fermi energy. As for the actu-
al dependence of the transition probabilities on the abso-
lute value of the quasimomentum, it is very important for
order-of-magnitude estimates for semiconductors where
the values of the involved quasimomentum are usually
small. There one should discriminate between the cases
where (depending on the symmetries of the bands in-
volved) the expansion of Pz) begins with the zeroth and
the first powers of p. In metals where a11 the relevant
values of p are of the order of the Fermi quasimomentum
pF, the actual form of the functional dependence is of not
so great importance for the estimates (cf. with Refs. 18
and 16).

To further simplify our task we shall assume that the p
dependence of 7

p
and ~' ' is of no importance so we shall

consider these two relaxation times as constants. We are
giving here the result of a straightforward calculation:

Comparing these results with the phenomenological
equation (1) we get

2e o. mp

p3 2 2 (2) (1)m oct)

2eamp
g3 (+ ) 2 2 (2)m Oco

(32)

(33)

Here we assume an effective mass to be positive if the
curvature of the band is positive, or, in other words,
a'e yap,' & 0.

VIII. PHOTOGALVANIC ELECTRON CURRENT

To make a general analysis and order-of-magnitude es-
timates we are going to calculate this contribution for the
simplest possible situation. We shall again assume the
isotopic quadratic electron spectrum given by Eq. (25).
As for the transition amplitude, we can now neglect a
small item Ak in comparison to p and assume

P21=2eP . (34)

This contribution cannot be properly treated without tak-
ing into account the variation of the electron distribution
function with the distance from the surface z. Here we
need an assumption in regard to the electrons' reAection
from the metal surface. Let us assume that the reAection
is elastic and completely diffuse, so that

b.f(0)=0 for U, )0 . (35)

As is well known, in general the condition for diffuse
reAection should have for v, )0 a more complicated
form, bf(0)=C, where constant C depends on the elec-
tron energy. C should be chosen to satisfy the condition
that the normal component of the electron current
should vanish at the surface. However, one can easily
check that to calculate the components of surface current
g and g with the accuracy accepted throughout the pa-
per it is sufficient to consider the boundary condition in
the simplified form (35).

We shall analyze the Boltzmann equation (15) for the
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electrons; the superscript (2) at the distribution function
and other quantities will be omitted. We have

Bbf hf
( )

Bz
(36)

where, within the accepted approximation,
D(z) = G(z)5( e~

' —fico —
e~ '). Its solutions are

r

1
b,f(z) = exp

z'f dz'exp
U 7 0 U 7

D(z'), u, )0

bf(z) = — exp
1

U

I

f dz'exp
U 7 z U~7

D(z'),

U, &0. (37)

Assuming an exponential variation of D with the distance
D (z) =Doe "we get

e
—KZ —PZ

bf(z)= Do, u, )0
u~ Ic

KZ

bf(z)= — Do, u, (0

(38)

(39)

where we have introduced the notation P= 1/lu, lr We.
shall use here the same equation for G as in Sec. VII set-
ting k=0. Assuming that the wave is polarized in the xz
plane we can write

2

[IE ol'p'+ E.ol'p.'
mo~

a2emp4.
gx=

4m' moco m (2)

7(&)
Re(E OE,*O ) .m"'

(44)

For lcl ((1,Z =8icl /15 while for Icl ))1, Z = 1.
The physics of the result is rather transparent. If the

electron mean free path l is much smaller than the elec-
tromagnetic field penetration depth 6=1/~, the electron
gas is sensitive to the diffuse reAection from the surface
only within a thin layer of the width l near the surface.
Elsewhere there is a cancellation of the contributions of
the electrons with U, &0 and U, &0. Thus the result is
proportional to the small parameter ~l.

In the opposite case all the electrons with U, & 0 excited
by the light carry the current, in contrast to the electrons
with U, &0, which are strongly scattered at the surface.
As a result, there is no balance between the two electron
groups and one gets 1 instead of the factor proportional
to ~l.

In a more general case where the reQection of the elec-
trons is partly specular, so that P is the part of specularly
reflected electrons, the net photogalvanic current would
be proportional to 1 P(see Re—f. 15), in strong contrast
to the current due to the quasimomentum transfer which
is much less sensitive to the character of the reAection
(see Sec. IX).

Let us now give the result for the case where contribu-
tions of two bands are of importance, the conditions
I »5 being valid for both bands,

+2Re(E OE,*O)p„p,] . (40) This means that we have

Here E,.o stands for the amplitude of a field component at
z =+0, i.e., inside the metal just near the surface. It is
the last term in the square brackets that is responsible for
the effect we consider in this section, so we shall retain
only this term in the equation for Go ~ The electron
current density can be calculated by integration over d p
of the electron distribution function, Eq. (39), times the
electron velocity U:

2 4
cx ep~~

4m'
7(2) 7(&)

m (2) m (&)
(45)

for a parameter A, as defined by Eq. (6). It is useful to
give for the analysis of the photogalvanic contribution
the product E OE,'o at a surface of an optically isotropic
metal as a solution of a standard boundary problem

ea imp„.
Jx g4 m oco

X f ding(1 —g )
0

2

1 —lcl g
KZ

I + icl g

3217 6 sin 8 cos 8 sinO

l
e cose+ +e—sin 8

—z/lg
Re(E OE,*o) .

1 —~l
(41)

ea imp ~

x 4~4 m oco

2

Re(E oE,*O )Z(lcl), (42)

where

~ dg'(1 —g')
0 1+Iclg

(43)

Here l =p7 /m ' ' is the electron mean free path.
Integrating this equation over z we get for the density

of the surface current carried by the electrons

Here 8 is the angle of light incidence, e is the (complex)
dielectric susceptibility of the metal, and Q" is the
Poynting vector of the wave falling from the uacuum on
the metal surface.

It is worthwhile to note that one could have entirely
different phase relations between x and z components of
the field for a circular (generally, elliptical) polarization
of the wave. It means, in particular, that by variation of
the ratio of the polarization ellipse axes and of their
orientation one can vary the photogalvanic contribution
to the current. In such a case one can also expect a non-
vanishing value of the y component of the surface current
g~. It is determined by the same equation as g with the
replacement of Re(E 0E,*O) by Re(E OE,*O).
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IX. SURFACE CURRENT
DUE TO QUASIMOMENTUM TRANSFER:
LARGE ELECTRON MEAN FREE PATHS

ek o. mp
2 3

3~~1& m 0co

2

We start with a general equation for the electron
current density that after the appropriate coordinate
transformation in the integrand takes the form

~(2)

m(+) m(2) (, )
IE.pl'

d3j =2e f lu' '(p)Af' ' —u"'(p)Af'" j .(2~)' (47)

F,(z)= f "bf, (z)dz .
0

Here, to calculate the surface current with regard to the
boundary conditions (35) we shall use the following equa-
tions for the integrals of the type (48). By the same
method as in Sec. VIII we get

(49)

In principle, we are interested in the case of any relation
between the penetration depth 6 and the electron mean
free paths. Again we shall calculate the contribution of
electrons in band 2; the contribution of band 1 we shall
write by analogy.

To calculate the surface current density we actually
need not know the distribution function but rather its in-
tegral over z,

(52)

The physics rejected by this equation can be visualized
as follows. All the electrons excited by the light can be
subdivided into two groups, i.e., those moving towards
the surface and those moving from the surface. Because
of the condition I ))6 the electrons of the first group ex-
perience a strong scattering from the surface. As the
scattering is assumed to be completely diItuse, these elec-
trons give a negligible contribution to the current. To the
contrary, the contribution of the electrons of the second
group is conditioned by the scattering in the bulk of the
metal, i.e., by the same mechanism as for I (&5. There-
fore the general expression for the integral over z of their
distribution function remains the same, however, with an
extra factor —,'.

X. TWO CONTRIBUTIONS TO THE SURFACE
CURRENT AND THEIR COMPARISON

For the electric field polarized in the xz plane one may
give the following order-of-magnitude estimate of the two
contributions. Let us denote by g( ' the surface current
proportional to wave vector k and by g' ' the photogal-
vanic current. Then we have

where (P)y (q)l (1 P)
p IRe(E,* .o)I

~k IE
(53)

D (p, p
—Rk) =Doe

=G(p, p —A'k)5(E' ' —i'(u —E"'~„). (50)

Again we assume that the relaxation times are indepen-
dent of p. We will solve the Boltzmann equation for
P=O. We shall consider here a limiting case of a com-
paratively large electron mean free path l ))5 and shall
retain the lowest approximation in 5/l. In this approxi-
mation we should consider as nonvanishing only the solu-
tion of Eq. (49) for u, )0. It gives

g„(z)= ', f d'p f dp, u, D, .
(2~%') a 0

(51)

Here we assume that the metal surface coincides with its
plane of symmetry, so that v, )0 corresponds to p, )0.
Further on in this section, for simplicity, we shall again
use Eq. (26) for P2( and assume, for the same reason, that
the times of relaxation are independent of p.

Calculating the surface current we shall expand it in
powers of k retaining the terms of the zeroth and the
first order. The zeroth-order term is the usual photogal-
vanic current given by Eq. (44) while for the first-order
term we get

The ratio of the two current densities contains a numeri-
cal factor y, a factor (1 P) depending on—the reliection
of the electrons from the metal surface, a ratio of two
characteristic wave vectors p ~ /Ak, and a field factor that
is determined by the ratio of certain amplitudes of the
electric fields within the metal, with regard to the phase
relations between the components.

A theory based on oversimplified Eq. (26) cannot give
the exact value of the factor y for it is rather sensitive to
the actual form of the dispersion laws and, especially,
transition probabilities. It would be most interesting to
investigate in the future the relative role of both contribu-
tions for more realistic models. (For a particular case of
semiconductors where light induces intraband transitions
a comparison of the two contributions to the surface
current has been done in Ref. 13.)

Now, the factor 1 —P usually can be replaced by 1 un-
less the surface current is determined mainly by the skip-
ping trajectories for which in the case we consider here
we see no special reasons. The ratio p ~ /Ak is of the or-
der of 10 for the visible light.

As for the field factor, it should be discussed more
carefully. It is determined by dielectric susceptibility of
the metal which, for a visible light, is usually determined
by free electrons. We have
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(54)

where eo is a contribution due to atomic core polarization
(usually comparatively small within the frequency range
we are interested in) whereas the plasma frequency to is
given by co =4irne Im where n is the free-electron con-
centration. For n of the order of 10 cm and m of the
order of free-electron mass co = 3 X 10 s, which
means that for a visible light the absolute value of the
second term in Eq. (54) is at least larger than 10.

Now, the ratio

sin8/Re+@ —sin 8(

E —s1n 0
(55)

is small for two reasons. First, ~e~ is large. Second, for a
real negative dielectric susceptibility [Eq. (54)] we have
Re(E„oE,*o)=0. Therefore to obtain a finite result one
should take into account an imaginary part (usually
small) that is due to the light absorption, i.e., proportion-
al to the transition probabilities. The best way to make
estimates of these is to use the experimental data (for in-
stance, on light absorption). All this means that it is
difficult to state in advance which contribution would
prevail under given circumstances and their relative
values should be investigated carefully in every particular
case.

XI. CONCLUSION

One can see on the basis of the calculation presented
that there are two contributions to the surface current.
One of them is initiated by the quasimomentum transfer.
Another one (the photogalvanic current) is due to the
asymmetry in the electron distribution brought about by
a surface scattering of the conduction electrons.

Both contributions exist for interband as well as for in-
traband electron transitions induced by light. We are
treating here the case of relatively high energies of light
quanta. Therefore we consider interband transitions.

As we have seen in Sec. X, depending on the particular
experimental situation, the photogalvanic contribution to
the surface current can be larger than the part deter-
mined by the quasimomentum transfer, or of the same or-
der, or can even vanish. Indeed, this contribution is sen-
sitive to the way the electrons are rejected at the metal
surface; it vanishes for the specular reAection. It is more
likely, however, to expect diffuse reflection, except for the
electrons whose velocities are at very small angles to the
surface. The polarization of the light may be of major
importance for this part of the current. For instance,
there would be no contribution for a monocrystal provid-
ed the plane of light incidence coincides with a plane of
high symmetry of the crystal and the electric field vector

of light is perpendicular to the plane.
If the light is polarized in the xz plane, the theory pre-

dicts an effect. The effect is proportional to Re(E„oE,*o ),
i.e., it should be sensitive (as has already been mentioned)
to the phase relations between the components of the
electric field. According to Eq. (46) the product is pro-
portional to +e—sin 8. If the frequency of light co is
well below the plasma edge (which is likely to be the case
for the experiments in Ref. 1) e is in the first approxima-
tion real and negative, and probably much larger than
unity by its absolute value. In the next approximation
there is an imaginary part which determines the light ab-
sorption. It may be considered as small if on the experi-
ment the absorbed intensity is small in comparison to the
reAected one.

An experiment of the polarization dependence of the
photomagnetism has been done by the authors of Ref. 21.
A distinct polarization dependence of the effect has been
observed. However, these results should be considered as
preliminary, as they were obtained on polycrystalline
samples. The experiments on monocrystals are now in
progress.

Investigation of the photomagnetism can be of consid-
erable interest for several reasons. First, this is a way to
study properties of a system of electrons highly excited
within conduction bands as well as modes of relaxation of
these electrons. Some processes that are not typical for a
more usual situation of electrons slightly displaced from
the equilibrium can be of much more importance for the
electrons high above the Fermi level and the holes well
below it. Among these one can name in the first place the
electron-electron collisions. Their investigation in the fu-
ture may provide much useful information.

Second, this is a powerful way to study interaction of
the electrons with the light. It should prove very in-
teresting to investigate this phenomenon together with
the light absorption.

Third, this could provide a way to study various as-
pects of the interaction of conduction electrons with the
surface of a metal. Again this effect can provide a unique
possibility to investigate this for high-energy electrons.
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